

FCC - TEST REPORT

Report Number	: 708881974831-00 Date of Issue: October 31, 2019
Model	: TYWE3SE
Product Type	: TYWE3SE Wi-Fi and Bluetooth Module
FCC ID	: 2ANDL-TYWE3SE
Applicant	: Hangzhou Tuya Information Technology Co.,Ltd
Address of Applicant	Room701,Building3,More Center,No.87 GuDun
	Road, Hangzhou, Zhejiang China
Manufacturer	: Hangzhou Tuya Information Technology Co.,Ltd
Address of Manufacturer	: Room701,Building3,More Center,No.87 GuDun
	Road, Hangzhou, Zhejiang China
Factory	: Newtronics Hangzhou Co.,Ltd
Address of Factory	No.15,Jiu zhou Road,Jiang Gan Science&Technology Economic : Park Hangzhou, Zhejiang China
Test Result	: ■ Positive □ Negative
Total pages including Appendices	: 59

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2					
2 I	Details about the Test Laboratory	2					
3 I	Description of the Equipment under Test	4					
4	Summary of Test Standards	6					
5	Summary of Test Results						
6 (General Remarks	8					
7	Test Setups	9					
8	Systems test configuration	.12					
9	Technical Requirement	.13					
9.1	Conducted Emission	.13					
9.2	2 Conducted peak output power	.16					
9.3	3 20 dB Occupied Bandwidth	.23					
9.4	Carrier Frequency Separation	.30					
9.5	Number of hopping frequencies	.32					
9.6	S Dwell Time	.34					
9.7	7 Spurious RF conducted emissions	.37					
9.8	Band edge testing	.44					
9.9	Spurious radiated emissions for transmitter and receiver	.51					
10	Test Equipment List	.56					
11	System Measurement Uncertainty	.57					
12	Photographs of Test Set-ups	.58					
13	Photographs of EUT	.59					

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

Test Firm Registration

820234

Registration Number:

Telephone: +86 21 6141 0123 Fax: +86 21 6140 8600

3 Description of the Equipment under Test

Product: TYWE3SE Wi-Fi and Bluetooth Module

Model no.: TYWE3SE

FCC ID: 2ANDL-TYWE3SE

Options and accessories: N/A

Rating: 3~3.6V DC

RF Transmission 2402~2480MHz for Bluetooth

Frequency: For 2.4G Wi-Fi

For 802.11b/g/n-HT20: 2412~2462 MHz

For 802.11n-HT40: 2422~2452 MHz

No. of Operated Channel: 79 for Bluetooth 4.2 BR+EDR

40 for Bluetooth 4.2 BLE

For 2.4GHz Wi-Fi

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Modulation: Bluetooth 4.2+EDR FHSS: GFSK, 8DPSK, π/4 DQPSK

Bluetooth 4.2 BLE DHSS: QPSK

For Wi-Fi:

Direct Sequence Spread Spectrum (DSSS) for 802.11b

Orthogonal Frequency Division Multiplexing(OFDM) for 802.11g/n

Data speed: 1. Bluetooth BR+EDR: 1Mbps, 2Mbps, 3Mbps

2. Bluetooth BLE: 1Mbps

3. 802.11b: 1, 2, 5.5, or 11 (Mbit/s)

802.11g: 6, 9, 12, 18, 24, 36, 48, or 54 (Mbit/s)

802.11n: HT20 & HT40 MCS0 to MCS7

Duty Cycle: 100%

Antenna Type: PCB

Antenna Gain: 2.5dBi

Page 4 of 59 Rev. 171.00

Description of the EUT: The Equipment Under Test (EUT) is a RF Module with Bluetooth and Wi-

FI function.

The EUT support Bluetooth 4.2 BR+EDR and support BLE function and

Wi-Fi operated at 2.4GHz.

Only 2.4G Bluetooth 4.2 BR+EDR included in this report.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
1	Subpart C - Intentional Radiators				

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000, KDB558074 D01 v05r02 and C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C						
Test Condition		Pages	Test Site	Test Result		
§15.207	Conducted emission AC power port	13	Site 1	Pass		
§15.247(b)(1)	Conducted peak output power	16	Site 1	Pass		
§15.247(a)(2)	6dB bandwidth			N/A		
§15.247(a)(1)	20dB bandwidth	23	Site 1	Pass		
§15.247(a)(1)	Carrier frequency separation	30	Site 1	Pass		
§15.247(a)(1)(iii)	Number of hopping frequencies	32	Site 1	Pass		
§15.247(a)(1)(iii)	Dwell Time	34	Site 1	Pass		
§15.247(e)	Power spectral density*			N/A		
§15.247(d)	Spurious RF conducted emissions	37	Site 1	Pass		
§15.247(d)	Band edge	44	Site 1	Pass		
§15.247(d) & §15.209 &	Spurious radiated emissions for transmitter and receiver	51	Site 1	Pass		
§15.203						

Note 1: N/A=Not Applicable. Conducted emission is not apply for battery operated device. Note 2: The EUT uses a permanently integral antenna, which gain is 2.5dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ANDL-TYWE3SE, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

This report in only for Bluetooth EDR. The TX and RX range is 2402MHz-2480MHz.

SU	N	11	VI	Α	R	Y

All tests according to the regulations cited on page 7 were

- Performed
- □ Not Performed

The Equipment Under Test

- - **Fulfills** the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

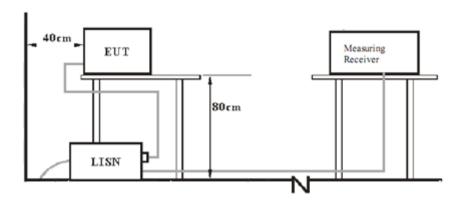
Sample Received Date: July 29, 2019

Testing Start Date: July 31, 2019

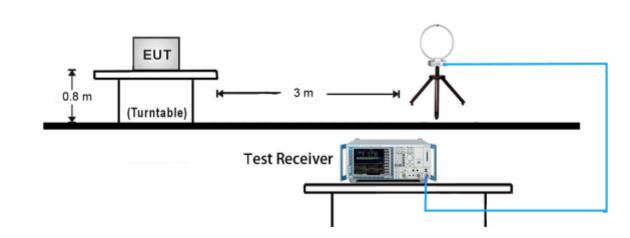
Testing End Date: August 30, 2019

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

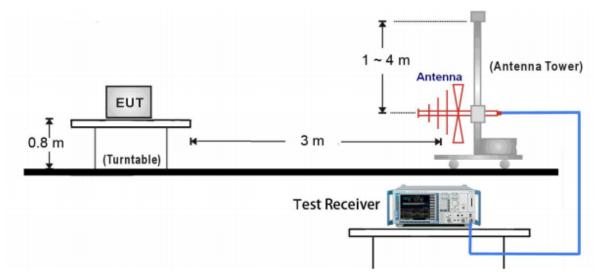
Reviewed by: Prepared by: Tested by:


Hui TONG

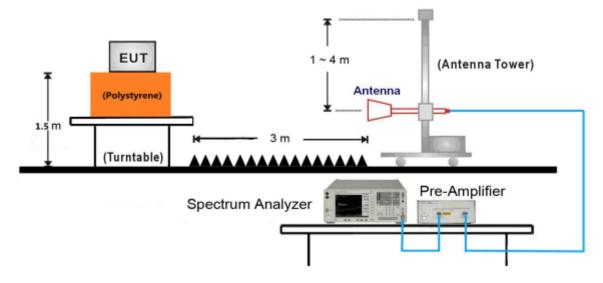
Jiaxi XU Review Engineer **Project Engineer** Wengiang LU **Test Engineer**


7 Test Setups

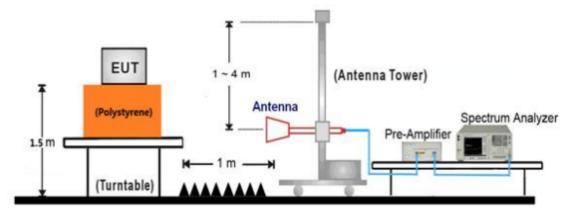
7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups

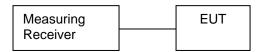
9kHz ~ 30MHz Test Setup:



30MHz ~ 1GHz Test Setup:



1GHz ~ 18GHz Test Setup:



18GHz ~ 25GHz Test Setup:

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenove	X240	

Test software: SecureCRT, which used to control the EUT in continues transmitting mode

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted Emission

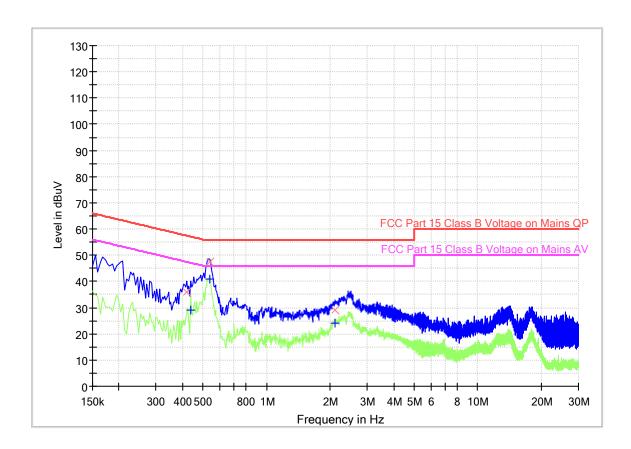
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency


Conducted Emission

Product Type : TYWE3SE Wi-Fi and Bluetooth Module

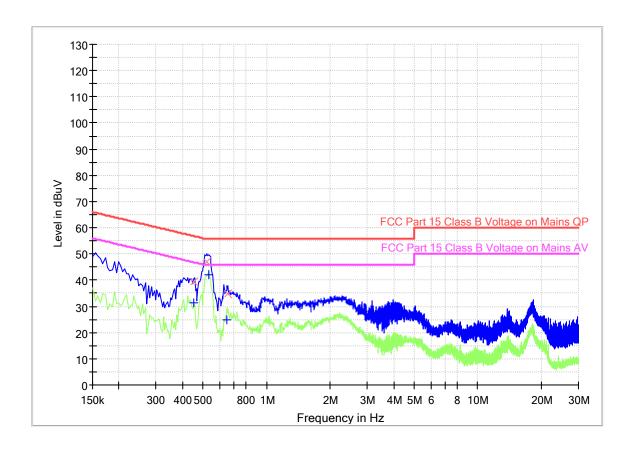
M/N : TYWE3SE

Operating Condition : Mode 1: Tx powered by notebook

Test Specification : FCC_Part15.207 Comment : L-line, AC 120V/60Hz

Final Result

Frequency	Quasi	CAverag	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	Peak	е	(dBuV)	(dB)	Time	(kHz)		(dB)
	(dBuV)	(dBuV)			(ms)			
0.420000	35.97		57.45	21.48	1000.0	9.000	L1	19.4
0.438000		29.02	47.10	18.08	1000.0	9.000	L1	19.4
0.537000		40.92	46.00	5.08	1000.0	9.000	L1	19.4
0.537000	47.35		56.00	8.65	1000.0	9.000	L1	19.4
2.103000		24.16	46.00	21.84	1000.0	9.000	L1	19.5
2.116500	28.93		56.00	27.07	1000.0	9.000	L1	19.5



Product Type : TYWE3SE Wi-Fi and Bluetooth Module

M/N : TYWE3SE

Operating Condition : Mode 1: Tx powered by notebook

Test Specification : FCC_Part15.207 Comment : N-line, AC 120V/60Hz

Final Result

Frequency	Quasi	CAverag	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	Peak	е	(dBuV)	(dB)	Time	(kHz)		(dB)
	(dBuV)	(dBuV)			(ms)			
0.451500		31.32	46.85	15.53	1000.0	9.000	N	19.5
0.451500	39.21		56.85	17.64	1000.0	9.000	N	19.5
0.523500	47.16		56.00	8.84	1000.0	9.000	N	19.5
0.532500		42.23	46.00	3.77	1000.0	9.000	N	19.5
0.649500		24.71	46.00	21.29	1000.0	9.000	N	19.5
0.654000	34.86		56.00	21.14	1000.0	9.000	N	19.5

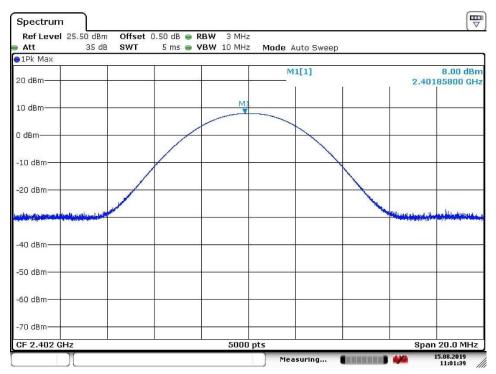
9.2 Conducted peak output power

China

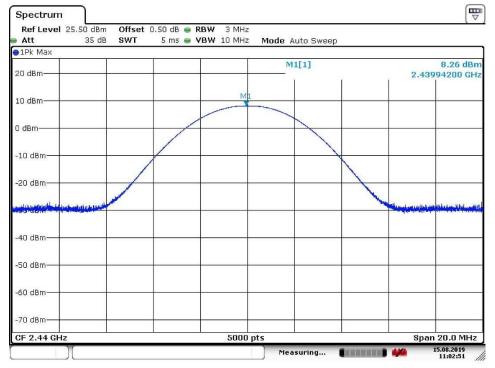
Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

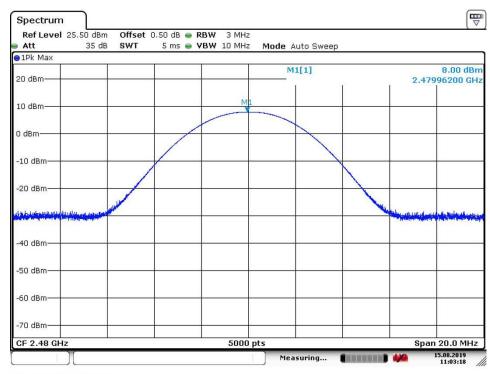
Limits


Frequency Range	Limit	Limit		
MHz	W	dBm		
2400-2483.5	≤1	≤30		

Conducted peak output power

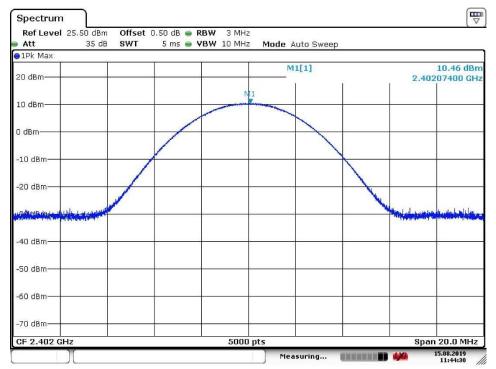

Bluetooth Mode GFSK worst case DH1 modulation Test Result

 Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2402MHz	8.0	Pass
Middle channel 2441MHz	8.26	Pass
High channel 2480MHz	8.0	Pass



Date: 15.AUG.2019 11:01:39

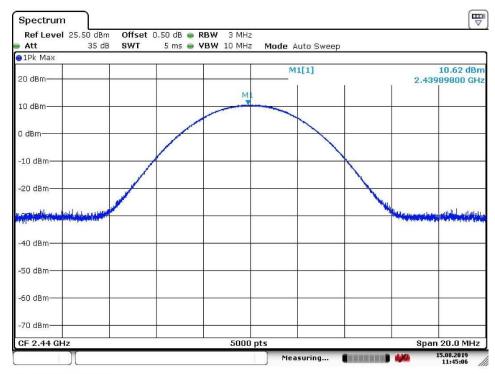
Date: 15.AUG.2019 11:02:52



Date: 15.AUG.2019 11:03:19

Bluetooth Mode π/4-DQPSK worst case 2DH1 modulation Test Result

Frequency MHz	Output Power dBm	Result
Low channel 2402MHz	10.46	Pass
Middle channel 2441MHz	10.40	Pass
High channel 2480MHz	10.62	Pass



Date: 15.AUG.2019 11:44:30

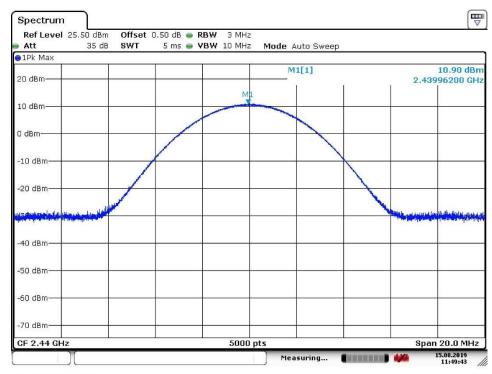
Date: 15.AUG.2019 11:45:31



Date: 15.AUG.2019 11:45:06

Bluetooth Mode worst case 8DPSK 3DH1 modulation Test Result

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Low channel 2402MHz	10.75	Pass
Middle channel 2441MHz	10.73	Pass
High channel 2480MHz	10.9	Pass



Date: 15.AUG.2019 11:49:11

Date: 15.AUG.2019 11:50:07

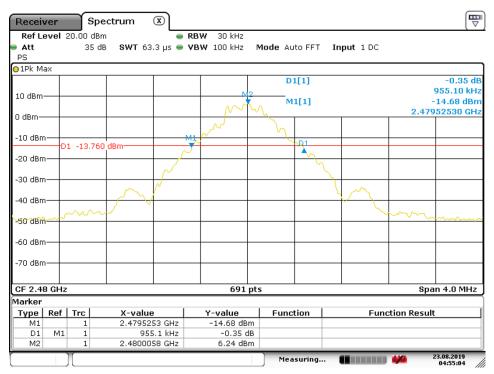
Date: 15.AUG.2019 11:49:43

9.3 20 dB Occupied Bandwidth

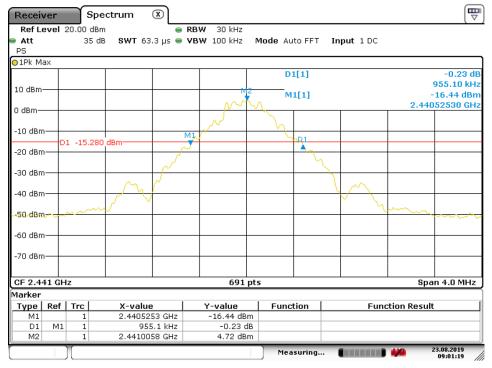
Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

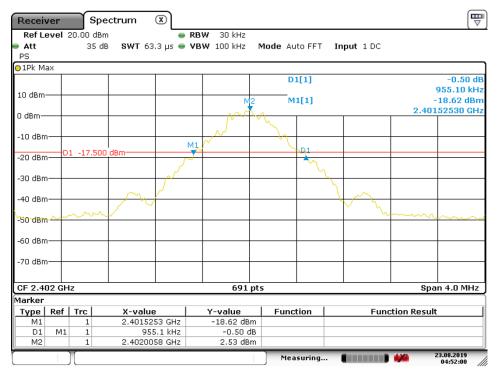
	n	•	٠


Limit [kHz]	
N/A	

20 dB Occupied Bandwidth

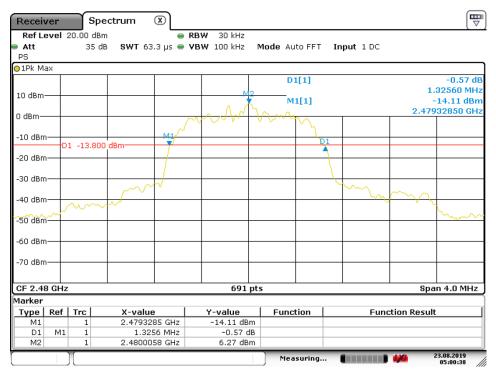

Bluetooth Mode GFSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result	
MHz	MHz	kHz		
2402	0.9551		Pass	
2441	0.9551		Pass	
2480	0.9551		Pass	

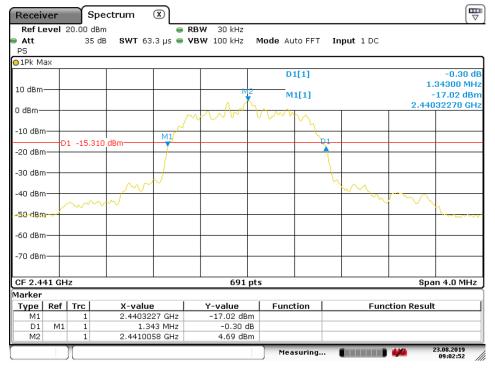


Date: 23.AUG.2019 04:55:04

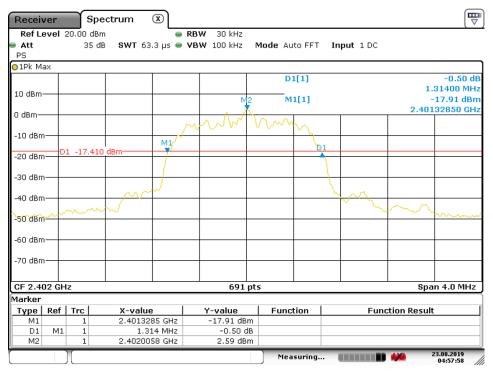
Date: 23.AUG.2019 09:01:19


Date: 23.AUG.2019 04:51:59

20 dB Occupied Bandwidth

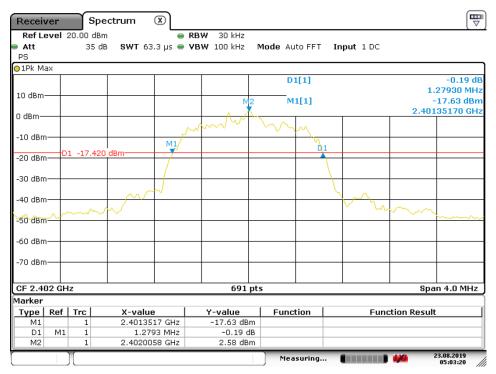

Bluetooth Mode π/4-DQPSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result	
MHz	MHz	kHz		
2402	1.3256		Pass	
2441	1.343		Pass	
2480	1.314		Pass	

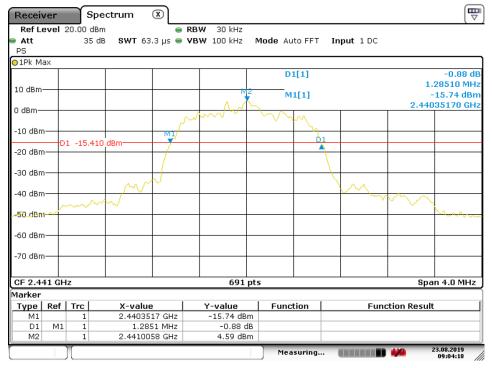


Date: 23.AUG.2019 05:00:38

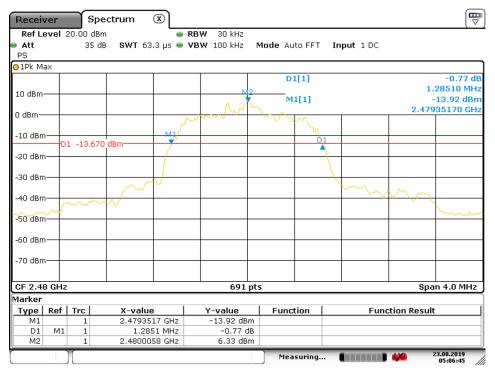
Date: 23.AUG.2019 09:02:52


Date: 23.AUG.2019 04:57:57

20 dB Occupied Bandwidth


Bluetooth Mode 8DPSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result	
MHz	MHz	kHz		
2402	1.2793		Pass	
2441	1.2851		Pass	
2480	1.2851		Pass	



Date: 23.AUG.2019 05:03:21

Date: 23.AUG.2019 09:04:18

Date: 23.AUG.2019 05:06:45

9.4 Carrier Frequency Separation

Test Method

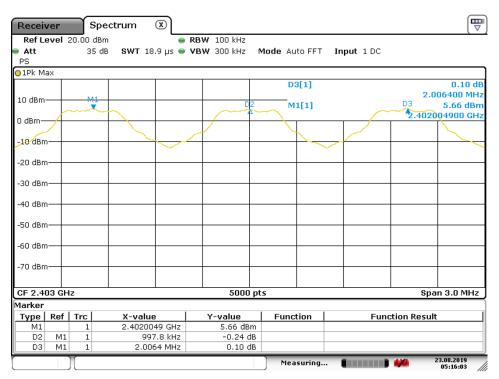
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit
kHz
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

GFSK Modulation Limit

Frequency	2/3 of 20 dB Bandwidth
MHz	MHz
2402	0.63673



Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status), here GFSK modulation mode was used to show compliance.

GFSK Modulation test result

Frequency	Carrier Frequency Separation	Result
MHz	MHz	
2402	0.9978	Pass

Date: 23.AUG.2019 05:16:03

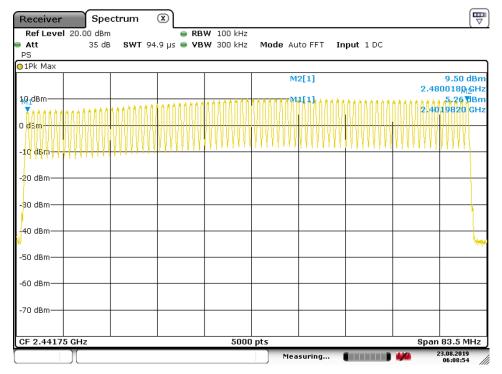
9.5 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit
number
> 15



Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.

Number of hopping frequencies	Result
79	Pass

DH1 test result

Date: 23.AUG.2019 06:08:55

9.6 Dwell Time

Test Method

- Connect EUT antenna terminal to the spectrum analyzer with a low loss cable.
 Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

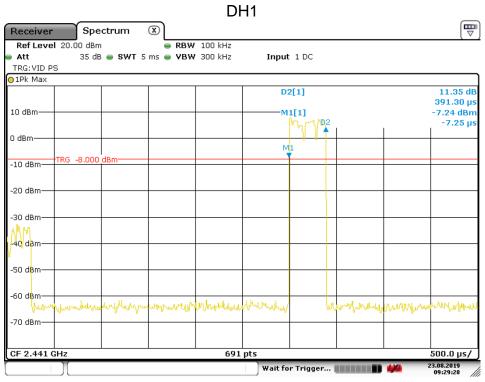
Dwell Time

Dwell time

The maximum dwell time shall be 0,4 s.

According to the Bluetooth Core Specification, the worse result (DH5 mode) was reported to show compliance.

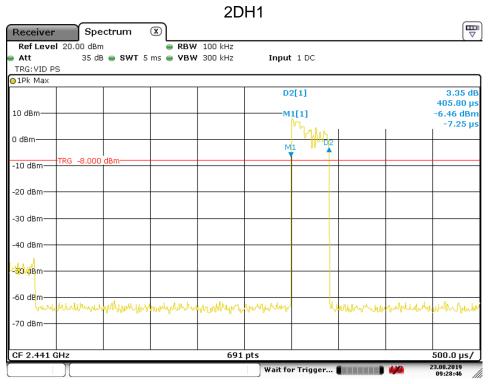
The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];


The burst width, which is directly measured, refers to the duration on one channel hop.

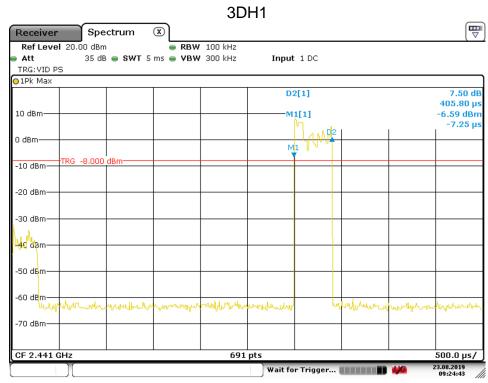
The maximum number of hopping channels in 31.6s for DH5=1600 / 6 / 79 *31.6=106.67

Test Result

Modulation	Mode	Reading (ms)	Total Hops	Test Result (ms)	Limit (ms)	Result
GFSK	DH1	0.3913	106.77	41.779101	< 400	Pass
π/4-DQPSK	2DH1	0.4058	106.77	43.327266	< 400	Pass
8-DPSK	3DH1	0.4058	106.77	43.327266	< 400	Pass


GFSK Modulation

Date: 23.AUG.2019 09:29:28



π/4-DQPSK Modulation

Date: 23.AUG.2019 09:28:46

8-DPSK Modulation

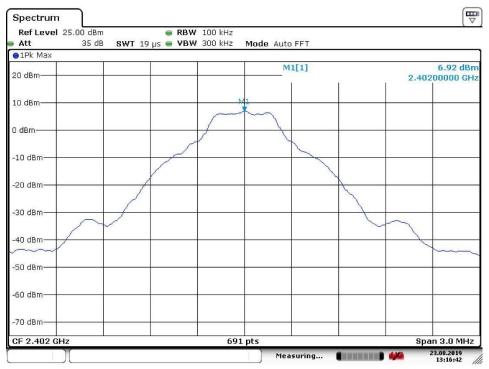
Date: 23.AUG.2019 09:24:43

9.7 Spurious RF conducted emissions

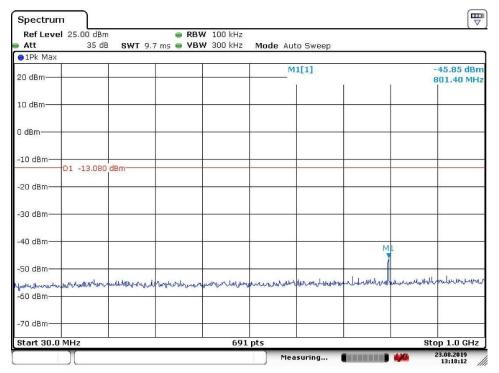
Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

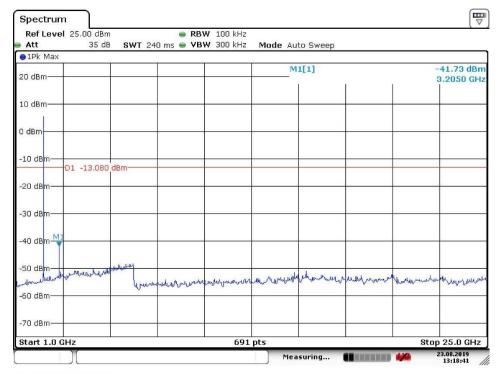
Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

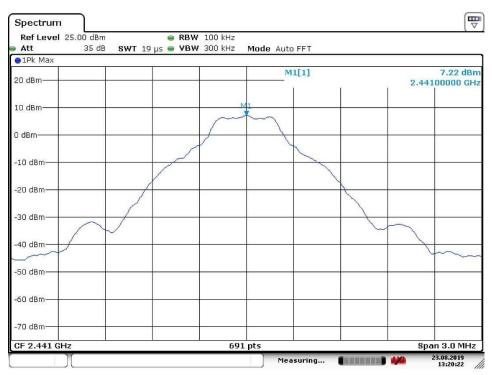
Spurious RF conducted emissions

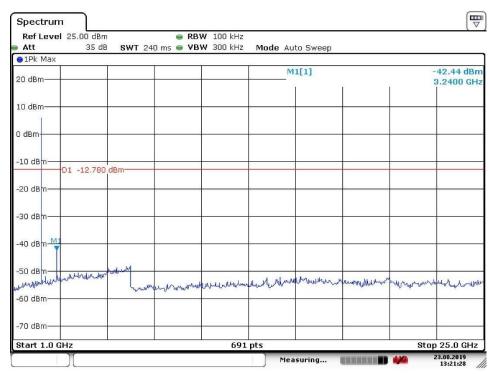

Only the worst case (which is subject to the maximum EIRP, GFSK DH1 mode) test result is listed in the report.

2402MHz

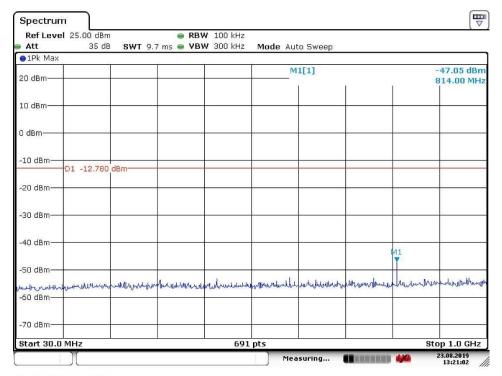


Date: 23.AUG.2019 13:16:42


Date: 23.AUG.2019 13:18:13

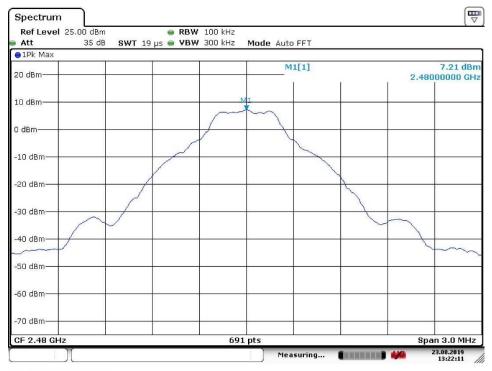

Date: 23.AUG.2019 13:18:41

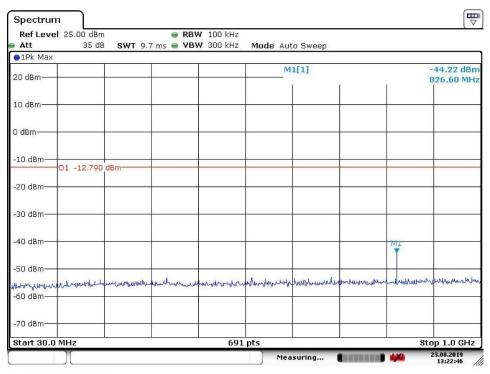
2441MHz



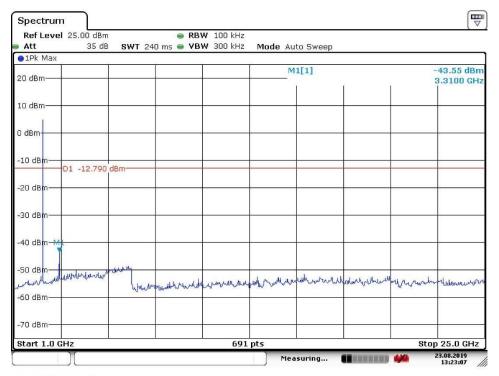
Date: 23.AUG.2019 13:20:22

Date: 23.AUG.2019 13:21:28




Date: 23.AUG.2019 13:21:03

2480MHz



Date: 23.AUG.2019 13:22:11

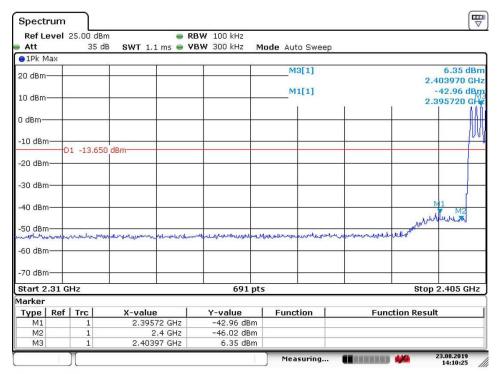
Date: 23.AUG.2019 13:22:46

Date: 23.AUG.2019 13:23:07

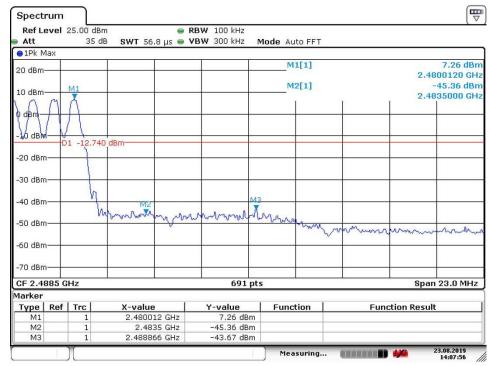
9.8 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

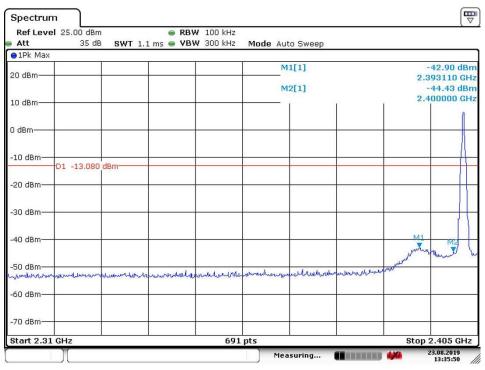

Limit:

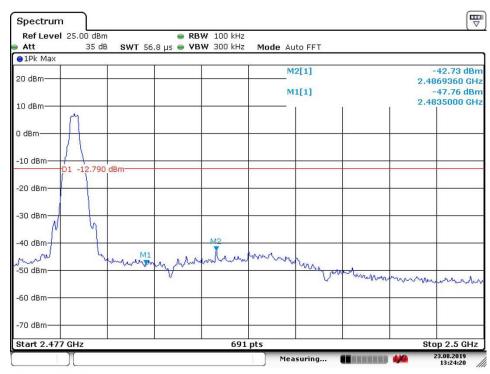
In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).



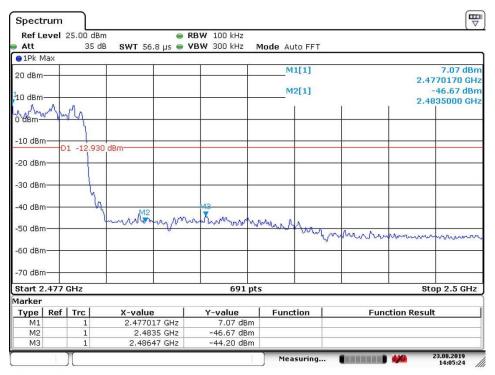
Band edge testing

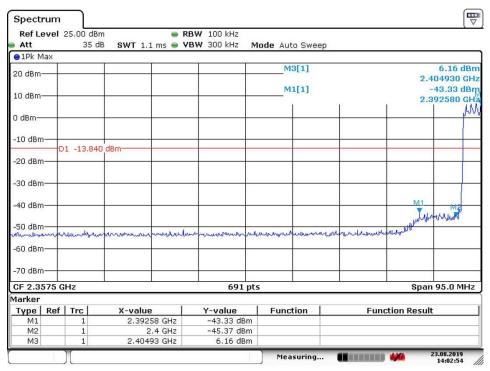
GFSK DH1 Modulation Test Result: Hopping on mode:


Date: 23.AUG.2019 14:10:25

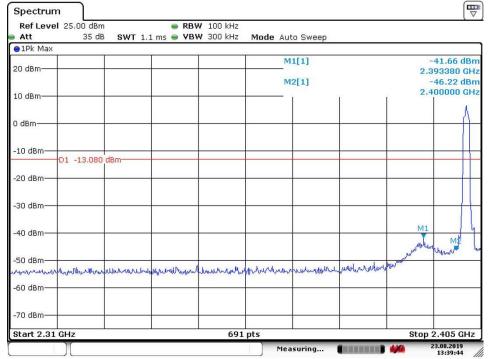

Date: 23.AUG.2019 14:07:57

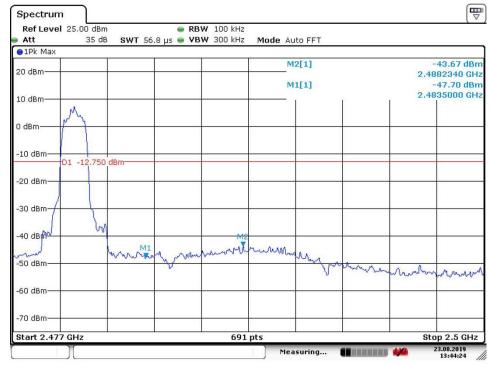
Hopping off mode:


Date: 23.AUG.2019 13:35:50

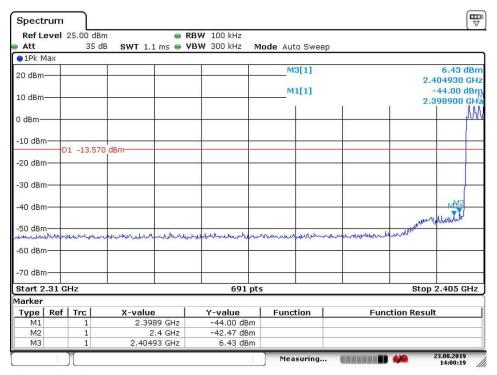

Date: 23.AUG.2019 13:24:20

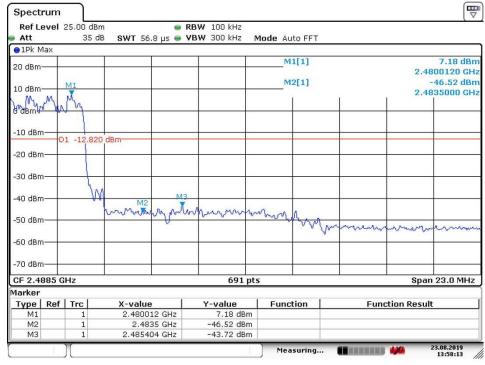
π /4-DQPSK Modulation Test Result: Hopping on mode:


Date: 23.AUG.2019 14:05:24

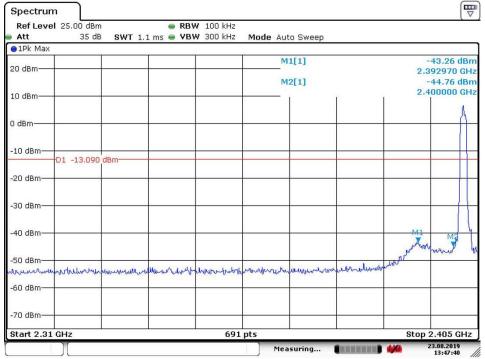

Date: 23.AUG.2019 14:02:55

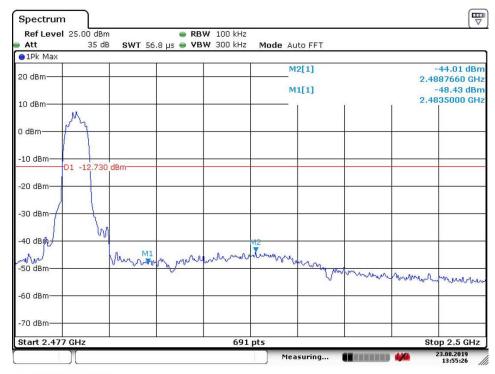
Hopping off mode:


Date: 23.AUG.2019 13:39:44


Date: 23.AUG.2019 13:44:24

8DPSK Modulation Test Result: Hopping on mode:


Date: 23.AUG.2019 14:00:19


Date: 23.AUG.2019 13:58:13

Hopping off mode:

Date: 23.AUG.2019 13:47:39

Date: 23.AUG.2019 13:55:26

9.9 Spurious radiated emissions for transmitter and receiver

China

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120 kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1MHz.
- b) VBW \geq [3 \times RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction

factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 $\log (1 / D)$], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

 Frequency MHz	Field Strength uV/m	Measured Distance Meters
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30	30	30

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter and receiver

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the maximum EIRP, 8DPSK mode) test results are listed in the report.

Transmitting spurious emission test result as below:

Bluetooth Mode GFSK Modulation 2402MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
2390	42.08	Н	74	PK	31.92	Pass
4804	39.18	Н	74	PK	34.82	Pass
2368.8	45.60	V	74	PK	28.4	Pass
4804	40.19	V	74	PK	33.81	Pass

Bluetooth Mode GFSK Modulation 2441MHz Test Result

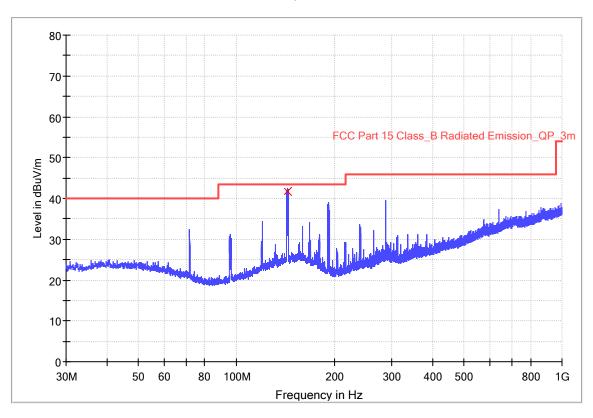
Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
4882	37.33	Н	74	PK	36.67	Pass
4882	37.40	V	74	PK	36.6	Pass

Bluetooth Mode GFSK Modulation 2480MHz Test Result

Frequency	Emission Level	Polarization	Limit	Detector	Margin	Result
MHz	dBuV/m		dBµV/m		dBuV/m	
2489.4	58.3	Н	74	PK	15.7	Pass
2489.4	23.9	Н	54	AV	30.1	Pass
4960	37.07	Н	74	PK	36.93	Pass
2488.6	58.3	V	74	PK	15.7	Pass
2488.6	24.4	V	54	AV	29.6	Pass
4960	36.15	V	74	PK	37.85	Pass

Remark:

(1) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Pre-amplifier Below 1GHz: Corrector factor = Antenna Factor + Cable Loss Emission Level = Reading level + Correction Factor


(The Reading Level is recorded by software which is not shown in the sheet)

The worst case of Radiated Emission below 1GHz:

Site: 3 meter chamber	Time: 2019/08/21 - 17:21		
Limit: FCC_Part15.109_RE(3m)_ClassB	Engineer: Wenqiang LU		
Probe: VULB9168	Polarity: Horizontal		
EUT: TYWE3SE Wi-Fi and Bluetooth Module, Model no: Power: Power by notebook			
TYWE3SE			
Note: There is the worst case within frequency range 30MHz~1GHz.			

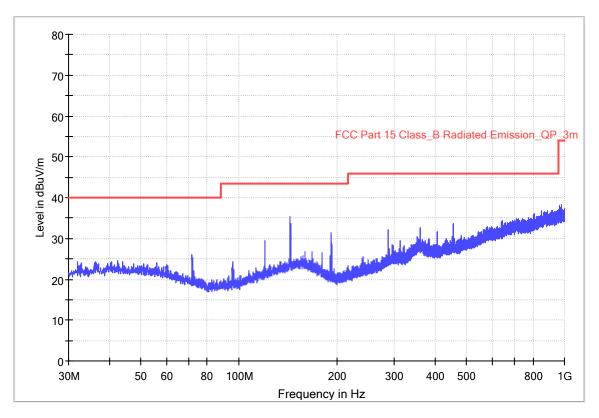
RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)	
143.880000	41.6	1000.0	120.000	150.1	Н	2.0	15.2	1.9	43.5	

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)


Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

The worst case of Radiated Emission below 1GHz:

Site: 3 meter chamber	Time: 2019/08/21 - 17:40
Limit: FCC_Part15.109_RE(3m)_ClassB	Engineer: Wenqiang LU
Probe: VULB9168	Polarity: Vertical
EUT: TYWE3SE Wi-Fi and Bluetooth Module, Model no:	Power: Power by notebook
TYWE3SE	•
Note: There is the worst case within frequency range 30M	Hz~1GHz

RE_VULB9168_pre_Cont_30-1000

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)
Note 2: The test trace is same as the ambient noise and t

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

10 Test Equipment List

List of Test Instruments

Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
С	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2019-8-5	2020-8-4
	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2019-8-5	2020-8-4
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2019-8-5	2020-8-4
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2019-3-16	2022-3-15
	Horn Antenna	Rohde & Schwarz	HF907	102393	2018-6-11	2021-4-1
	Pre-amplifier	Rohde & Schwarz	SCU-18D	19006451	2019-8-5	2020-8-4
RE	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2019-6-28	2020-6-27
	DOUBLE-RIDGED WAVEGUIDE HORN WITH PRE-AMPLIFIER (18 GHZ - 40 GHZ)	ETS-Lindgren	3116C-PA	002222727	2018-1-29	2021-1-28
3m Semi-anechoic TDK		TDK	9X6X6		2018-5-11	2021-5-10
	EMI Test Receiver	Rohde & Schwarz	ESR3	101907	2019-8-5	2020-8-4
CE	CE LISN Rohde & Schwarz		ENV216	101924	2019-8-5	2020-8-4
Measurement S			Software Inform	ation		
Test Item	Test Item Software Manufacturer			Vers	sion	
RE	EMC 32	Rohde & Schwarz		V9.1	5.00	
CE	EMC 32	Rohde & Schwarz		V9.1	5.03	

C - Conducted RF tests

- Conducted peak output power
- 20dB Occupied Bandwidth
- Carrier frequency separation
- Number of hopping frequencies
- Dwell Time
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, ±3.16dB
Radiated Disturbance	30MHz to 1GHz, ±5.03dB (Horizontal)
	±5.12dB (Vertical)
	1GHz to 18GHz, ±5.49dB
	18GHz to 25GHz, ±4.76dB

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END