

FCC- TEST REPORT

Report Number :	708881974881-00	Date of Issue: December 13, 2019
Model	: BT3L-A	
Product Type	: BLE Module	
FCC ID	: 2ANDL-BT3L-A	
Applicant	: Hangzhou Tuya Informa	ation Technology Co.,Ltd
Address of Applicant	Ecom701,Building3,Mo	re Center,No.87 GuDun
	: Road,Hangzhou,Zhejiar	ng China
Manufacturer	: Hangzhou Tuya Informa	ation Technology Co.,Ltd
Address of Manufacturer	Room701,Building3,Mo	re Center,No.87 GuDun
	· Road,Hangzhou,Zhejiar	ng China
Factory	: Newtronics Hangzhou C	Co.,Ltd
Address of Factory		iang Gan Science&Technology
Test Result :	■ Positive	ive
Total pages including Appendices	43	

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	11
9	Technical Requirement	12
9.	1 Conducted Emission	12
9.	2 Conducted peak output power	15
9.	3 6dB bandwidth Occupied Bandwidth	18
9.	4 Power spectral density 2	20
9.	5 Spurious RF conducted emissions 2	23
9.	6 Band edge	31
9.	7 Spurious radiated emissions for transmitter	34
10	System Measurement Uncertainty	41
11	Photographs of Test Set-ups	42
12	Photographs of EUT	43

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.16 Lane, 1951 Du Hui Road, Shanghai 201108, P.R. China

Test Firm	820234
Registration	
Number:	
Telephone:	+86 21 6141 0123
Fax:	+86 21 6140 8600

3 Description of the Equipment under Test

Description of the Equipment Under Test				
Product:	BLE Module			
Model no.:	BT3L-A			
FCC ID:	2ANDL-BT3L-A			
IC:	NA			
Options and accessories:	NA			
Rating:	DC 1.8-3.6V			
RF Transmission Frequency:	2402~2480MHz			
No. of Operated Channel:	40			
Modulation:	GFSK			
Data transmission rate:	1 Mbit/s; 2 Mbit/s			
Antenna Type:	PCB antenna			
Antenna Gain:	2.5dBi			
Description of the EUT:	The Equipment Under Test (EUT) is a BLE Module. We tested it and listed the worst data in this report.			

4 Summary of Test Standards

Test Standards		
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES	
10-1-2014 Edition	Subpart C - Intentional Radiators	

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Requirements					
FCC Part 15 Subpart C	· · · ·					
			Test	Tes	st Res	ult
Test Condition		Pages	Site	Pass	Fail	N/ A
§15.207	Conducted emission AC power port	12-14	Site 1			
§15.247 (b) (1)	Conducted peak output power	15-17	Site 1	\square		
§15.247(a)(1)	20dB bandwidth					\square
§15.247(a)(1)	Carrier frequency separation					\square
§15.247(a)(1)(iii)	Number of hopping frequencies					\boxtimes
§15.247(a)(1)(iii)	Dwell Time					\boxtimes
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	18-20	Site 1			
§15.247(e)	Power spectral density	21-23	Site 1			
§15.247(d)	Spurious RF conducted emissions	24-30	Site 1	\square		
§15.247(d)	Band edge	31-33	Site 1			
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	34-39	Site 1			
§15.203	Antenna requirement	See no	te 1			

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a patch antenna, which gain is 2.5dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

General Remarks 6

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ANDL-BT3L-A complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed
- The Equipment under Test
- Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

November 20, 2019

Testing Start Date: November 21, 2019

Testing End Date:

November 24, 2019

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

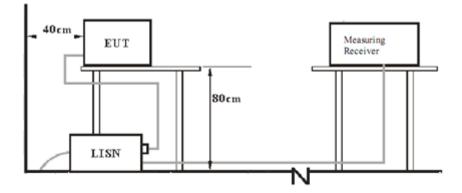
Hui TONG EMC Section Manager Date: 2019-12-13

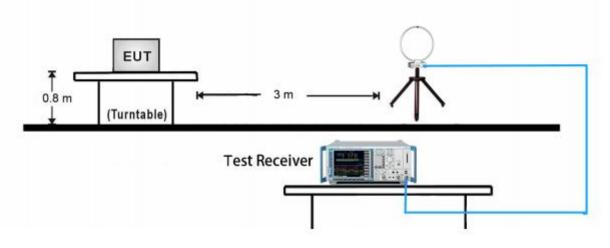
Prepared by:

Tested by:

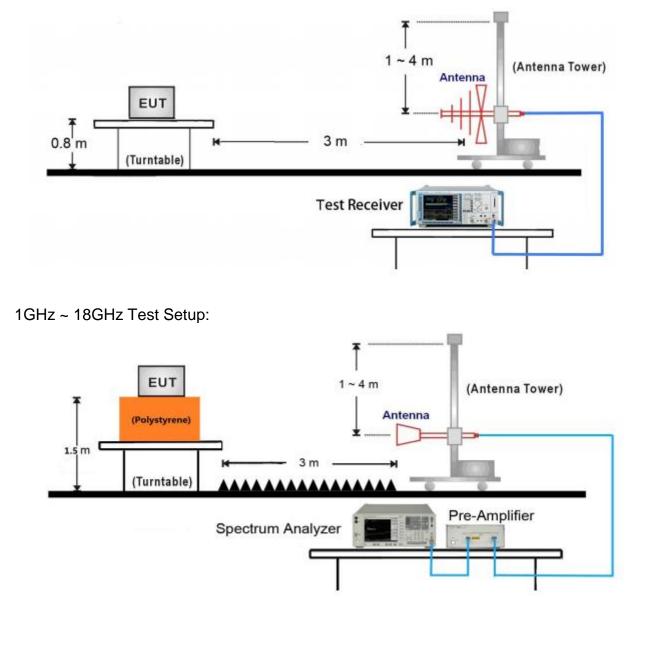
Xu

Jiaxi XU EMC Project Engineer Date: 2019-12-13

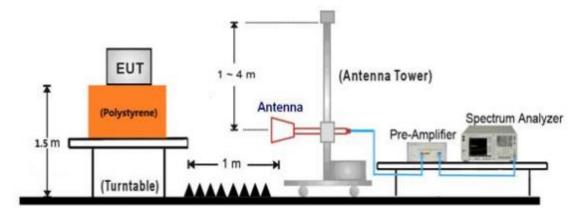

Wengiang LU **EMC** Test Engineer Date: 2019-12-13


7 Test Setups

7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups

9kHz ~ 30MHz Test Setup:



30MHz ~ 1GHz Test Setup:

18GHz ~ 25GHz Test Setup:

7.3 Conducted RF test setups

Measuring	EUT
Receiver	

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
PC	Lenovo	X240	

Test software: EMI Tool

The system was configured to channel 0, 19, and 39 for the test.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

9.1 Conducted Emission

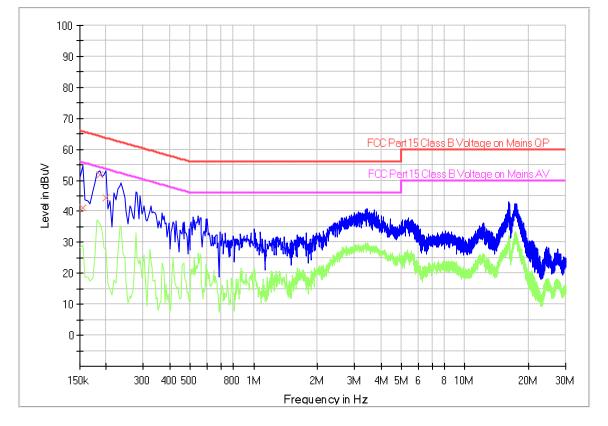
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dBµV	dBµV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50
Decreasing linearly with	logarithm of the free	uonau

Decreasing linearly with logarithm of the frequency


2

:

Conducted Emission

Product Type M/N **Operating Condition** Test Specification Comment

BLE Module : BT3L-A Mode 1: Tx_2402MHz and the date rate is 1Mbps (worst case) : L-line : AC 120V/60Hz (powered by notebook)

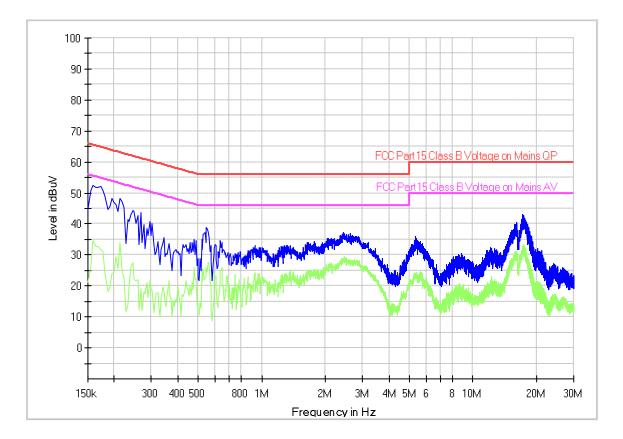
Final_Result

Frequency (MHz)	Quasi Peak (dBuV)	CAverag e (dBuV)	Limit (dBuV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.154500	41.13		65.75	24.62	1000.0	9.000	Ν	19.6
0.186000	51.73		64.21	12.48	1000.0	9.000	Ν	19.6
0.199500	44.21		63.63	19.42	1000.0	9.000	Ν	19.6

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

:

:


:

:

:

Product Type M/N Operating Condition Test Specification Comment BLE Module BT3L-A Mode 1: Tx_2402MHz and the date rate is 1Mbps (worst case) N-line AC 120V/60Hz (powered by notebook)

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

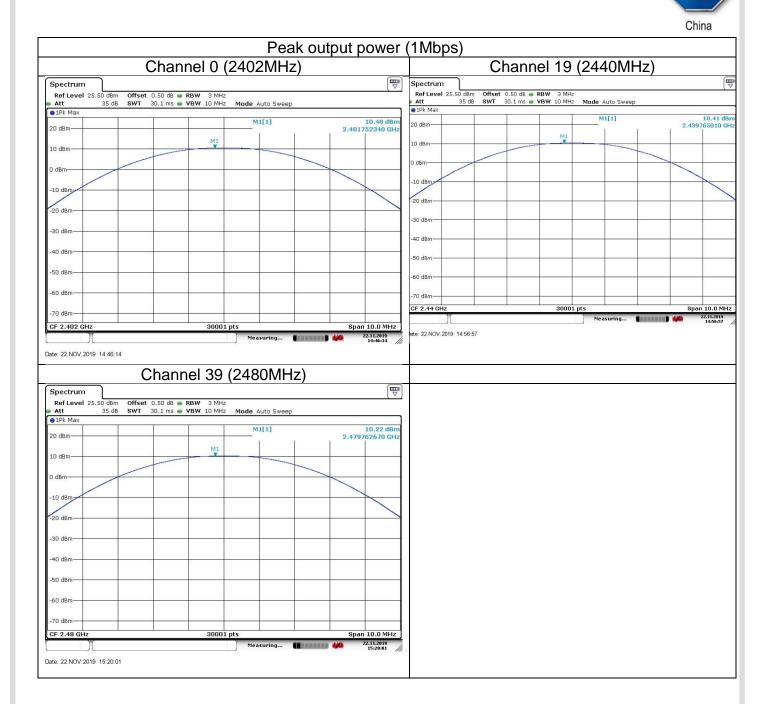
Limits

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

High channel 2480MHz

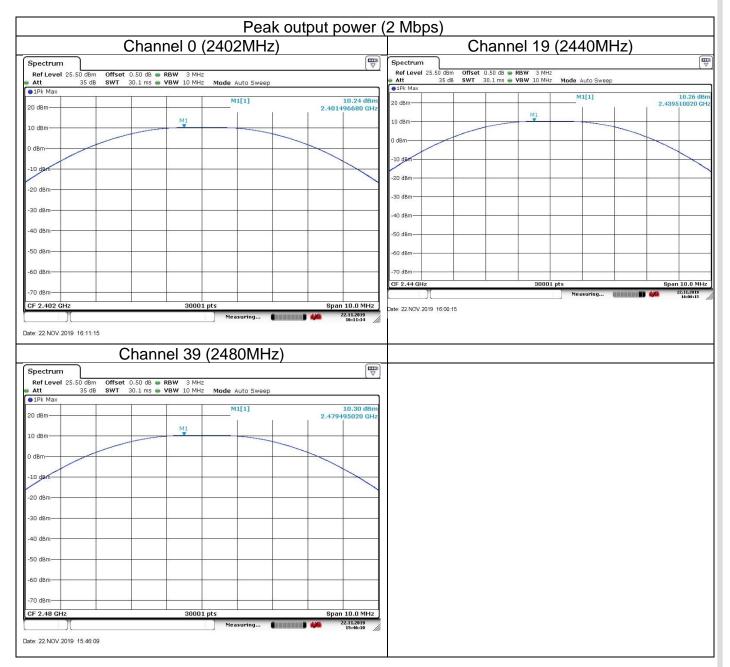
-


Frequency	Conducted Peak Output Power	Data transmission rate	Result
MHz	dBm		
Low channel 2402MHz	10.48	1Mbps	Pass
Middle channel 2440MHz	10.41	1Mbps	Pass
High channel 2480MHz	10.22	1Mbps	Pass
	Conducted Peak	Data transmission	
Frequency	Output Power	rate	Result
MHz	dBm		
Low channel 2402MHz	10.24	2Mbps	Pass
Middle channel 2440MHz	10.26	2Mbps	Pass

10.30

EMC_SHA_F_R_02.05E

2Mbps


Pass

EMC_SHA_F_R_02.05E

SUC

9.3 6dB bandwidth Occupied Bandwidth

Test Method

- 1. Use the following spectrum analyzer settings:
- RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be
- employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

≥500

Test result

Frequency	6dB bandwidth	Data transmission	Deput
MHz	kHz	rate	Result
Top channel 2402MHz	672.08	1Mbps	Pass
Middle channel 2440MHz	681.18	1Mbps	Pass
Bottom channel 2480MHz	669.18	1Mbps	Pass

Frequency	6dB bandwidth	Data transmission	Result
MHz	kHz	rate	Result
Top channel 2402MHz	1361.15	2Mbps	Pass
Middle channel 2440MHz	1326.56	2Mbps	Pass
Bottom channel 2480MHz	1420.35	2Mbps	Pass

6 dB Bandwidth

EMC_SHA_F_R_02.05E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600 Page 19 of 43 Rev. 171.00

2Mbps 2402 Spectrum Ref Level 25.50 dBn Att 35 dB Offset 0.50 dB ● RBW 100 kHz SWT 19 µs ● VBW 300 kHz 35 dB Mode Auto FFT 9.28 dBi 7980 GH 6.00 d 20 dBm 2.40248 10 dBm 1.361150 1765) dBm 10 dBm 20 dBm -30 dBm 40 dB -50 dBm -60 dBr 70 dBm CF 2.402 GHz 30001 pts Span 6.0 MHz Function Result 1.36115 MHz 6.00 dB 1765.0 Type Ref Trc X-value 2.40248798 GHz 2.40133202 GHz 2.40269318 GHz Y-value 9.28 dBm 3.28 dBm 3.28 dBm Function ndB down ndB Q factor 1 T1 T2 2.11.2019 16:07:12 Date: 22.NOV.2019 16:07:12 2440 Spectrum Ref Level 25.50 dBm Mode Auto FF1 ●1Pk Ma: M1[1] 9.66 dBr 20 dBm 2.440490980 GH 6.00 d 1.326560000 MH AdB 10 dBn 1839 0 dBm -10 dBr -20 dBr -30 dB 40 dBn -50 dBm -60 dB 70 dB CF 2.44 G 30001 pts Span 6.0 MHz Function Result 1.32656 MHz 6.00 dB 1839.7 arke
 Y-value
 Function

 9.66 dBm
 ndB down

 3.66 dBm
 ndB

 3.66 dBm
 Q factor
 Type Ref Trc X-value 2.44049098 GHz 2.43931082 GHz 2.44063738 GHz T1 T2 deasuring. 2.11.2019 Date: 22.NOV.2019 15:55:46 2480 Spectrum
 Offset
 0.50 dB
 RBW
 100 kHz

 SWT
 19 μs
 VBW
 300 kHz
 Ref Level 25.50 dBm Att
 1Pk Ma 35 dB Mode Auto FF1 M1[1] 9.26 2.480493580 GH 6.00 d 1.420350000 MH 1746. 20 dBm 10 dBn 0 dB 10 dBr -20 dBr -30 dBr 40 dBr -50 dBm -60 dB -70 dBr Span 6.0 MHz CF 2.48 GHz 30001 pts Function Result 1.42035 MHz 6.00 dB 1746.4 ark Y-value 9.26 dBm 3.26 dBm 3.26 dBm Type Ref Trc X-value 2.48049358 GHz 2.47929162 GHz 2.48071198 GHz Function ndB down ndB Q factor Measuring 22.11.2019 Date: 22.NOV.2019 15:28:58

EMC_SHA_F_R_02.05E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600 Page 20 of 43 Rev. 171.00

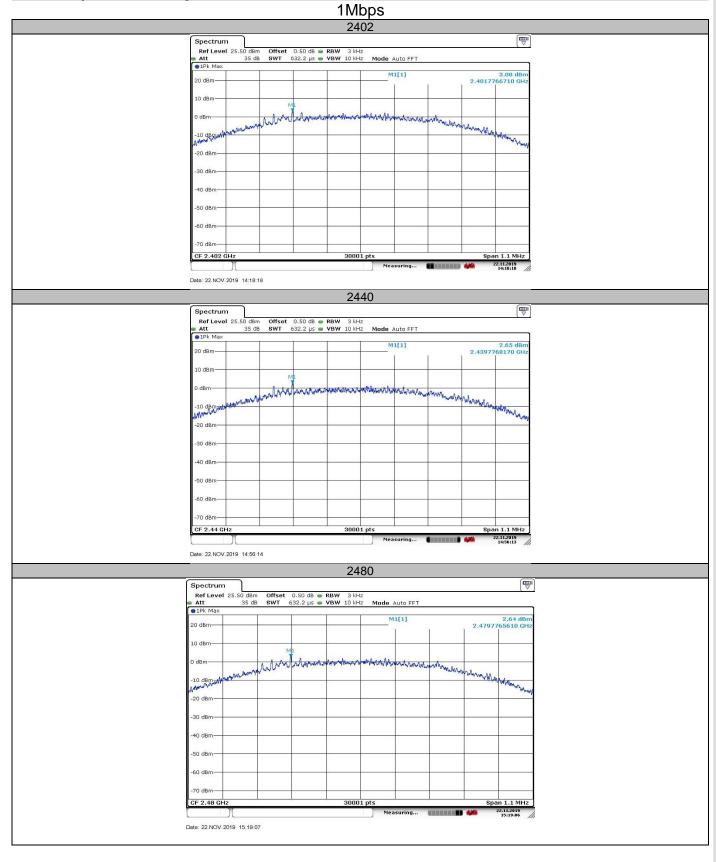
9.4 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

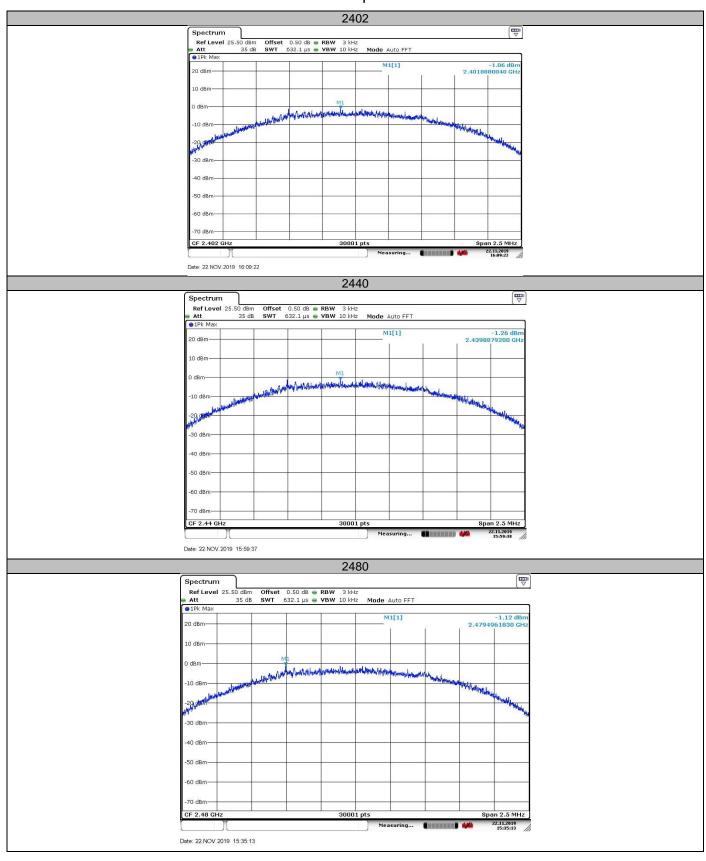
Limit


Limit [dBm]

≤8

Test result			
	Power spectral	Data transmission	Result
Frequency	density	rate	
MHz	dBm		
Top channel 2402MHz	3.08	1Mbps	Pass
Middle channel 2440MHz	2.65	1Mbps	Pass
Bottom channel 2480MHz	2.64	1Mbps	Pass
	Power spectral	Data transmission	Result
Frequency	density	rate	
MHz	dBm		
Top channel 2402MHz	-1.06	2Mbps	Pass
Middle channel 2440MHz	-1.26	2Mbps	Pass
Bottom channel 2480MHz	-1.12	2Mbps	Pass

Power spectral density


EMC_SHA_F_R_02.05E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

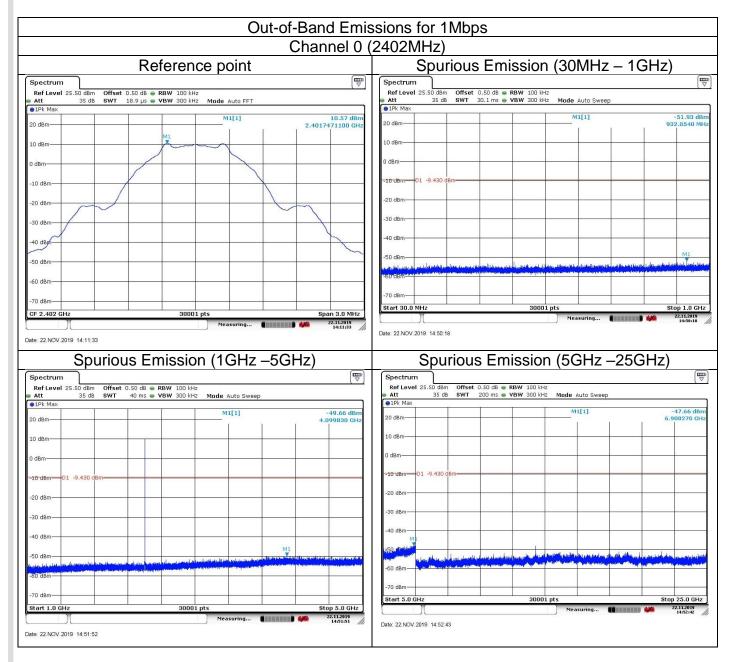
Page 22 of 43 Rev. 171.00

EMC_SHA_F_R_02.05E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

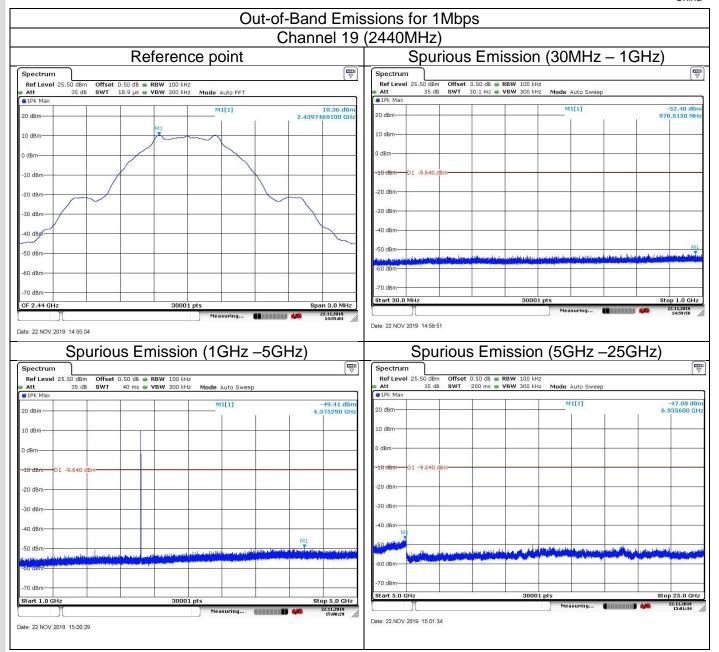
Page 23 of 43 Rev. 171.00

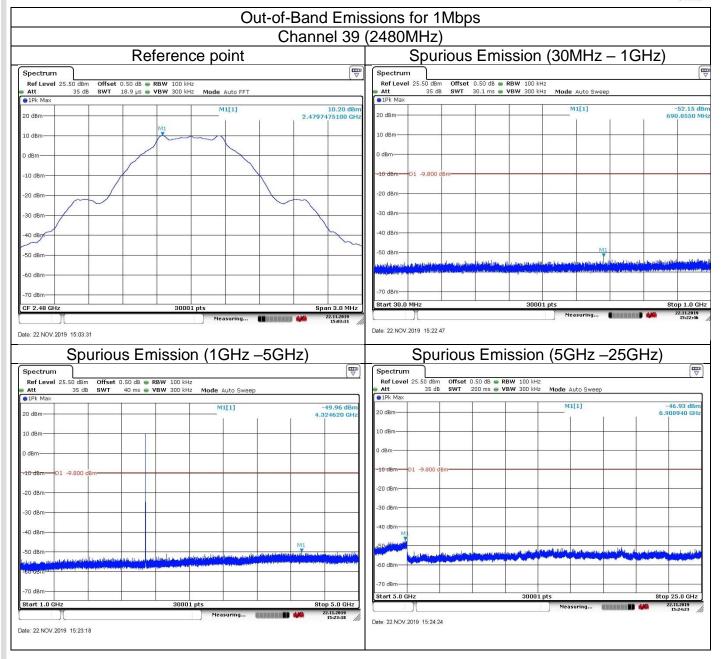
9.5 Spurious RF conducted emissions


Test Method

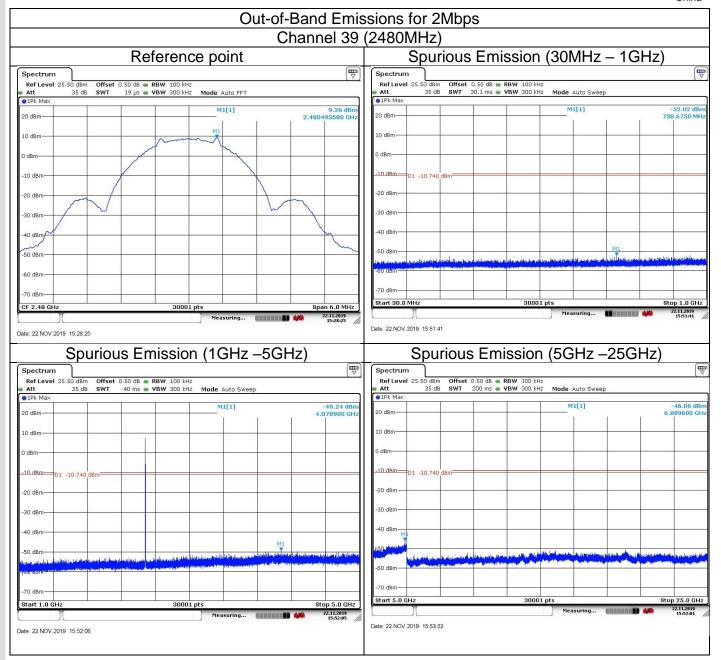
- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20



TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600 Page 26 of 43 Rev. 171.00



Page 29 of 43 Rev. 171.00

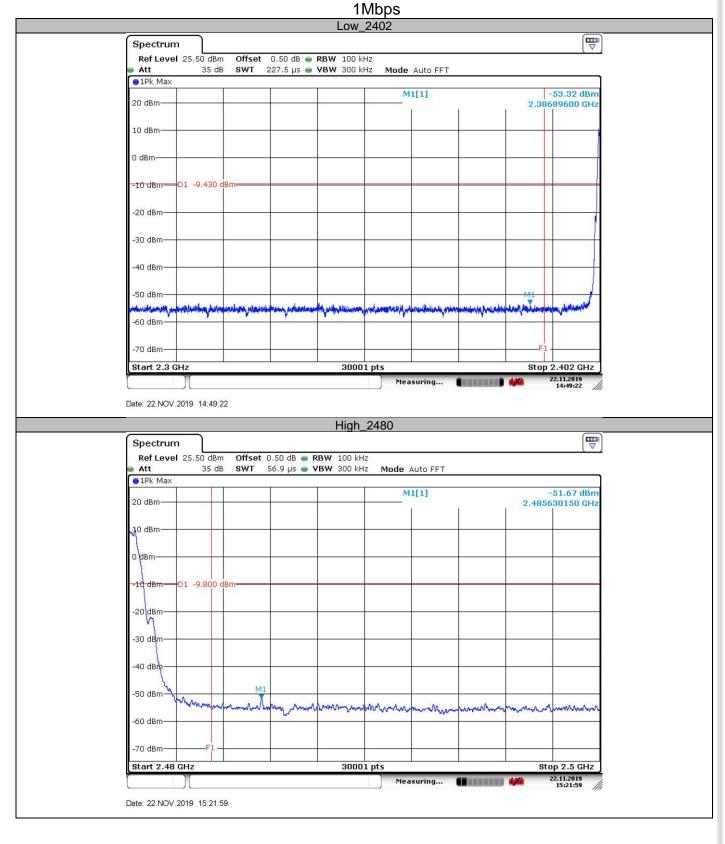
9.6 Band edge

Test Method

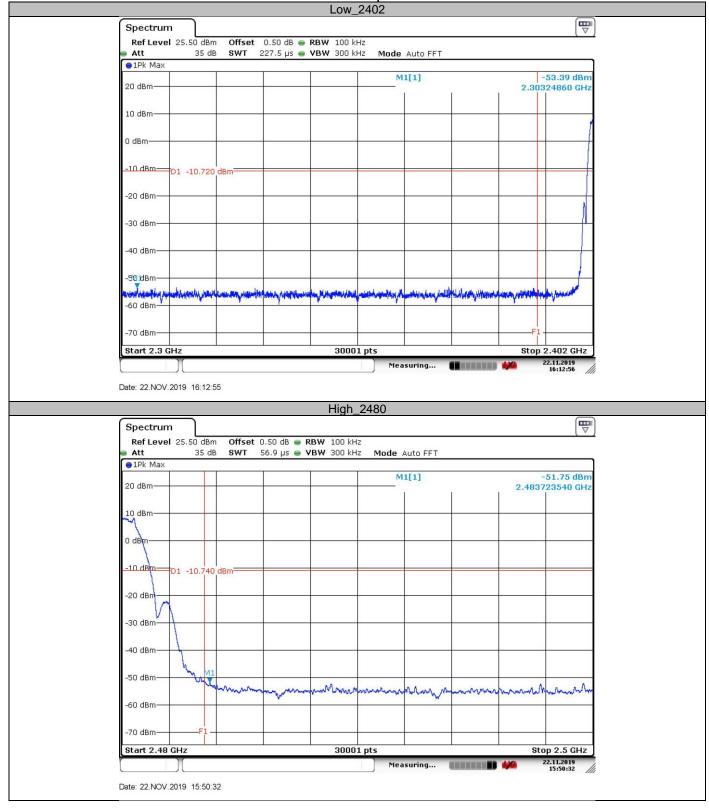
1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold.

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.


Limit

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen8.10, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.



Test result

2Mbps

9.7 Spurious radiated emissions for transmitter

Test Method

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10:
- For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120 kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1MHz.

b) VBW \geq [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
1) If power averaging (rms) mode was used in the preceding step e), then the correction

factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Si uV	aengai	asured Distance Meters	ļ
0.009~0.490	2400/F	(kHz)	300	
0.490~1.705	24000/	F (kHz)	30	
1.705~30	3	0	30	
Frequency	Field Strength	Field Strength	Dete	ctor
MHz	uV/m	dBµV/m		
30-88	100	40	Q	Р
88-216	150	43.5	Q	Р
216-960	200	46	Q	Р
960-1000	500	54	Q	Р
Above 1000	500	54	A	V
Above 1000	5000	74	PI	K

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Test mode: GFSK (2Mbps)					
		Channel 0 (2	2402MHz)		
Frequency (MHz)Measure Level (dBuV/m)Limit (dBuV/M)Margin (dB)DetectorPolarization					
2385.6	40.10	74.0	33.90	Peak	Horizontal
4804.0	41.28	74.0	32.72	Peak	Horizontal
2388.5	40.77	74.0	33.23	Peak	Vertical
4804.0	39.60	74.0	34.40	Peak	Vertical

Test mode: GFSK (2Mbps)					
		Channel 19 (2	2440MHz)		
Frequency Measure Limit (Margin (MHz) (dBuV/m) (dBuV/M) Detector Polarization					
4880.0	40.36	74.0	33.64	Peak	Horizontal
4879.0	40.80	74.0	33.20	Peak	Vertical
73219.5	40.06	74.0	33.94	Peak	Vertical

Test mode: GFSK (2Mbps) Channel 39 (2480MHz)					
Frequency (MHz)Measure Level (dBuV/m)Limit 					
2483.5	40.01	74.0	33.99	Peak	Horizontal
4959.2	40.71	74.0	33.29	Peak	Horizontal
2483.5	40.90	74.0	33.10	Peak	Vertical
4959.4	41.21	74.0	32.79	Peak	Vertical

Remark:

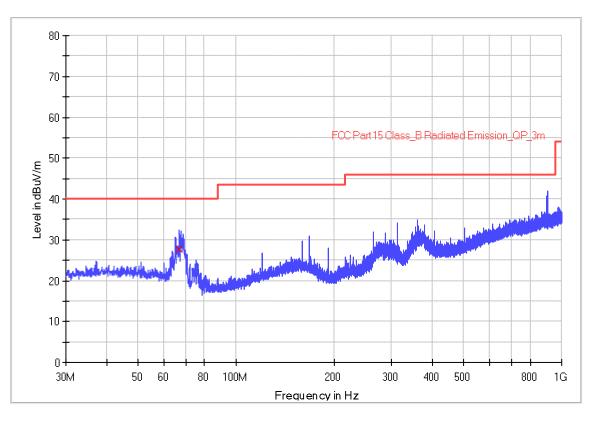
- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading

	Test mode: GFSK (1Mbps)				
		Channel 0 (2	402MHz)		
Frequency (MHz)	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
2386.7	40.37	74.0	33.63	Peak	Horizontal
4804.0	40.81	74.0	33.19	Peak	Horizontal
2389.4	40.56	74.0	33.44	Peak	Vertical
4804.0	41.26	74.0	32.74	Peak	Vertical

Test mode: GFSK (1Mbps)					
		Channel 19 (2	2440MHz)		
Frequency (MHz)Measure Level (dBuV/m)Limit (dBuV/M)Margin (dB)DetectorPolarization					
4880.0	40.89	74.0	33.11	Peak	Horizontal
4879.0	41.22	74.0	32.78	Peak	Vertical
73219.8	40.37	74.0	33.63	Peak	Vertical

Test mode: GFSK (1Mbps) Channel 39 (2480MHz)					
Frequency (MHz)Measure Level (dBuV/m)Limit 					
2483.5	41.38	74.0	32.62	Peak	Horizontal
4959.8	40.98	74.0	33.02	Peak	Horizontal
2483.5	41.32	74.0	32.68	Peak	Vertical
4959.6	40.12	74.0	33.88	Peak	Vertical

Remark:


- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading

The worst case of Radiated Emission below 1GHz:

Site: 3 meter chamber	Time: 2019/11/23 - 13:28		
Limit: FCC_Part15.209_RE(3m)_ClassB	Engineer: Jiaxi XU		
Probe: VULB9168	Polarity: Horizontal		
EUT: BLE Module, Model no: BT3L-A	Power: 120VAC, 60Hz		
Note: Transmit by at channel 2402MHz and the date rate is 1Mbps.			
Note: There is the worst case within frequency range 30MHz~1GHz.			

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
66.920000	27.7	1000.0	120.000	100.0	н	35.0	12.3	12.3	40.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

	Site: 3 meter chamber					Time: 2019/11/23 - 13:49				
	Limit: FCC_Part15.209_RE(3m)_ClassB					Engineer: Jiaxi XU				
	Probe: VULB9168					: Vertical				
EUT: BL	E Module	, Model no:	BT3L-G		Power:	120VAC,	60Hz			
				nd the date rate						
Note: Th	nere is the	worst case	within frequ	iency range 30N	1Hz~1GH	Ζ.				
			RE_V	ULB9168_pre_Cont	_30-1000					
									_	
	80 T							!		
	+									
	70				1					
	70				r	1 				
	+					(+ 				
	60									
	+		 		FCC Part 1	5 Class_B	Radiated Em	ission_QP	3m	
	50									
Ę	30									
2	+	·ii-	· · · · · · · · · · · · · · · · · · ·		<u>.</u>	ii				
Level in dBuV/m	40									
e l	+				 			and all the second		
Ē	30				 	1 1 1 1 4 <mark> 4</mark>				
		E E E								
	1 Martin Street	WHERE A LOUGHT			dulla billion	Angel and a second s				
	20		- Waterday		(Charles and Charles and Charl	,	·			
	+				 	 				
	10									
	J			= = = = = = = = = = = = = = =						
	0 + 30M	50 60	80 100	M 2/	00 3	00 400	500	800 1G		
	30M	50 60	00 100	Frequency		400	500	000 10		
				Frequency	III H 4					

Limit and Margin

	U								
Frequency	QuasiPeak	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.	Margin -	Limit -
(MHz)	(dBuV/m)	Time	(kHz)	(cm)		(deg)	(dB)	QPK	QPK
		(ms)						(dB)	(dBuV/m)
65.800000	25.9	1000.0	120.000	100.0	۷	359.0	12.5	14.1	40.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

Test Equipment List

	List of Test Instruments Test Site1							
	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE		
С	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2019-8-5	2020-8-4		
	EMI Test Receiver	Rohde & Schwarz	ESR3	101906	2019-8-5	2020-8-4		
	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2019-8-5	2020-8-4		
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2019-3-16	2022-3-15		
	Horn Antenna	Rohde & Schwarz	HF907	102393	2018-6-11	2021-4-1		
	Pre-amplifier	Rohde & Schwarz	SCU-18D	19006451	2019-8-5	2020-8-4		
RE	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2019-6-28	2020-6-27		
	DOUBLE-RIDGED WAVEGUIDE HORN WITH PRE-AMPLIFIER (18 GHZ - 40 GHZ)	ETS-Lindgren	3116C-PA	002222727	2018-1-29	2021-1-28		
	3m Semi-anechoic chamber	TDK	9X6X6		2018-5-11	2021-5-10		
	EMI Test Receiver	Rohde & Schwarz	ESR3	101907	2019-8-5	2020-8-4		
CE	LISN	Rohde & Schwarz	ENV216	101924	2019-8-5	2020-8-4		
Measurement Software Information								
Test Item	Software	Manufacturer		Vers	sion			
RE	EMC 32 Rohde & Schwarz V9.15.00							

V9.15.03

C - Conducted RF tests

CE

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth

Rohde & Schwarz

- Power spectral density*
- Spurious RF conducted emissions

EMC 32

Band edge

10 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty					
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, ±3.16dB					
Radiated Disturbance	30MHz to 1GHz, ±5.03dB (Horizontal)					
	±5.12dB (Vertical)					
	1GHz to 18GHz, ±5.49dB					
	18GHz to 25GHz, ±4.76dB					

11 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

EMC_SHA_F_R_02.05E

Page 42 of 43 Rev. 171.00

12 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END