

FCC - TEST REPORT

Report Number	:	709502102972-00	Date of Issue: August 2, 2021		
Model	:	CR3L-IPEX			
Product Type	:	Wi-Fi and Bluetooth module)		
Applicant	:	Hangzhou Tuya Informatior	n Technology Co.,Ltd		
Address	:	Room701,Building3,More Center,No.87 GuDun Road,Hangzhou,Zhejiang China			
Manufacturer	:	Hangzhou Tuya Informatior	Technology Co.,Ltd		
Address	:	Room701,Building3,More C Road,Hangzhou,Zhejiang C			
Test Result	:	■ Positive	tive		
Total pages including Appendices	:	48			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Та	able of Contents	2
2	D	etails about the Test Laboratory	3
3	D	escription of the Equipment under Test	4
4	S	ummary of Test Standards	5
5	S	ummary of Test Results	6
6	G	eneral Remarks	7
7	Te	est Setups	8
8	S	ystems test configuration1	1
9	Te	echnical Requirement	2
9.	1	Conducted Emission1	2
9.	2	Conducted peak output power1	5
9.	3	6dB bandwidth1	6
9.	4	Power spectral density	0
9.	5	Spurious RF conducted emissions24	4
9.	6	Band edge	4
9.	7	Spurious radiated emissions for transmitter	8
10		Test Equipment List	5
11		System Measurement Uncertainty 4	6
12		Photographs of Test Set-ups	7
13		Photographs of EUT	8

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.16 Lane, 1951 Du Hui Road, Shanghai 201108, P.R. China
Test Firm FCC Registration Number:	820234
Test Firm IC Registration Number:	25988
Telephone: Fax:	+86 21 6141 0123 +86 21 6140 8600

EMC_SHA_F_R_02.10E

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product:	Wi-Fi and Bluetooth module
Model no.:	CR3L-IPEX
FCC ID:	2ANDL-CR3L-IPEX
Options and accessories:	NA
Rating:	DC 3.0-3.6V
RF Transmission Frequency:	For 802.11b/g/n-HT20: 2412~2462 MHz For 802.15.1:2402~2480 MHz
No. of Operated Channel:	2.4GHz WIFI: 11 for 802.11b/802.11g/802.11n(H20) 2.4GHz BLE: 40
Modulation:	For 2.4GHz WIFI: Direct Sequence Spread Spectrum (DSSS) for 802.11b Orthogonal Frequency Division Multiplexing (OFDM) for 802.11g/n For 2.4GHz BLE: GFSK
Antenna Type:	FPC Antenna
Antenna Gain:	3.33 dBi
Description of the EUT:	The Equipment Under Test (EUT) is a low-power embedded Wi-Fi and Bluetooth module (4.2). We tested it and listed the worst data in this report.
Test sample no.:	SHA-584963-1

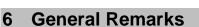
The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment, antenna gain or any information supplied.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2020 Edition	Subpart C - Intentional Radiators				

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

EMC_SHA_F_R_02.10E


5 Summary of Test Results

	Technical Requirement	nts				
FCC Part 15 Subpart C				-		
Test Condition		Pages	Test	Te	st Res	ult
Test Condition		rayes	Site	Pass	Fail	N/A
§15.207	Conducted emission AC power port	12-14	Site 1			
§15.247 (b) (3)	Conducted peak output power	15	Site 1			
§15.247(a)(1)	20dB bandwidth					\boxtimes
§15.247(a)(1)	Carrier frequency separation					\boxtimes
§15.247(a)(1)(iii)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii)	Dwell Time					\boxtimes
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	16-19	Site 1			
§15.247(e)	Power spectral density	20-23	Site 1			
§15.247(d)	Spurious RF conducted emissions	24-33	Site 1			
§15.247(d)	Band edge	34-37	Site 1			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	38-44	Site 1			
§15.203	Antenna requirement	See not	e 1			

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses an FPC Antenna, which gain is 3.33dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ANDL-CR3L-IPEX, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

This report is only for the 2.4GHz Wi-Fi test report, for the 2.4GHz BLE test report please refer to 709502102988-00.

According to the client's declaration, the "ILAC – A2LA Accredited" symbol is added to the report.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment under Test

■ - Fulfills the general approval requirements.

□ - **Does not** fulfill the general approval requirements.

Sample Received Date: July 12, 2021

Testing Start Date: July 14, 2021

Testing End Date: July 23, 2021

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

Prepared by:

Tested by:

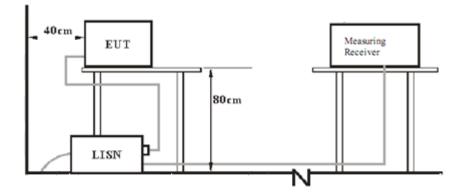
engiana

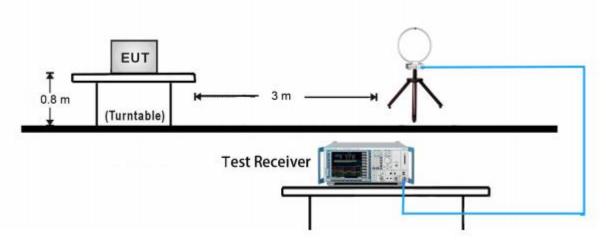
Wang Tiquan

Yiquan WANG EMC Test Engineer

Hui TONG EMC Section Manager

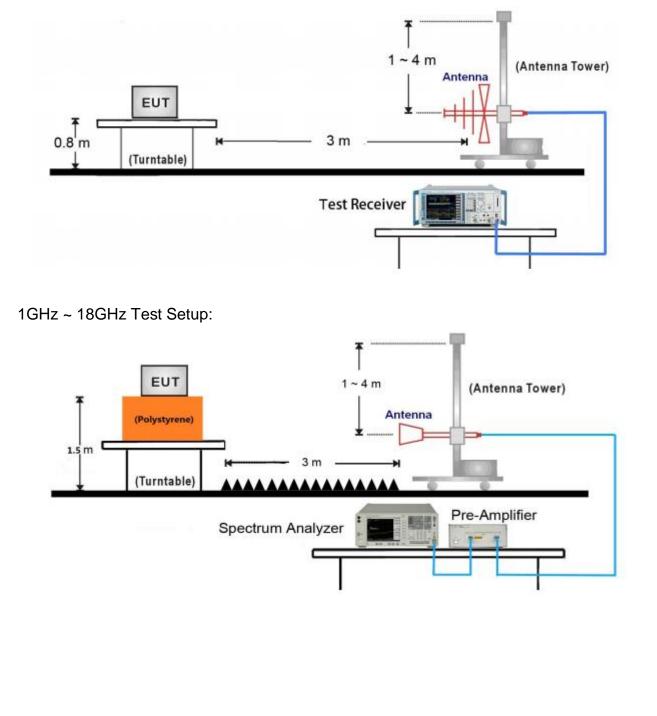
Wenqiang LU EMC Project Engineer

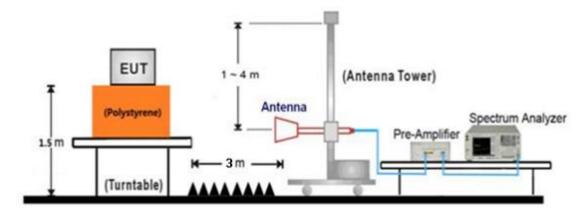

EMC_SHA_F_R_02.10E


7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups


9kHz ~ 30MHz Test Setup:


30MHz ~ 1GHz Test Setup:

18GHz ~ 40GHz Test Setup:

7.3 Conducted RF test setups

Report Number: 709502102972-00

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenove	X240	Notebook

Test software: AmebaD_mptool_1V3 for Wi-Fi Bluetooth RF Test Tool (REALTEK) for BLE

The system was configured to channel 1(2412MHz), 6(2437MHz), and 11(2462MHz) for 802.11 b/g/n HT20 test.

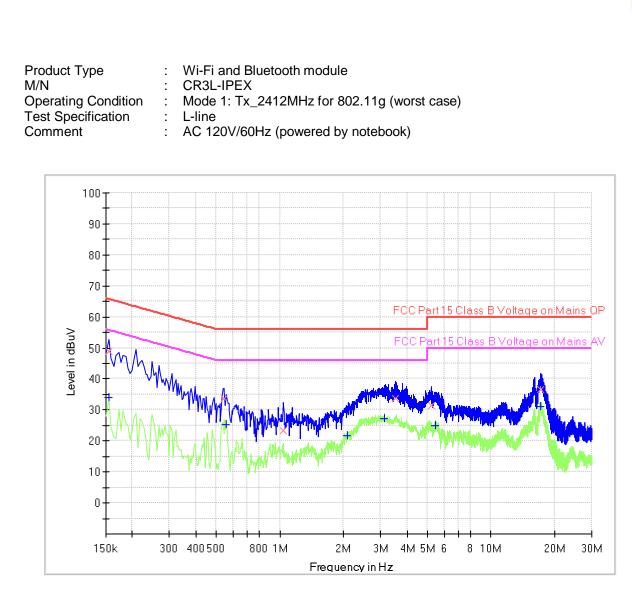
Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

9.1 Conducted Emission

Test Method

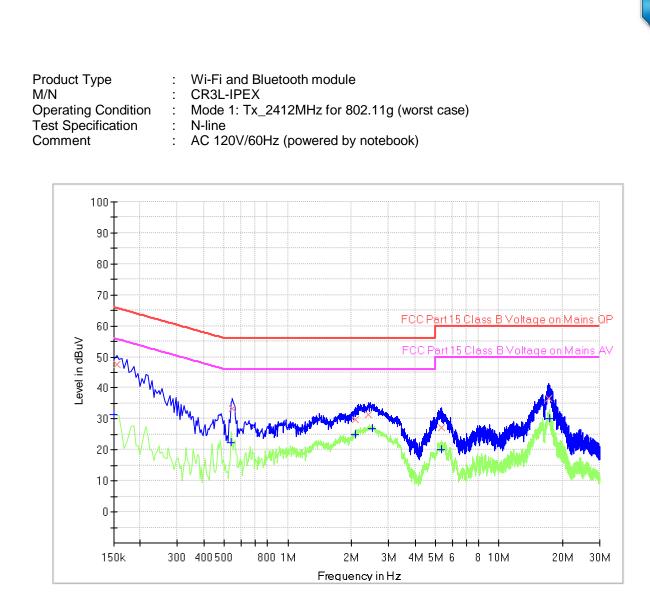
- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. An EMI test receiver is used to test the emissions from both sides of AC line


Limit

According to §15.207, conducted emissions limit as below:

Frequency	QP Limit	AV Limit				
MHz	dBµV	dBµV				
0.150-0.500	66-56*	56-46*				
0.500-5	56	46				
5-30	60	50				
Decreasing linearly with logarithm of the frequency						

Decreasing linearly with logarithm of the frequency



Final_Result

Report Number: 709502102972-00

Frequency	Quasi	CAverag	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	Peak	е	(dBuV)	(dB)	Time	(kHz)		(dB)
	(dBuV)	(dBuV)			(ms)			
0.154500		33.91	55.75	21.84	1000.0	9.000	L1	19.5
0.154500	48.78		65.75	16.97	1000.0	9.000	L1	19.5
0.541500	33.76		56.00	22.24	1000.0	9.000	L1	19.5
0.555000	-	25.18	46.00	20.82	1000.0	9.000	L1	19.5
1.041000	23.23		56.00	32.77	1000.0	9.000	L1	19.5
2.094000	-	21.77	46.00	24.23	1000.0	9.000	L1	19.5
3.115500	-	27.10	46.00	18.90	1000.0	9.000	L1	19.5
3.520500	33.52		56.00	22.48	1000.0	9.000	L1	19.5
5.199000	31.36		60.00	28.64	1000.0	9.000	L1	19.5
5.482500	-	24.98	50.00	25.02	1000.0	9.000	L1	19.5
17.200500		30.96	50.00	19.04	1000.0	9.000	L1	19.7
17.200500	36.66		60.00	23.34	1000.0	9.000	L1	19.7

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator China

Final_Result

Report Number: 709502102972-00

Frequency (MHz)	Quasi Peak (dBuV)	CAverag e (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.150000	(4247)	31.49	56.00	24.51	1000.0	9.000	N	19.5
0.154500	47.61		65.75	18.14	1000.0	9.000	N	19.5
0.537000		22.35	46.00	23.65	1000.0	9.000	Ν	19.5
0.546000	33.44		56.00	22.56	1000.0	9.000	Ν	19.5
2.085000	29.79		56.00	26.21	1000.0	9.000	Ν	19.5
2.094000		25.09	46.00	20.91	1000.0	9.000	Ν	19.5
2.418000	31.43		56.00	24.57	1000.0	9.000	Ν	19.6
2.503500		26.99	46.00	19.01	1000.0	9.000	Ν	19.6
5.316000		20.01	50.00	29.99	1000.0	9.000	Ν	19.6
5.365500	27.25		60.00	32.75	1000.0	9.000	Ν	19.6
17.250000	36.66		60.00	23.34	1000.0	9.000	Ν	19.8
17.353500		30.13	50.00	19.87	1000.0	9.000	Ν	19.8

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator China

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Use a power meter to measure the conducted peak output power.

Limits

According to §15.247 (b) (3), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

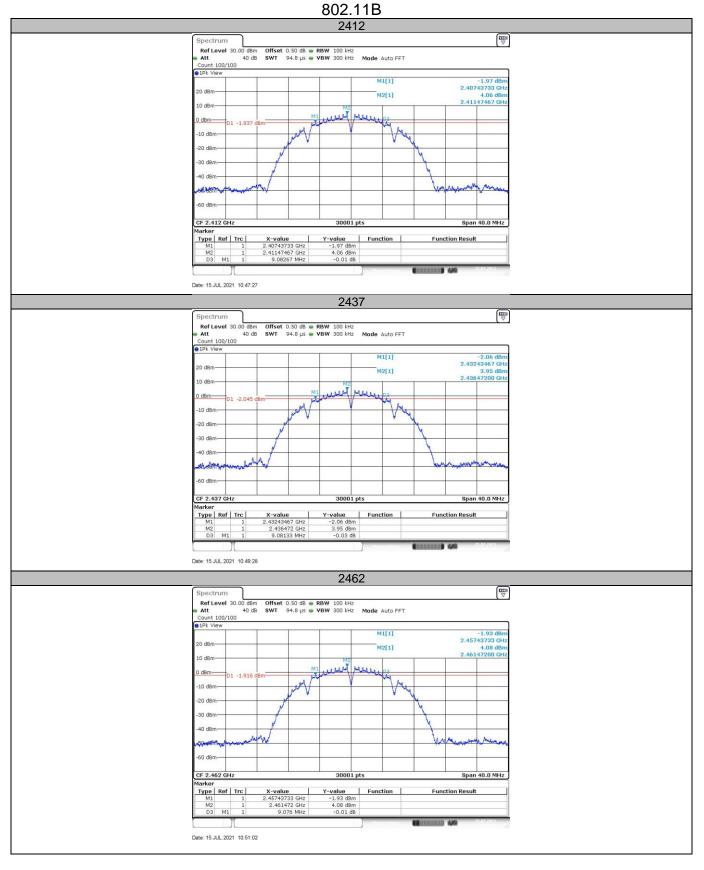
Test result as below table

802.11B

		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	16.88	Pass
	Middle channel 2437MHz	16.84	Pass
	High channel 2462MHz	16.81	Pass
802.11G			
		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	23.34	Pass
	Middle channel 2437MHz	23.33	Pass
	High channel 2462MHz	23.05	Pass
802.11N20			
		Conducted Peak	
	Frequency	Output Power	Result
	MHz	dBm	
	Low channel 2412MHz	22.86	Pass
	Middle channel 2437MHz	22.96	Pass
	High channel 2462MHz	22.70	Pass

9.3 6dB bandwidth

Test Method


- 1. Use the following spectrum analyzer settings: RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

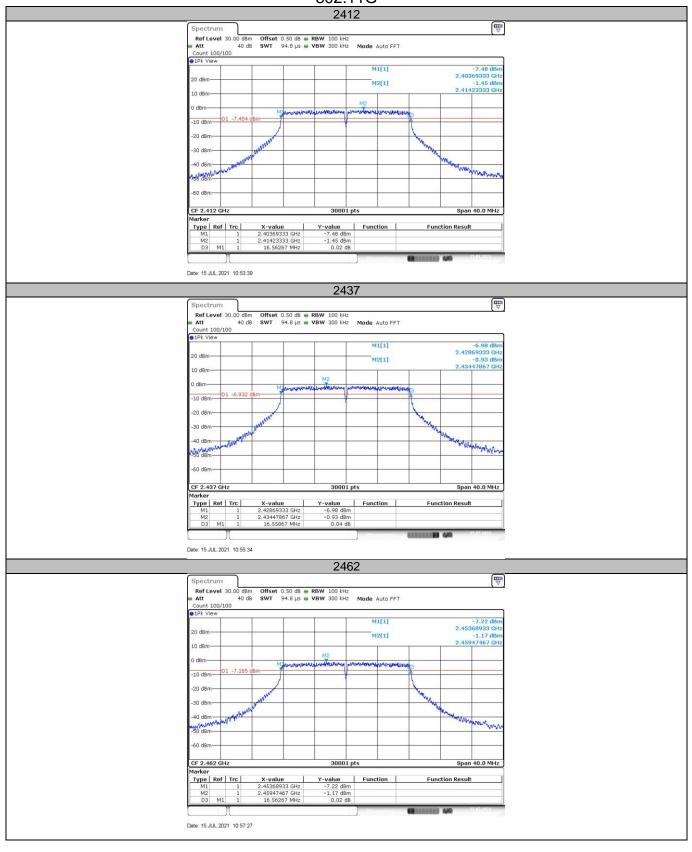
		Limit [kHz]	
		≥500	
Test result 802.11B			
	Frequency MHz	6dB bandwidth MHz	Result
_	Low channel 2412MHz Middle channel 2437MHz High channel 2462MHz	9.083 9.081 9.076	Pass Pass Pass
802.11G			
	Frequency MHz	6dB bandwidth MHz	Result
	Low channel 2412MHz	16.563	Pass
	Middle channel 2437MHz High channel 2462MHz	16.559 16.563	Pass Pass
802.11N20			

Frequency MHz	6dB bandwidth MHz	Result
Low channel 2412MHz	17.776	Pass
Middle channel 2437MHz	17.793	Pass
High channel 2462MHz	17.797	Pass

6 dB Bandwidth

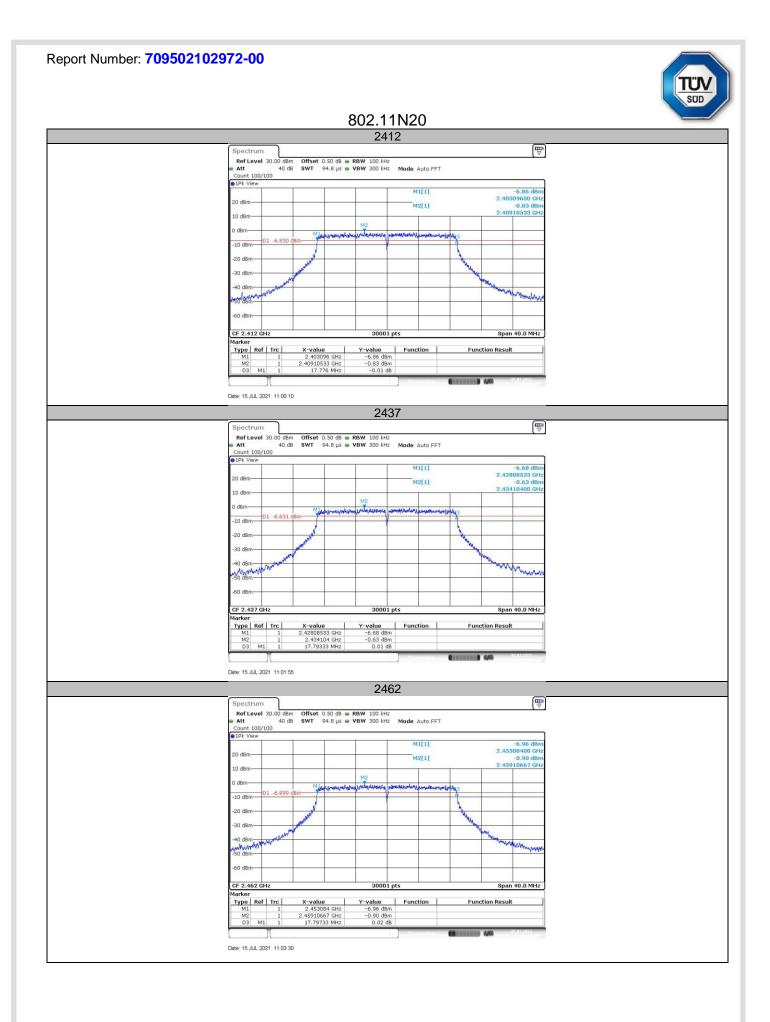
EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600


Page 17 of 48 Rev. 20.00

Report Number: 709502102972-00

SUD


802.11G

EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 18 of 48 Rev. 20.00

EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 19 of 48 Rev. 20.00

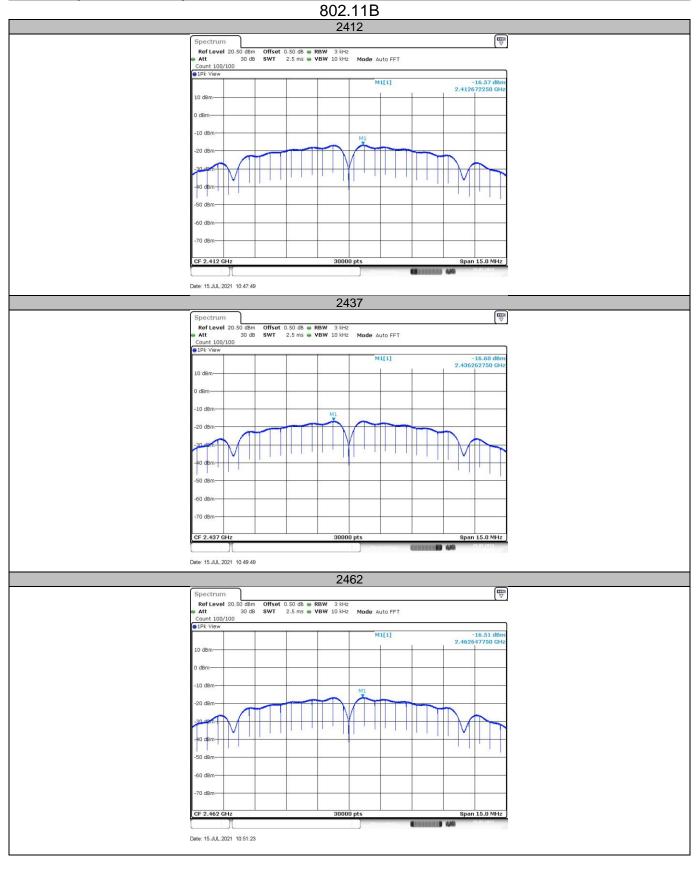
9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit


Limit [dBm/3kHz]

≤8

Test result 802.11 B

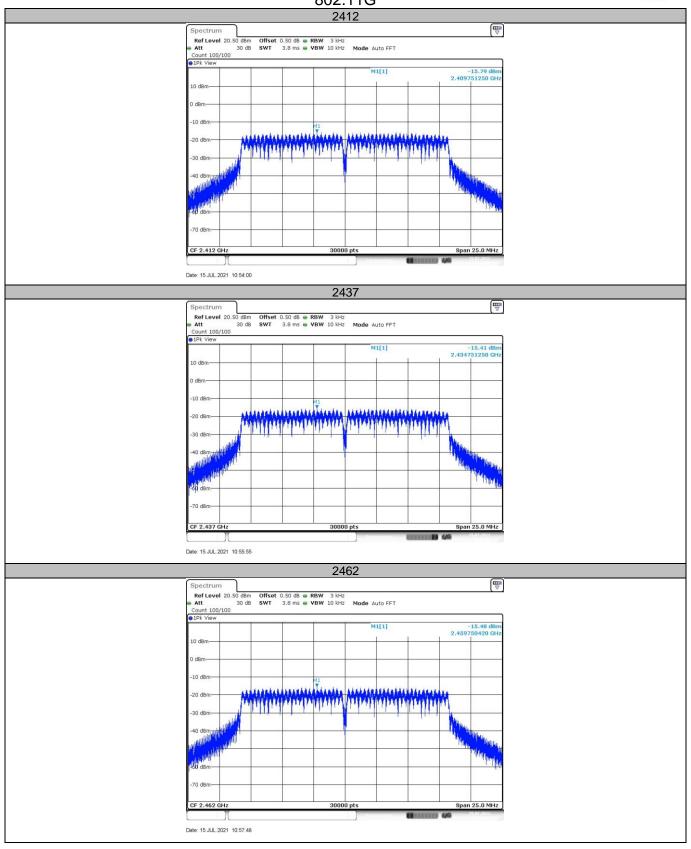
802.11 B			
		Power spectral	
	Frequency	density	Result
	MHz	dBm/3kHz	
	Low channel 2412MHz	-16.57	Pass
	Middle channel 2437MHz	-16.60	Pass
	High channel 2462MHz	-16.51	Pass
802.11 G			
		Power spectral	
	Frequency	density	Result
	MHz	dBm/3kHz	
	Low channel 2412MHz	-15.79	Pass
	Middle channel 2437MHz	-15.41	Pass
	High channel 2462MHz	-15.48	Pass
802.11 N20			
		Power spectral	
	Frequency	density	Result
	MHz	dBm/3kHz	
	Low channel 2412MHz	-14.99	Pass
	Middle channel 2437MHz	-14.73	Pass
	High channel 2462MHz	-15.03	Pass

Power spectral density

EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 21 of 48 Rev. 20.00


SUD

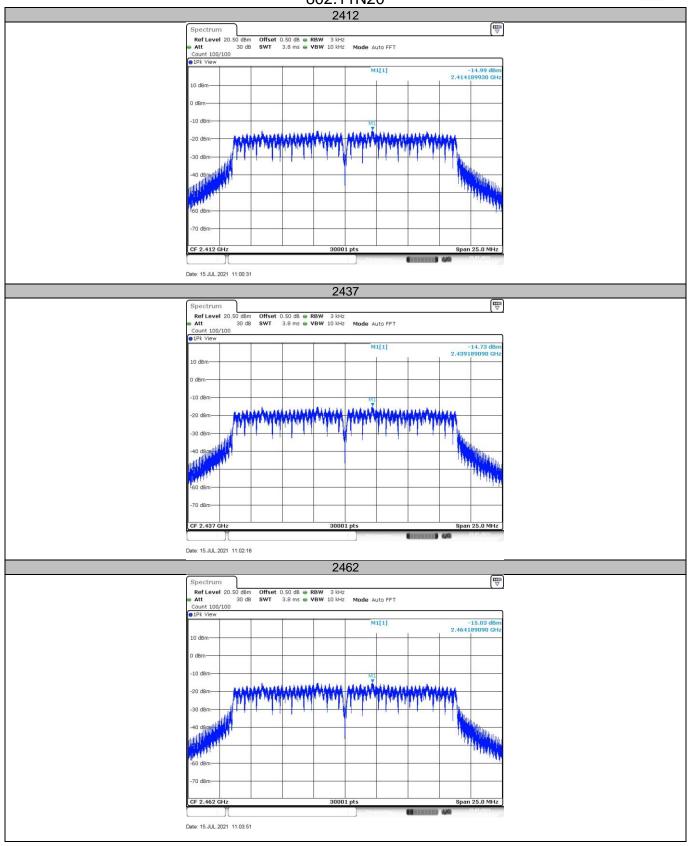
China

Report Number: 709502102972-00

SUD China

802.11G

EMC_SHA_F_R_02.10E


TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 22 of 48 Rev. 20.00

Report Number: 709502102972-00

SUD

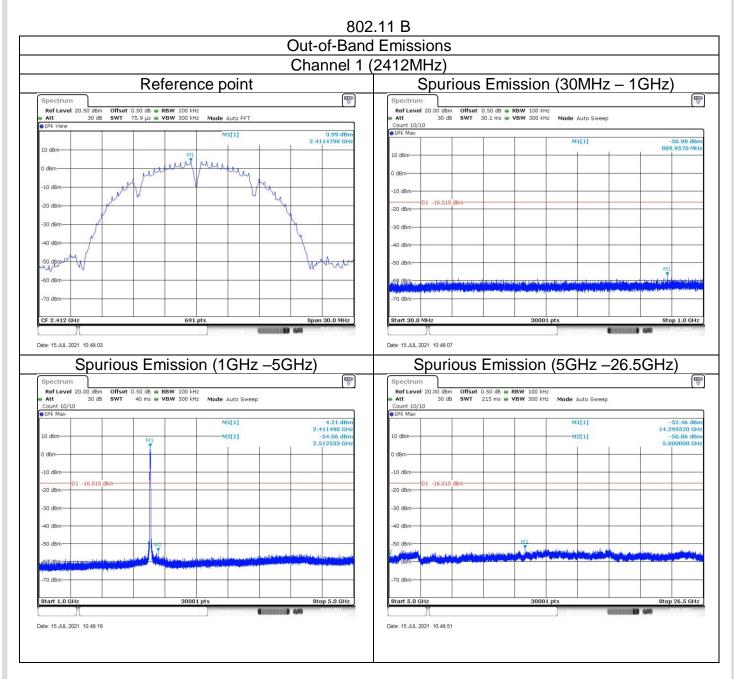
EMC_SHA_F_R_02.10E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 23 of 48 Rev. 20.00

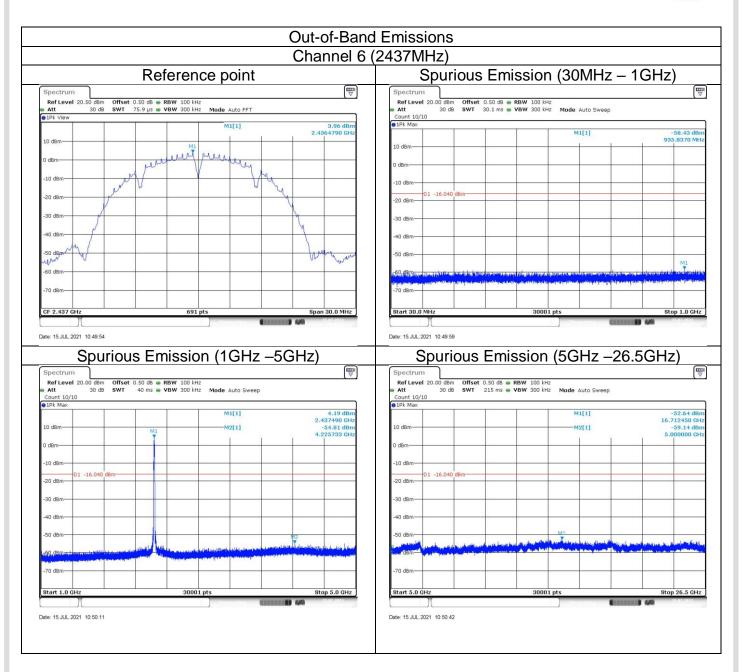
9.5 Spurious RF conducted emissions

Test Method

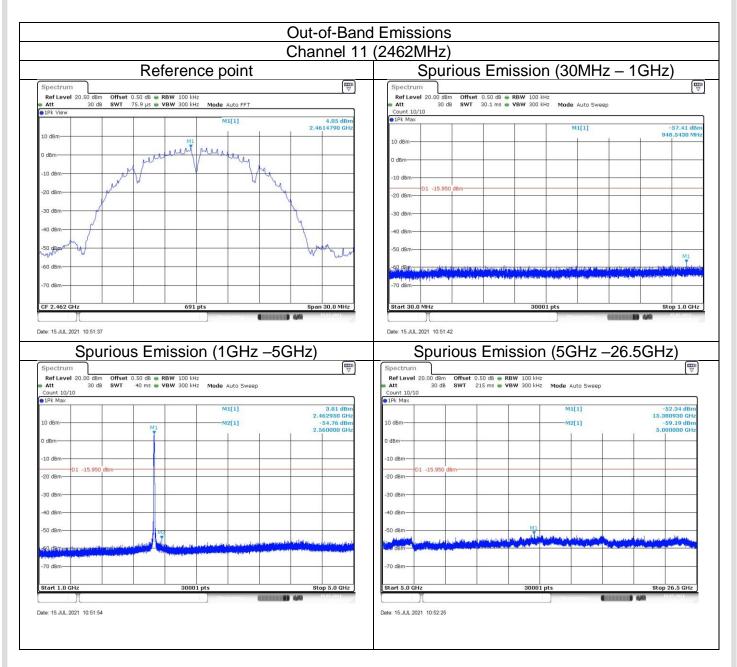

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

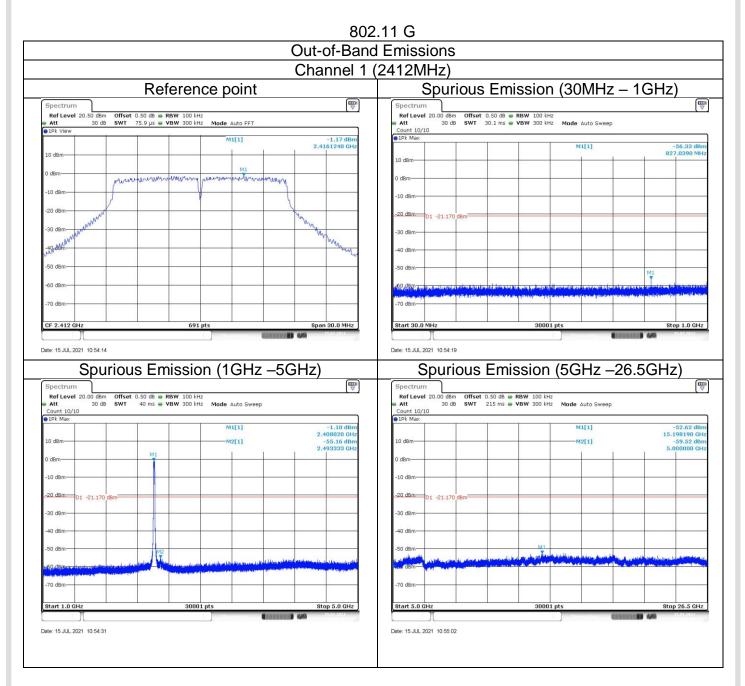
Frequency Range MHz	Limit (dBc)
30-25000	-20


Spurious RF conducted emissions

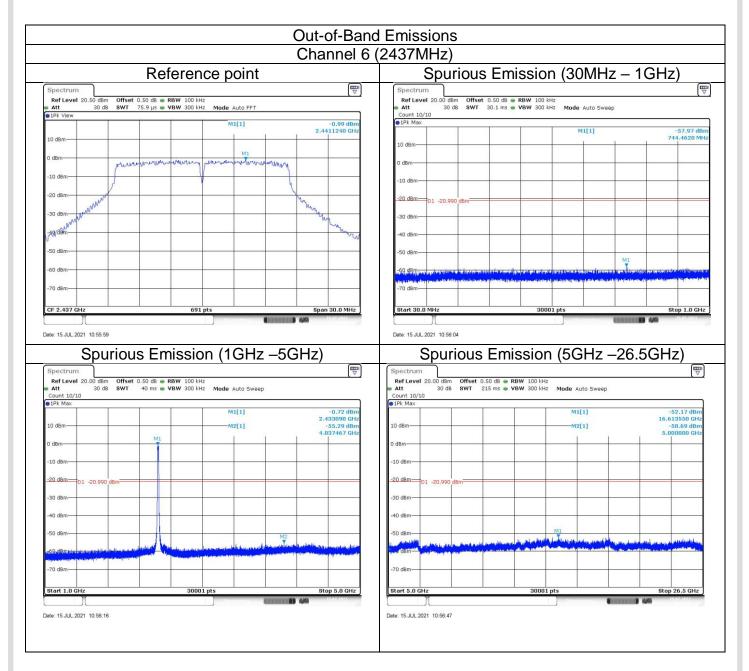
Note: The emission which exceed the limit is the fundamental.


Page 25 of 48 Rev. 20.00

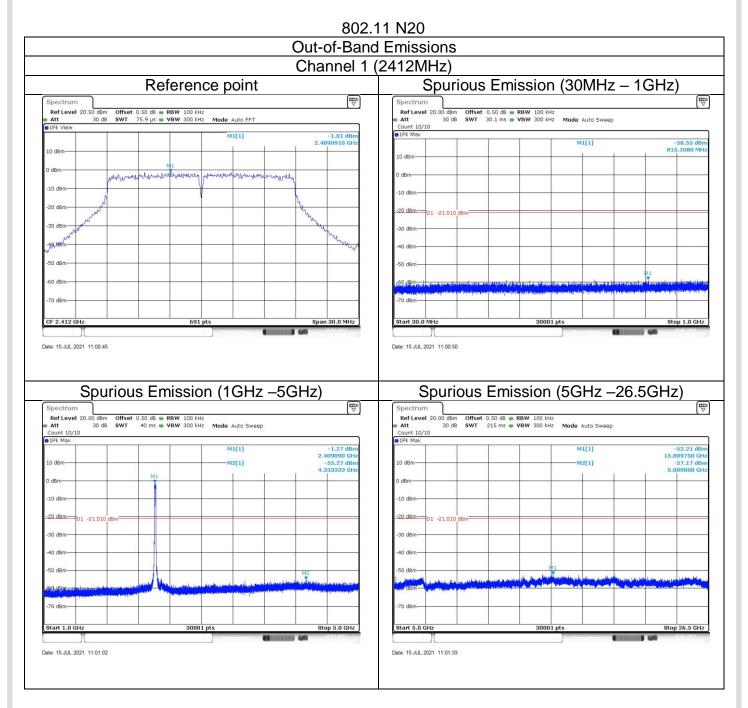
China



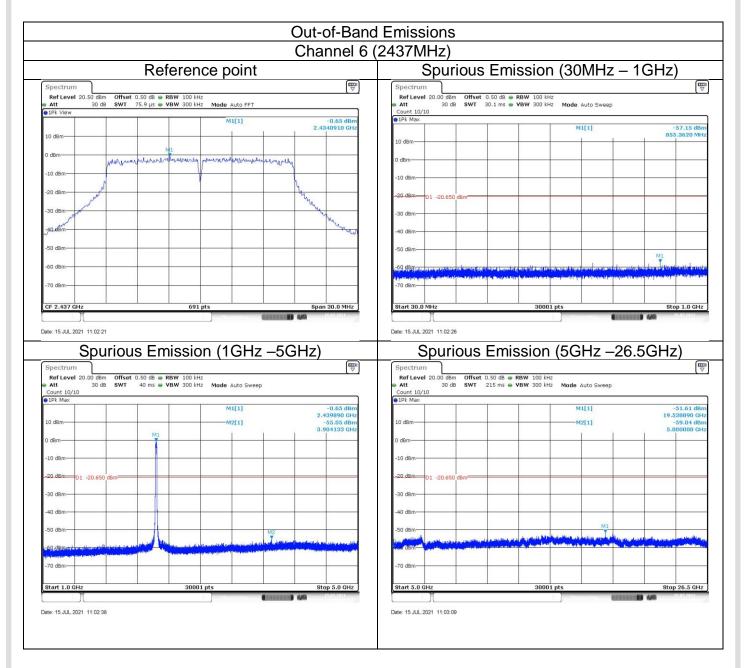
Note: The emission which exceed the limit is the fundamental.



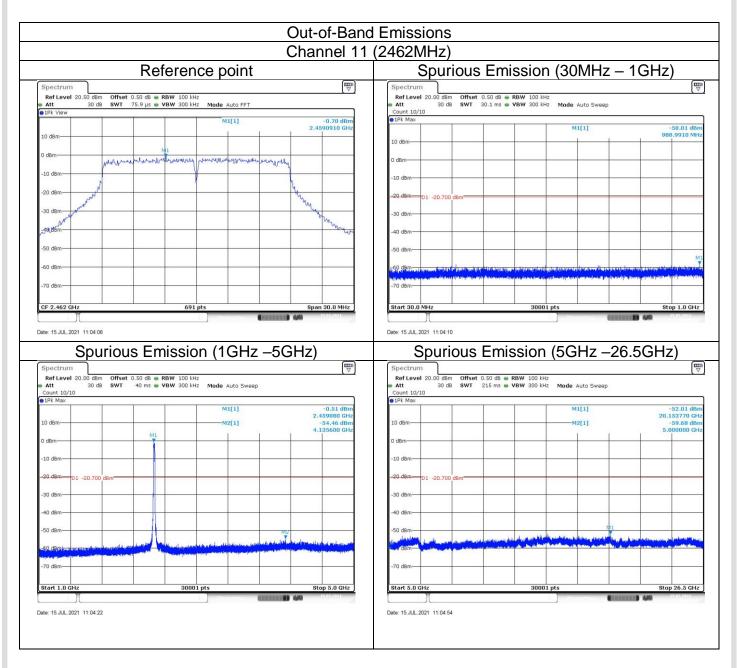
Page 28 of 48 Rev. 20.00



Page 29 of 48 Rev. 20.00



Bit Level 302 Bits Offset 5.03 Bit Will 100 W Made and 5 response 0 200 W 70 U 200 W 100 W<			Out-of-Ba	and Emissions		
Reference point Spurious Emission (30MHz – 1GHz) Spectrum <			Channel	11 (2462MHz)		
Spectrum W All Loop 20 cm Mark 20 cm		Reference poi			us Emission (30M	Hz – 1GHz)
		•			,	(F
Bit Nor 0.0000 Ministry 0.0000 M		50 dB - RBW 100 kHz 5.9 us - VBW 300 kHz Mode auto	D FET	Ref Level 20.00 dBm Off Att 30 dB SW	set 0.50 dB - RBW 100 kHz T 30.1 ms - YBW 300 kHz Mode Auto	Sween
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Count 10/10		54000
		M1(1,	-0.96 dBm 2.4661240 GHz	2 IFK MAX	M1[1]	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 dBm			10 dBm		267.3670 MH
10 dam 30 dam 40 da	J dBm			0 dBm		
30 main <	3			-10 dBm-		
30 den 30 den 40 den	20 dBm		tuy.	-20.dBm-D1 -20.960 dBm-		
and mining and mining <td>-30 Ubiii 10"</td> <td></td> <td>"Www.</td> <td>-30 dBm-</td> <td></td> <td></td>	-30 Ubiii 10"		"Www.	-30 dBm-		
90 dm	40 (APM)		May	10.10		
60 @m 41			MU.	-40 aBm-		
40 dtm 40	50 dBm					
SF 2.462 CHz 691 pts Span 30.0 MHz str 1.3.0L.321 10 58 2 Control 10 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz Spectrum Control 10 MHz Control 10 MHz Control 10 MHz 10 dbm Mil 11 Chz Control 10 MHz Control 10 MHz 10 dbm Mil 11 Chz Control 10 MHz Mil 11 Chz 10 dbm Mil 11 Chz Control 10 MHz Mil 10 MHz 10 dbm Mil 11 Chz Control 10 MHz Mil 10 MHz 10 dbm Mil 10 MHz Mil 10 MHz Mil 10 MHz 10 dbm Mil 10 MHz Mil 10 MHz Mil 10 MHz 10 dbm Mil 10 MHz Mil 10 MHz Mil 10 MHz 10 dbm Mil 10 MHz Mil 10 MHz Mil 10 MHz 10 dbm Mil	60 dBm			V V V V V V V V V V V V V V V V V V V	A second by the leader of the	and the second second second second second
SF 2.462 CHz 691 pts Span 30.0 MHz se 15.JUL.221 10 56 2 Control 10 400 Spectrum M1(1) Control 10 400 Spectrum Spectrum M1(1) Spectrum	70.40-			The foregoing the second s	ang panandipanan on papangan ang ang ang ang ang ang ang ang an	and the second
Image: Start 10.5 kit 2.51	70 dBin			-70 0811		
Det: 15.00.2021 10.5602 Det: 15.00.2021 10.5607 Spurious Emission (1GHz -5GHz) Spurious Emission (5GHz -26.5GHz) Spurious Emission (1GHz -5GHz) Spurious Emission (5GHz -26.5GHz) Spurious Emission (5GHz -26.5GHz) <td>CF 2.462 GHz</td> <td>691 pts</td> <td>Span 30.0 MHz</td> <td>Start 30.0 MHz</td> <td>30001 pts</td> <td>Stop 1.0 GH</td>	CF 2.462 GHz	691 pts	Span 30.0 MHz	Start 30.0 MHz	30001 pts	Stop 1.0 GH
Ref Level 20.00 dBm Offset 0.50 dB = RBW 100 Hz Att 30 dB SWT 40 ms VBW 300 Hz Mode Auto Sweep Count 10/10 10 dBm -0.6150 dBm 0 dB SWT 215 ms VBW 300 Hz Mode Auto Sweep Count 10/10 -0.6150 dBm -0.610 dBm	Sourious	Emission (1G	Hz _5GHz)		s Emission (5GH	7 –26 5GHz)
a) PiPk Max 10 dbm M1[1] -0.61 dbm 10 dbm M2[1] -55.62 dbm 0 dbm M1 -0.9000 GHz 10 dbm M1 -0.9000 GHz 10 dbm M1 -0.9000 GHz 10 dbm M1 -0.0000 GHz 20.dbm 0 -0.0000 GHz 20.dbm 0 -0.0000 GHz 30 dbm -0.0000 GHz -0.0000 GHz -10 dbm -0.0000 GHz -0.0000 GHz -20.dbm -0.0000 GHz -0.0000 GHz -30 dbm -0.0000 GHz -0.0000 GHz -50 dbm -0.0000 GHz -0.0000 GHz -70 dbm -0.0000 GHz -0.0000 GHz Start 1.0 GHz 30001 pts Start 5.0 GHz 30001 pts Start 5.0 GHz		Emission (1G	iHz –5GHz)	Spuriou	s Emission (5GH	
10 dem M1 M2[1] 2.465.02 deta -55.62 deta -56.62 deta -50.62 deta -50 dem 10 dem M2[1] 20.12009 o -58.65 deta 5.00000 o 0 dem 10 dem M1 M2[1] -56.62 deta 5.00000 o 0 dem M2[1] 58.65 deta 5.00000 o 0 dem 10 dem M2	Spectrum Ref Level 20.00 dBm Offset 0.3	50 dB 🗰 RBW 100 kHz		Spuriou	set 0.50 dB 🖷 RBW 100 kHz	[
10 d8m M2[1] 58.562 d6m 0 d8m M1 59.562 d6m 0 d8m 0 d8m 0 d8m -10 d8m 0 d8m 0 d8m -20.d8m 0 d8m 0 d8m -30 d8m 0 d8m 0 d8m -40 d8m 0 d8m 0 d8m -60.d8m 0 d8m 0 d8m -70 d8m 0 d8m 0 d8m -10 d8m 0 d8m 0 d8m -20.d8m 0 d8m 0 d8m -30 d8m 0 d8m 0 d8m -40 d8m 0 d8m 0 d8m -70 d8m 0 d8m 0 d8m	Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 0	50 dB 🗰 RBW 100 kHz		Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10	set 0.50 dB 🖷 RBW 100 kHz	[I
0.08m M1 0 0 0.08m	Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 0	50 dB B RBW 100 kHz 40 ms B VBW 300 kHz Mode Auto	o Sweep	Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto	Sweep
20.48m 01 - 20.960 dBm 01 - 20	Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT 4 Count 10/10 p1Pk Max	50 dB • RBW 100 kHz 40 ms • VBW 300 kHz Mode Auto M1[1]	D Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10 @1Pk Max	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
20.dkm 01 - 20.960 dkm 01 - 20	Spectrum	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off Att 20.00 dBm Off Off Max Loud 10/10 PIPk Max 10 dBm	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
30 dBm 40 dBm 1 <td< td=""><td>Spectrum Offset 0.1 Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 D D D1Pk Max D D 10 dBm D D</td><td>50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]</td><td>© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm</td><td>Spectrum Ref Level 20.00 dBm Off • Att 30 dB SW Count 10/10 • IPk Max 10 dBm 0 dBm</td><td>set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]</td><td>-52.22 dt 20.120090 (-58.65 dt</td></td<>	Spectrum Offset 0.1 Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 D D D1Pk Max D D 10 dBm D D	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off • Att 30 dB SW Count 10/10 • IPk Max 10 dBm 0 dBm	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	-52.22 dt 20.120090 (-58.65 dt
40 dBm 40	Spectrum Offset 0.0 Ref Level 20.00 dBm Offset 0.1 Att 30 dB Count 10/10 SWT 11Pk Max 0 10 dBm 0 10 dBm 0	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off e Att 30 dB SW Count 10/10 • 1Pk Max 10 dBm -10 dBm	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
S0 dBm M2 60 dBmach M2 70 dBm M2 70 dBm M2 10 dBmach M2 <td>Spectrum </td> <td>50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]</td> <td>© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm</td> <td>Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10</td> <td>set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]</td> <td>Sweep -52.22 df 20.120090 G -58.65 df</td>	Spectrum	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
S0 dBm M2 S0 dBm	Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 1Pk Max 10 dBm 0 dBm 10 dBm 20.dBm 01 -20.960 dBm	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Count 10/10 IFK Max 10 dBm -10 dBm -20.4Bm D1 -20.960 dBm=	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
60.45m	Spectrum Offset 0.0 Ref Level 20.00 dBm Offset 0.1 Att 30 dB Swr Offset 0.1 Count 10/10 Swr D1Pk Max Offset 0.1 10 dBm Offset 0.1 10 dBm Offset 0.1 20.dBm Offset 0.1 30 dBm Offset 0.1	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm Off • Att 30 dB SW Count 10/10 • 10 dBm -10 dBm -20.4Bm 01 -20.960 dBm ⁼ -30 dBm	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
G0/28min Control Contro Control Control <t< td=""><td>Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 19Pk Max 10 dBm 10 dBm 20 dBm 01 -20.960 dBm 30 dBm 40 dBm</td><td>50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]</td><td>© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm</td><td>Spectrum Ref Level 20.00 dBm off e Att 30 dB sW Count 10/10 0 Bm 0 dBm 0 dBm - -10 dBm -10 dBm - - -30 dBm -40 dBm - -</td><td>set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]</td><td>Sweep -52.22 df 20.120090 G -58.65 df</td></t<>	Spectrum Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 19Pk Max 10 dBm 10 dBm 20 dBm 01 -20.960 dBm 30 dBm 40 dBm	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	© Sweep] -0.61 dBm] -0.61 dBm] -5.5.62 dBm	Spectrum Ref Level 20.00 dBm off e Att 30 dB sW Count 10/10 0 Bm 0 dBm 0 dBm - -10 dBm -10 dBm - - -30 dBm -40 dBm - -	set 0.50 dB RBW 100 kHz T 215 ms VBW 300 kHz Mode Auto M1[1]	Sweep -52.22 df 20.120090 G -58.65 df
Start 1.0 GHz 30001 pts Stop 5.0 GHz 30001 pts Stop 26.5 GH	Spectrum Offset 0.0 Ref Level 20.00 dBm Offset 0.1 Att 30 dB Count 10/10 SWT 11Pk Max 0 10 dBm 0 10 dBm 0 20.dBm 0 30 dBm 0 40 dBm 0	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	D Sweep] -0.61 dBm 2.466150 GH] -5.562 dBm 4.092000 GH; 	Spectrum Ref Level 20.00 dBm off e Att 30 dB sW Count 10/10 0 Bm 0 dBm 0 dBm - -10 dBm -10 dBm - - -30 dBm -40 dBm - -	set 0.50 dB	Sweep -52.22 df 20.120090 G -58.65 df
Start 1.0 GHz 30001 pts Stop 5.0 GHz Start 5.0 GHz 30001 pts Stop 26.5 GH	Spectrum Offset 0.0 Att 30 dB SWT Count 10/10 SWT Offset 0.0 JIPK Max 0 JIPK Max 10 dBm 0 JIPK Max 10 dBm 0 JIPK Max 30 dBm 0 JIPK Max 10 dBm 0 JIPK Max 30 dBm JIPK Max JIPK Max 50 dBm JIPK Max JIPK Max	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	D Sweep] -0.61 dBm 2.466150 GH] -5.562 dBm 4.092000 GH; 	Spectrum Ref Level 20.00 dBm off e Att 30 dB sw Count 10/10 0 Bm 0 dBm 0 dBm - -10 dBm -10 dBm - - -30 dBm -40 dBm - -	set 0.50 dB	Sweep -52.22 df 20.120090 G -58.65 df
	Spectrum Offset 0.1 Ref Level 20.00 dBm Offset 0.1 Att 30 dB Count 10/10 SWT 10 dBm 0 10 dBm 0 20.dBm 0 30 dBm 0 30 dBm 0 30 dBm 0 50 dBm 0 60 dBm 0 90 dBm 0	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	D Sweep] -0.61 dBm 2.466150 GH] -5.562 dBm 4.092000 GH; 	Spectrum Ref Level 20.00 dbm Off Att 30 db SW Count 10/10 PIPK Max 10 dbm -10 dbm -20.48m -30 dbm -30	set 0.50 dB	-52.22 dt 20.120090 (-58.65 dt
	Spectrum Offset 0.1 Ref Level 20.00 dBm Offset 0.1 Att 30 dB Count 10/10 SWT 10 dBm 0 10 dBm 0 20.dBm 0 30 dBm 0 30 dBm 0 30 dBm 0 50 dBm 0 60 dBm 0 90 dBm 0	50 dB RBW 100 kHz 40 ms VBW 300 kHz Mode Auto M1[1] M2[1]	D Sweep] -0.61 dBm 2.466150 GH] -5.562 dBm 4.092000 GH;	Spectrum Ref Level 20.00 dbm Off Att 30 db SW Count 10/10 PIPK Max 10 dbm -10 dbm -20.48m -30 dbm -30	set 0.50 dB	-52.22 dt 20.120090 (-58.65 dt
	Spectrum Offset 0.0 Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 SWT 10 dBm Interviewer 10	50 dB • RBW 100 kHz 40 ms • VBW 300 kHz Mode Auto M1[1] M1 	D Sweep	Spuriou Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Court 10/10 I D dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20.48m 0 -20.960 dBm -30 dBm -70 dBm -70 dBm	set 0.50 d8	Sweep -52.22 dB 20.120090 GF
	Spectrum Offset 0.0 Ref Level 20.00 dBm Offset 0.1 Att 30 dB SWT Count 10/10 SWT 10 dBm Interviewer 10	50 dB • RBW 100 kHz 40 ms • VBW 300 kHz Mode Auto M1[1] M1 	D Sweep	Spuriou Spectrum Ref Level 20.00 dBm Off Att 30 dB SW Court 10/10 I D dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20.48m 0 -20.960 dBm -30 dBm -70 dBm -70 dBm	set 0.50 d8	Sweep

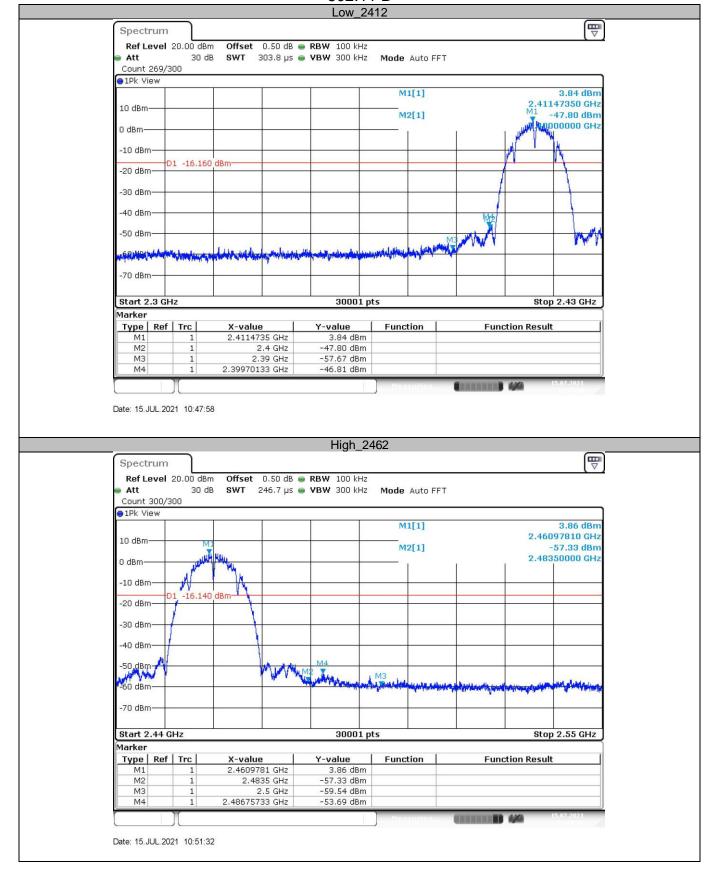


Page 32 of 48 Rev. 20.00

9.6 Band edge

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

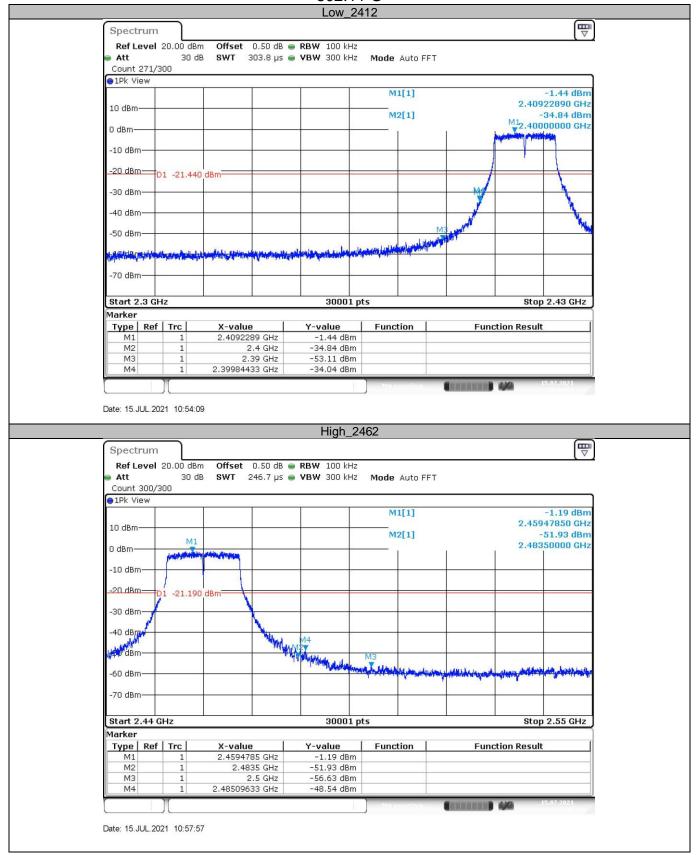

Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test result

Report Number: 709502102972-00

802.11 B


EMC_SHA_F_R_02.10E

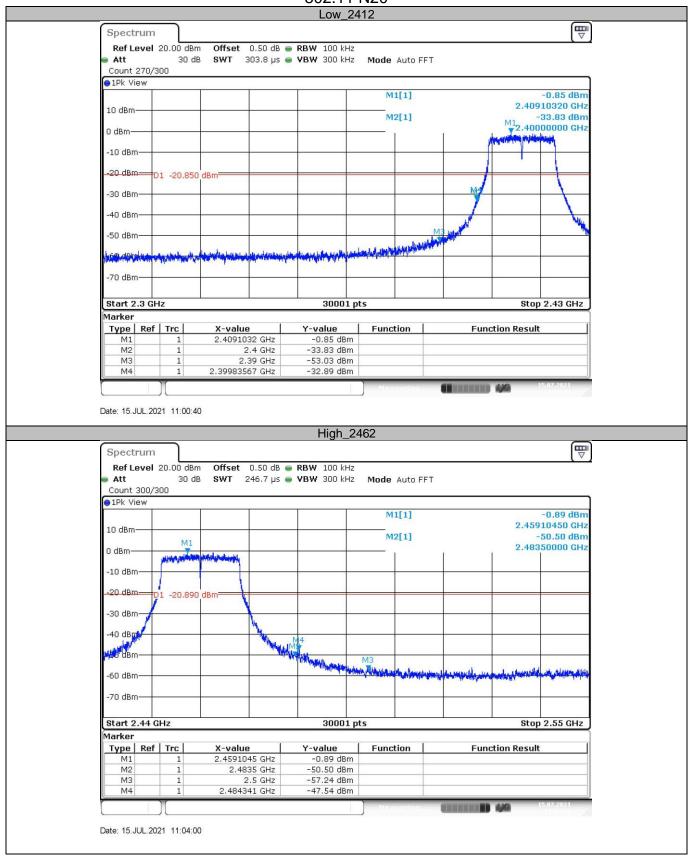
TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600 SLIL

China

Report Number: 709502102972-00

802.11 G

EMC_SHA_F_R_02.10E


SLIL

China

Report Number: 709502102972-00

China

802.11 N20

9.7 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120 kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1MHz.

b) VBW \geq [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
1) If power averaging (rms) mode was used in the preceding step e), then the correction

factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Si uV	a cingui	leasured Distan Meters	ice
0.009~0.490	2400/F	(kHz)	300	
0.490~1.705		· · ·	30	
1.705~30	3	(<i>)</i>	30	
Frequency MHz	Field Strength	Field Strengt	h De	etector
	<u>uV/m</u>	dBµV/m		QP
30-88	100	40		
88-216	150	43.5		QP
216-960	200	46		QP
960-1000	500	54		QP
Above 1000	500	54		AV
Above 1000	5000	74		PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Test mode: 802.11B								
		Channel 1 (2	2412MHz)					
Frequency (MHz)Measure Level (dBuV/m)Limit (dBuV/M)Margin (dB)DetectorPolarization								
2385.3	46.9	74.0	27.1	Peak	Horizontal			
4823.9	44.7	74.0	29.3	Peak	Horizontal			
2386.0	86.0 46.6 74.0 27.4		Peak	Vertical				
4823.9	44.6	74.0	29.4	Peak	Vertical			

Test mode: 802.11B								
	Channel 6 (2437MHz)							
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization			
8293.0	51.0	74.0	23	Peak	Horizontal			
4873.7	43.5	74.0	30.5	Peak	Vertical			

Test mode: 802.11B								
	I	Channel 11 (2462MHZ)	1				
Frequency (MHz)	Measure Level (dBuV/m)	Detector	Polarization					
2483.7	48.1	74.0	25.9	Peak	Horizontal			
4924.2	44.0	74.0	30	Peak	Horizontal			
2483.5	47.0	74.0	27	Peak	Vertical			
4924.2	44.1	74.0	29.9	Peak	Vertical			

Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading

Test mode: 802.11G									
	Channel 1 (2412MHz)								
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization				
2388.9	56.8	74.0	17.2	Peak	Horizontal				
2388.9	46.8	54.0	7.2	Average	Horizontal				
4925.9	42.5	74.0	31.5	Peak	Horizontal				
2389.6	52.3	52.3 74.0 21.		Peak	Vertical				
2389.6	42.2	54.0	11.8	Average	Vertical				
4826.1	42.8	74.0	31.2	Peak	Vertical				

Test mode: 802.11G								
Channel 6 (2437MHz)								
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization			
4870.9	42.9	74.0	31.1	Peak	Horizontal			
4873.2	42.4	74.0	31.6	Peak	Vertical			

	Test mode: 802.11G Channel 11 (2462MHz)									
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization					
2483.7	60.9	74.0	13.1	Peak	Horizontal					
2483.7	50.9	54.0	3.1	Average	Horizontal					
4924.2	43.4	74.0	30.6	Peak	Horizontal					
2483.5	58.5	74.0	15.5	Peak	Vertical					
2483.5	47.7	54.0	6.3	Average	Vertical					
4925.9	44.3	74.0	29.7	Peak	Vertical					

Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
 (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
 (3) Margin = limit Corrected Reading

Test mode: 802.11N20 Channel 1 (2412MHz)									
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization				
2388.0	56.5	74.0	17.5	Peak	Horizontal				
2388.0	46.2	54.0	7.8	Average	Horizontal				
4829.0	42.8	74.0	31.2	Peak	Horizontal				
2388.2	53.3	74.0	20.7	Peak	Vertical				
2388.2	43.7	54.0	10.3	Average	Vertical				
4830.7	43.7	74.0	30.3	Peak	Vertical				

Test mode: 802.11N20								
Channel 6 (2437MHz)								
Frequency (MHz) Measure Level (dBuV/m) (dBuV/M) (dB) Detector Polarizat								
5941.9	48.0	74.0	26	Peak	Horizontal			
4920.8	45.3	74.0	28.7	Peak	Vertical			

	Test mode: 802.11N20									
	Channel 11 (2462MHz)									
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization					
2483.5	58.9	74.0	15.1	Peak	Horizontal					
2483.5	48.7	54.0	5.3	Average	Horizontal					
4812.5	44.5	74.0	29.5	Peak	Horizontal					
2483.6	59.4	74.0	14.6	Peak	Vertical					
2483.6	48.2	54.0	5.8	Average	Vertical					
5034.7	46.4	74.0	27.6	Peak	Vertical					

Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
 (3) Margin = limit Corrected Reading

The worst case of Radiated Emission below 1GHz:

Site: 3 meter chamber	Time: 2021/07/16 - 14:47
Limit: FCC_Part15.209 and RSS-GEN 8.8_RE(3m)	Engineer: Wenqiang LU
Probe: VULB9168	Polarity: Horizontal
UT: Wi-Fi and Bluetooth module, Model no: CR3L-IPEX	Power: 120VAC, 60Hz
Note: Transmit by at channel 2412MHz 802.11g (worst case).	
Note: Pre-scan with three orthogonal axis and worst case as X	axis.
RE_VULB9168_pre_Cont_30	-1000

80 70 60 FCC.Part 15 Class_B Radiated Emission_QP_3m 50 Level in dBuV/m 40 30 20 10 Ô١ 30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
96.440000	24.6	1000.0	120.000	100.4	Н	347.0	11.1	18.9	43.5
144.040000	28.7	1000.0	120.000	100.4	Н	112.0	15.2	14.8	43.5
192.040000	30.1	1000.0	120.000	100.4	н	294.0	12.1	13.5	43.5
239.560000	34.5	1000.0	120.000	100.4	Н	172.0	13.4	11.5	46.0
286.120000	32.4	1000.0	120.000	100.4	н	242.0	14.7	13.6	46.0
333.840000	38.6	1000.0	120.000	100.4	Η	32.0	15.9	7.5	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

	Time: 2021/07/16 - 13:23						
	imit: FCC_Part15.209 and RSS-GEN 8.8_RE(3m) Engineer: Wenqiang LU						
	robe: VULB9168 Polarity: Vertical						
	T: Wi-Fi and Bluetooth module, Model no: CR3L-IPEX Power: 120VAC, 60Hz						
Note: Tra	Note: Transmit by at channel 2412MHz 802.11g (worst case).						
Note: Pre	Note: Pre-scan with three orthogonal axis and worst case as X axis.						
		RE_VULB9168_pre_Cont_30-1000					
	80 T						
	-						
	70-						
	+						
	60						
	+	ECC Part 15 Class_B Radiated Emission_QP_3m					
m//	50-						
Level in dBuV/m	+						
Li	40 -						
evel	4						
Ĕ	30						
	-						
	20						
	+						
	10-						
	4						
	n -						
	30	IM 50 60 80 100M 200 300 400 500 800 1G					
		Frequency in Hz					

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
30.920000	32.6	1000.0	120.000	100.4	V	16.0	13.9	7.4	40.0
40.320000	27.0	1000.0	120.000	100.4	۷	92.0	14.7	13.1	40.0
96.240000	29.1	1000.0	120.000	100.4	۷	212.0	11.0	14.4	43.5
192.480000	30.4	1000.0	120.000	100.4	۷	331.0	12.1	13.1	43.5
240.000000	29.1	1000.0	120.000	100.4	V	0.0	13.4	16.9	46.0
286.080000	30.0	1000.0	120.000	100.4	۷	0.0	14.7	16.0	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

10 Test Equipment List

List of Test Instruments Test Site1							
	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE	
С	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2020-8-4	2021-8-3	
	Wideband power sensor	Rohde & Schwarz	NRP-Z81	104782	2020-12-23	2021-12-22	
	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2020-8-4	2021-8-3	
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2020-8-4	2021-8-3	
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2019-3-16	2022-3-15	
	Horn Antenna	Rohde & Schwarz	HF907	102393	2021-4-13	2024-4-12	
	Pre-amplifier	Rohde & Schwarz	SCU-18D	19006451	2020-8-4	2021-8-3	
RE	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2021-5-21	2022-5-20	
	DOUBLE-RIDGED WAVEGUIDE HORN WITH PRE-AMPLIFIER (18 GHZ - 40 GHZ)	ETS-Lindgren	3116C-PA	002222727	2020-9-23	2021-9-22	
	3m Semi-anechoic chamber	TDK	9X6X6		2021-5-8	2024-5-7	
05	EMI Test Receiver	Rohde & Schwarz	ESR3	101907	2020-8-4	2021-8-3	
CE	LISN	Rohde & Schwarz	ENV216	101924	2020-8-4	2021-8-3	
		Measurement S	Software Inform	ation			
Test Item	Software	Manufacturer	Version				
С	Power Viewer	Viewer Rohde & Schwarz V 11.0					
С	Bluetooth and WiFi Test System	Shenzhen JS tonscend co.,Itd	2.6.77.0518				
RE	EMC 32	Rohde & Schwarz	V9.15.00				
CE	EMC 32	Rohde & Schwarz		V9.1	5.03		

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

SUD

China

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, ±3.16dB
Radiated Disturbance	30MHz to 1GHz, ±5.03dB (Horizontal) ±5.12dB (Vertical) 1GHz to 18GHz, ±5.49dB 18GHz to 40GHz, ±5.63dB
Carrier power conducted measurement	50MHz~18GHz, ±1.238dB
Spurious Emission Conducted Measurement	9kHz ~40GHz, ± 1.224dB

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

Report Number: 709502102972-00

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END