

FCC Test Report

Report No: FCS202207108W01

Issued for

Applicant:	CJ Global Inc.	
Address:	20-21 Wagaraw Road Bldg 30 Fair Lawn New Jersey United States 07410	
Product Name:	Multi-Color Wireless Speaker	
Brand Name:	N/A	
Model Name:	24962-DI	
Series Model:	N/A	
FCC ID:	2AND8-BT2204	
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi- Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com		

TEST RESULT CERTIFICATION

Applicant's Name:	CJ Global Inc.
Address:	20-21 Wagaraw Road Bldg 30 Fair Lawn New Jersey United States 07410
Manufacture's Name:	CJ Global Inc.
Address:	20-21 Wagaraw Road Bldg 30 Fair Lawn New Jersey United States 07410
Product Description	
Product Name:	Multi-Color Wireless Speaker
Brand Name	N/A
Model Name:	24962-DI
Series Model	N/A
Test Standards:	FCC Rules and Regulations Part 15 Subpart C, Section 247
Test Procedure:	ANSI C63.10:2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests.: July 11, 2022 ~ July 21, 2022

Date of Issue.....: July 21, 2022

Approved by

Test Result..... Pass

Scott shen Tested by ÷ (Scott Shen) Dukelin Reviewed by (Duke Qian) Jukiou

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	.10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	
2.4 EQUIPMENTS LIST	.12
3 CONDUCTED EMISSION MEASUREMENT	. 13
4. 20 DB BANDWIDTH	. 17
4.1 Limit	. 17
4.2 Test Procedure	.17
4.3 Test setup	17
4.4 Test results	
4.5 Original Test Data	. 18
5. CONDUCTED OUTPUT POWER	.20
5.1 LIMIT	. 20
§§	.20
5.3 TEST SETUP	. 20
5.5 TEST RESULTS	. 20
6 NUMBER OF HOPPING CHANNEL	
6.1 LIMIT	. 23
6.2 TEST PROCEDURE	
5.3 TEST SETUP	. 23
6.4 EUT OPERATION CONDITIONS	.23
6.5 TEST RESULTS	. 24
7. BAND EDGE AND SPURIOUS(CONDUCTED)	. 25
7.1 LIMIT	. 25
7.2 TEST PROCEDURE	
7.3 TEST SETUP	
7.4 TEST RESULTS	. 26

Table of Contents

Page

7.5 Original test data	
7.6 For Hopping Band edge	29
8. RADIATED EMISSION MEASUREMENT	30
8.1 RADIATED EMISSION LIMITS	30
8.2 TEST PROCEDURE	31
8.3 TESTSETUP	
8.4. TEST RESULTS	34
8.5 (30MHZ-1000MHZ)	35
■ 8.6 ABOVE 1GHZ	
8.7 RADIATED BAND EDGE DATA	40
9. AVERAGE TIME OF OCCUPANCY	41
9.1 LIMIT	41
9.2 TEST PROCEDURE	41
9.3 TEST SETUP	41
9.4 TEST RESULTS	42
9.5 ORIGINAL TEST DATA	42
10. HOPPING CHANNEL SEPARATION MEASUREMEN	44
10.1 LIMIT	
10.2 TEST PROCEDURE	44
10.3 TEST SETUP	
10.4 EUT OPERATION CONDITIONS	45
10.5 TEST RESULTS	45
11. ANTENNA REQUIREMENT	47
11.1 STANDARD REQUIREMENT	
11.2 RESULT	47

Revision History

Rev.	Issue Date	Effect Page	Contents
00	00 July 18, 2022		N/A

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247 (b)(2)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	
15.247(a)(1)(i)	Number of Hopping Frequency	PASS	
15.247(a)(1)(i)	Dwell Time	PASS	
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name: Flux Compliance Service Laboratory			
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan		
Telephone:	+86-769-27280901		
Fax: +86-769-27280901			
Laboray Accreditations			
FCC Test Firm Registration Number: 514908 CNAS Number: L15566 Designation number: CN0127 A2LA accreditation number: 5545.01 ISED Number: 25801			

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	\pm 4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	±4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	\pm 5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Multi-Color Wireless Speaker
Trade Name	N/A
Model Name	24962-DI
Series Model	N/A
Model Difference	N/A
Channel List	Please refer to the Note 2.
Operation frequency	2402MHz-2480MHz
Modulation:	GFSK
Bluetooth version	5.0
Channel number	79 CH
Transmitter rate:	1MHz
Power Supply	Input:5VDC 1A
Battery	DC 3.7V 800mAh
Hardware version number	V1.2
Software version number	V1.0.9
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

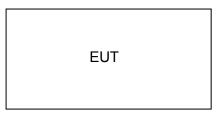
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
				*****			:
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

3. Table for Filed Antenna

Ant.	Brand	Model Name Antenna Type		Connector	Gain (dBi)	NOTE
1	NA	N/A	PCB Antenna	N/A	-2.3	Antenna



Page 10 of 47

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the BT_Tool.exe

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Hopping GFSK

Note:

- 1. All the test modes can be supply by battery, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used fully charge battery when tested.
- 4. During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	Adapter	XIOAMI	MDY-11-EB	N/A	this adapter is for testing only in repor

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2022.02.10	2023.02.09	
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022.02.10	2023.02.09	
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022.02.10	2023.02.09	
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022.02.10	2023.02.09	
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2022.02.10	2023.02.09	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2022.02.10	2023.02.09	
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2022.02.10	2023.02.09	
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2022.02.10	2023.02.09	
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2022.02.10	2023.02.09	
Temperature & Humidity	HTC-1	victor	FCS-E005	2022.02.10	2023.02.09	
Testing Software		EZ-EMC(Ver.STSLAB 03A1 RE)				

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2022.02.10	2023.02.09
LISN	R&S	ENV216	FCS-E007	2022.02.10	2023.02.09
LISN	ETS	3810/2NM	FCS-E009	2022.02.10	2023.02.09
Temperature & Humidity	HTC-1	victor	FCS-E008	2022.02.10	2023.02.09
Testing Software	EZ-EMC(Ver.EMC-CON 3A1.1)				

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2022.02.10	2023.02.09
Spectrum Analyzer	Agilent	E4447A	MY50180039	2022.02.10	2023.02.09
Spectrum Analyzer	R&S	FSV-40	101499	2022.02.10	2023.02.09
Power Sensor	Agilent	UX2021XA	FCS-E021	2022.02.10	2023.02.09
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

3 CONDUCTED EMISSION MEASUREMENT

3.1 LIMIT

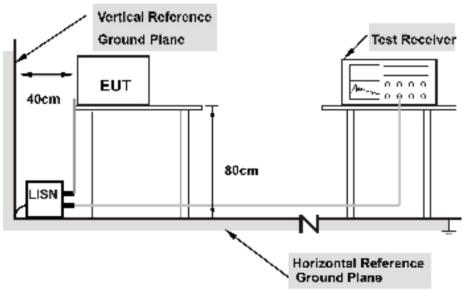
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

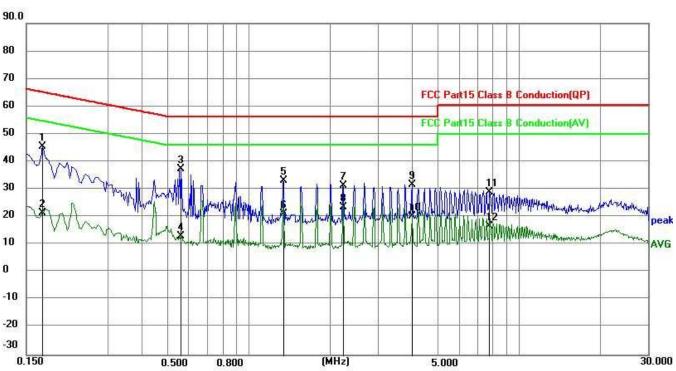
- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

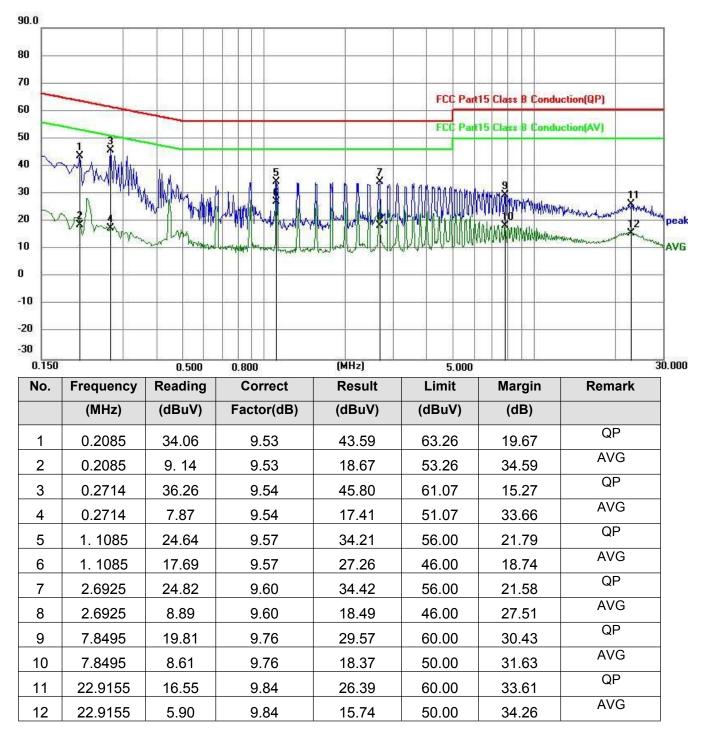
 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan


 Tel: 769-27280901
 Fax: Fax: 769-27280901

 http://www.FCS-lab.com

3.4 TEST RESULTS


Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK(worst mode)	Test Voltage:	DC 5V by adapter
Result:	L	Result:	Pass

0.150		0.500	0.800	(MHz)	5.000		30.000
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0. 1725	35.90	9.52	45.42	64.84	19.42	QP
2	0. 1725	12.08	9.52	21.60	54.84	33.24	AVG
3	0.5639	27.87	9.56	37.43	56.00	18.57	QP
4	0.5639	3.62	9.56	13. 18	46.00	32.82	AVG
5	1.3425	23.63	9.57	33.20	56.00	22.80	QP
6	1.3425	11.71	9.57	21.28	46.00	24.72	AVG
7	2.2290	21.87	9.58	31.45	56.00	24.55	QP
8	2.2290	14.05	9.58	23.63	46.00	22.37	AVG
9	4.0065	22.09	9.59	31.68	56.00	24.32	QP
10	4.0065	10.72	9.59	20.31	46.00	25.69	AVG
11	7.7955	19. 19	9.62	28.81	60.00	31. 19	QP
12	7.7955	7. 16	9.62	16.78	50.00	33.22	AVG

Temperature:	25℃	Relative Humidity:	50%
Test Mode:	GFSK(worst mode)	Test Voltage:	DC 5V by adapter
Result:	N	Result:	Pass

Remark:

1. All readings are Quasi-Peak and Average values

4. 20 DB BANDWIDTH

4.1 Limit

	FCC Part15	(15.247) , Subpar	C
Section	Test Item	Limit	Frequency Range (MHz)
15.247a(1)	20dB bandwidth	N/A	2400-2483.5

4.2 Test Procedure

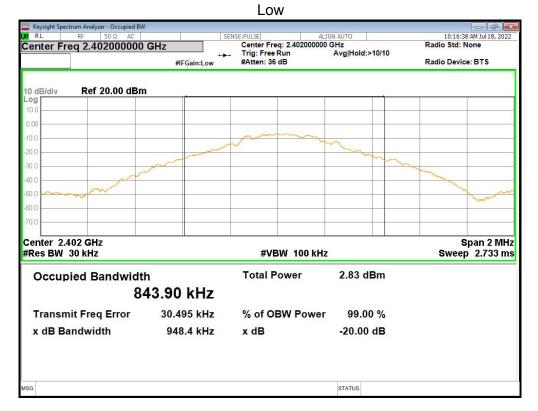
(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2)	Set the	spectrum	analyzer	as follows	
-----	---------	----------	----------	------------	--

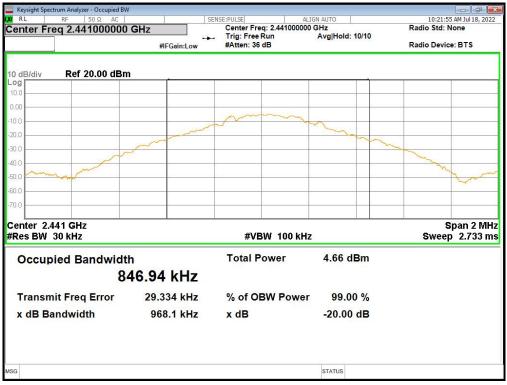
RBW:	30kHz
VBW:	100kHz
Detector Mode:	AVG
Sweep time:	auto
Trace mode	Max hold

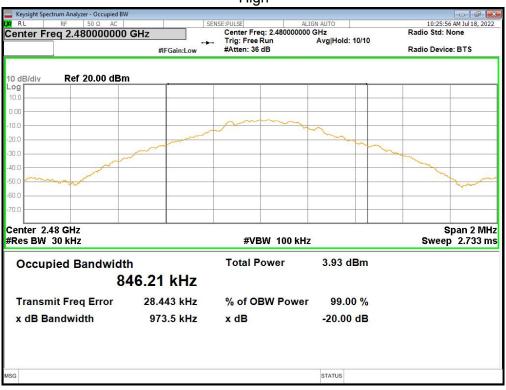
(3) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3 Test setup



4.4 Test results

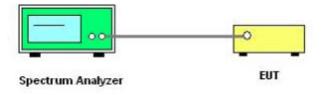

TestMode	Channel (MHz)	20dB Bandwidth (KHz)	Verdict
Lowest	2402MHz	948.4	Pass
Middle	2441MHz	968.1	Pass
Highest	2480MHz	973.5	Pass


4.5 Original Test Data

Middle

High

5. CONDUCTED OUTPUT POWER


5.1 LIMIT

FCC Part 15 Subpart C						
Section	Test Item	Limit	Frequency Range			
15.247(b)(3)	Peak output power	Power <1W(30dBm)	2400-2483.5			

§§

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=8MHz, Detector=Peak (If 20dB BW > 1 MHz)
- (3) The EUT was set to continuously transmitting in the max power during the test.

5.3 TEST SETUP

5.5 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	-4.652	21	Pass
Middle	2441MHz	-2.83	21	Pass
Highest	2480MHz	-3.542	21	Pass

Middle

High

6 NUMBER OF HOPPING CHANNEL

6.1 LIMIT

FCC Part 15.247,Subpart C RSS-247 Issue 2						
Section Test Item Limit FrequencyRange (MHz)						
15.247 (a)(1)(iii) RSS-247	Number of Hopping Channel	>15	2400-2483.5	PASS		

6.2 TEST PROCEDURE

a The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto

5.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 3.7V

Keysight Spectrum Ana RL RF	alyzer - Swept SA 50 Ω AC		NSE:PULSE		IGN AUTO		10:31:51 AM Jul 18, 20
	441750000 GHz	SE	NSE:PULSE	AL	Avg Type:	og-Pwr	TRACE 1 2 3 4
niter Freq 2.		PNO: Fast	Trig: Free F	Run	Avg Hold:>		TYPE M WWW
	, i	FGain:Low	#Atten: 30	dB			DET P P P
						Mkr2	2.479 909 5 GI
	ffset 0.5 dB •19.26 dBm						-30.297 dB
	19.20 ubiii		1	e.			A2
3		****	ADADDADA			55055550	
3 MANANA	አይቤ በዚህ ለጥለ ለጥለ በ		144044	MAMANA	MANNANA	44444444444	
1 1 1 1 1 1 1 1 1	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	I A A A A A A A A A	AAAAAAAA	A A A A A A A A A A	AAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAA
.3							
.3		-					
3							
3							
.3							
.3							
19							
art 2.40000 G	Hz					l	Stop 2.48350 G
es BW 100 kl	Hz	#VB	W 300 kHz			Sweep	8.000 ms (1001 p
R MODE TRC SCL	х	V	FUNC		FION WIDTH		NCTION VALUE
N 1 f	2.401 920 5 GHz	-31,366		HON		10	NOTION VALUE
N 1 f	2.479 909 5 GHz						
			TII.		STATUS		,

7. BAND EDGE AND SPURIOUS(CONDUCTED)

7.1 LIMIT

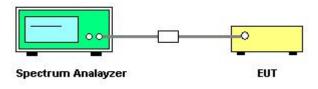
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

7.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center
	frequency
RBW:	100kHz
VBW:	300kHz
Span	1.5times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of measurement points	≥span/RBW
Number of measurement points Detector Mode:	≥span/RBW Peak
•	•

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.3 TEST SETUP

7.4 TEST RESULTS

Eut set mode	CH or Frequency	Result		
GFSK	CH1	Pass		
GIGIC	CH79	Pass		

7.5 Original test data

CH1 2402MHZ

RL	RF		.C	SENSE	:PULSE	ALIGN AUTO		10:19:12 A	👝 🕞 📕
enter	Freq 2	2.3530000	P		Trig: Free Run #Atten: 30 dB	Avg Type	: Log-Pwr	TY	CE 1 2 3 4 5 PE M WWW ET P P P P P
) dB/div		Offset 0.5 di 5.21 dBm					M	kr1 2.402 (-4.7)78 GH 94 dBr
.79		-							<u></u> 1
4.8		2	2.				1	Q	
4.8									-24,79 dE
4.8		-							
4.8	∕\2							3	4
4.8 4.8	st minut	mannass	menterentrementing	and the second second	- and a construction of the second	handelighter and the second		al motor and the second second	met 4
1.8									
1.8		2	5						
art 2.	30000	GHz						Stop 2.4	0600 GH
	W 100			#VBW	300 kHz		Swee	0 10.13 ms (1001 pt
	TRC SCL		x	Y	FUNCTION	FUNCTION WIDTH	:	UNCTION VALUE	
1 N 2 N 3 N	1 f 1 f 1 f		2.402 078 GHz 2.304 558 GHz 2.394 128 GHz	-4.794 dB -58.055 dB -57.948 dB	m m				
4 N	1 f		2.400 064 GHz	-59.031 dB	m				
6									
7									
7 B 9									
7 3									

CH79 2480MHZ

	ht Spec		nalyzer - Swept S/							- 6
RL ente	r Fre	RF ∋q 2	50 Ω A	00 GHz	NO: Fast Gain:Low	SE:PULSE Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type:	Log-Pwr	TRAC	M Jul 18, 2022 E 1 2 3 4 5 E M WWWW T P P P P P P
0 dB/c	liv		offset 0.5 dE 6.31 dBm					M	kr1 2.480 2 -3.6	00 GH 95 dBn
1.69										
3.7 3.7										-23.70 dB
3.7										
8.7	mon	- Andre	N	Jansanna	2 Annonen	3	and on the fame of the second of	www.	ang many les	Q4
8.7 8.7 —										
3.7		2		8						
	2.476 BW 1				#VBV	/ 300 kHz		Sweep	Stop 2.50 p 2.333 ms (
	DE TRO			X	Y	FUNCTION	FUNCTION WIDTH	F	UNCTION VALUE	
1 N 2 N 3 N 4 N	1	f f f	2	2.480 200 GHz 2.483 512 GHz 2.487 496 GHz 2.498 992 GHz	-3.695 c -60.103 c -58.125 c -58.611 c	IBm IBm				
5										
3										
0										
						m				•

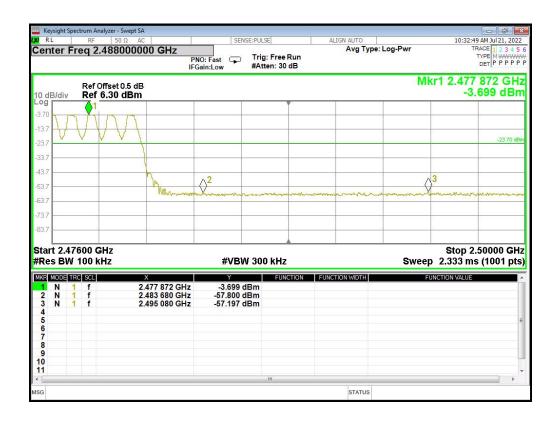
Page 27 of 47

Spurious emissions

Low Channel 30MHz-25GHz

Middle Channel 30MHz-25GHz

Page 28 of 47


High Channel 30MHz-25GHz

		Spectr	rum Ar	alyzer - Swept SA							- 0
		Fre		50 Ω AC 2.5150000	PN	O: Fast ain:Low	Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type	: Log-Pwr	ŝ	02 AM Jul 18, 2022 TRACE 1 2 3 4 5 TYPE M WWW DET P P P P P
10 dE Log j	3/div			offset 0.5 dB 5.53 dBm							480 2 GHz .466 dBm
-4.47	_			<u>}!</u>							
-14.5 -24.5	2										-23.70 dBn
-24.5											
44.5			_	^ 2		3				\$	
54.5			أساديه	<u> </u>	attabasta anata		ومالع ومن العروم وما العرور ومرود	No. of Street Street Street			
64.5			Aprillion			Alber					
74.5 84.5										20 20	
Stari Res			SHz 00 k	Hz		#VBW	/ 300 kHz		Swe		p 25.00 GHz s (40001 pts
	N N	TRC 1	SCL f		2.480 2 GHz 3.165 6 GHz	-4.466 d -55.898 d		FUNCTION WIDTH		FUNCTION VALUE	
3 4 5	N	1	f		9.920 0 GHz 4.586 1 GHz	-50.761 d -47.709 d					
6 7											
8 9											
0											
G							m	STATUS			•

7.6 For Hopping Band edge

		Analyzer - Swe			u or l			10.00.00	
			00000 GHz		g: Free Run tten: 30 dB	ALIGN AUTO Avg Type:	Log-Pwr	TF	AM Jul 21, 2022 ACE 1 2 3 4 5 TYPE M WWW DET P P P P P
0 dB/div		ef Offset 0.5 ef 5.47 di					М	kr1 2.405 -4.	894 GH: 527 dBn
.og 4.53		_							1 תוזתו
14.5		-						6	
24.5									-24,53 dB
4.5									
4.5									β^{3}
4.5	ger-aderer,	wenneshin and		when the second second	monghalite	shepened and production of the second		-townson the second	الاشروبيي
4.5									2
4.5									
tart 2.3 Res Bl				#VBW 30	0 kHz		Swee	Stop 2. p 10.13 ms	40600 GH (1001 pt
rr Mode 1 N	1 f		X 2.405 894 GHz	Y -4.527 dBm	FUNCTION	FUNCTION WIDTH		UNCTION VALUE	
2 N 3 N	1 f		2.390 100 GHz 2.399 640 GHz	-59.921 dBm -58.432 dBm					
5									
5 7 8									
9									
1					m				•
3						STATUS			

8. RADIATED EMISSION MEASUREMENT

8.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

For Band edge

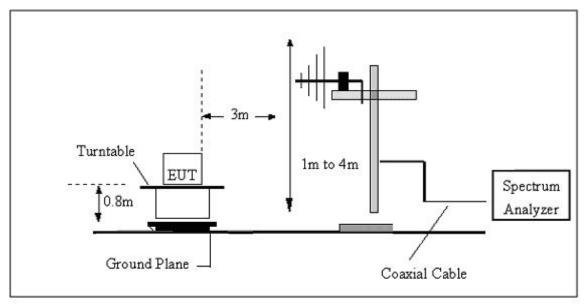
Spectrum Parameter	Setting
Detector	Peak/AV
Start/Stop Eroguopov	Lower Band Edge: 2300 to 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz
RB / VB (emission in restricted band) PK=1MHz / 1MHz, AV=1 MHz / 10 Hz
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

8.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

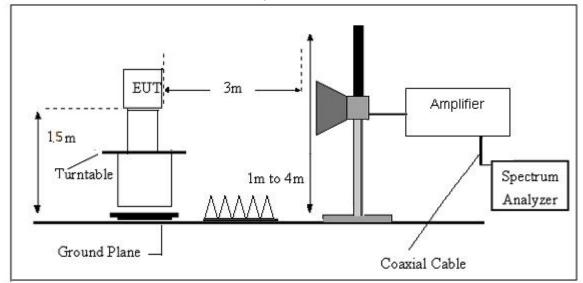
Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



8.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 33 of 47

(C) Radiated Emission Test-Up Frequency Above 1GHz

8.4. TEST RESULTS

(9KHz-30MHz)

Temperature:	22.7℃	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Test Mode:	GFSK(worst mode)

Freq.	Reading	Limit	Margin	State	Toot Docult	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

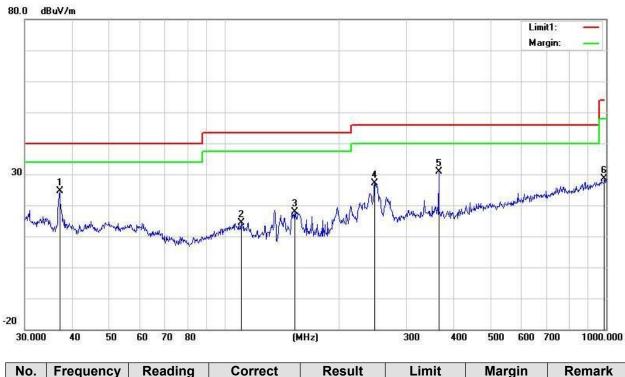
Limit line = specific limits (dBuv) + distance extrapolation factor.

8.5 (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative I	Relative Humidity: Phase:		61%		
Test Voltage:	DC 3.7V	Phase:			ntal		
Fest Mode:	GFSK(worst mod	e)					
80.0 dBuV/m					Limit1: — Margin: —		
					f		
30			un X		ala marking		
which have ment	Mark Manus Mark	Were and a lottle with the second	and a start and the start and	uted when a hard the	Alman Market		
20 20 30.000 40 50	60 70 80	(MHz)	300 4	100 500	600 700 1000.00		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/	(dBuV/m)	(dBuV/m)	(dB)	
			m)				
1	36.8953	35.83	- 16.60	19.23	40.00	-20.77	QP
2	61.5618	31.81	- 17.68	14.13	40.00	-25.87	QP
3	108.2667	31.33	- 17.07	14.26	43.50	-29.24	QP
4	209.3130	31.15	- 15.45	15.70	43.50	-27.80	QP
5	364.2595	37.55	- 12.68	24.87	46.00	-21. 13	QP
6	989.5355	30.73	- 1.92	28.81	54.00	-25. 19	QP

Note: 1. Margin = Result (Result = Reading + Factor)–Limit


2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 3.7V	Phase:	Vertical
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
			,				
1	37.0248	41.29	- 16.62	24.67	40.00	- 15.33	QP
2	110.5687	31.49	- 17.07	14.42	43.50	-29.08	QP
3	153.2004	37.40	- 19.43	17.97	43.50	-25.53	QP
4	247.6820	42.55	- 15.30	27.25	46.00	- 18.75	QP
5	364.2595	43.50	- 12.68	30.82	46.00	- 15. 18	QP
6	989.5355	30.55	- 1.92	28.63	54.00	-25.37	QP

Note: 1. Margin = Result (Result = Reading + Factor)-Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

■ 8.6 ABOVE 1GHZ

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.84	31.78	8.60	32.09	44.13	74.00	-29.87	Vertical
7206.00	31.01	36.15	11.65	32.00	46.81	74.00	-27.19	Vertical
9608.00	31.15	37.95	14.14	31.62	51.62	74.00	-22.38	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00	-	Vertical
4804.00	39.56	31.78	8.60	32.09	47.85	74.00	-26.15	Horizontal
7206.00	32.90	36.15	11.65	32.00	48.70	74.00	-25.30	Horizontal
9608.00	29.65	37.95	14.14	31.62	50.12	74.00	-23.88	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.11	31.78	8.60	32.09	33.40	54.00	-20.60	Vertica
7206.00	19.97	36.15	11.65	32.00	35.77	54.00	-18.23	Vertical
9608.00	19.52	37.95	14.14	31.62	39.99	54.00	-14.01	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.99	31.78	8.60	32.09	37.28	54.00	-16.72	Horizontal
7206.00	22.33	36.15	11.65	32.00	38.13	54.00	-15.87	Horizontal
9608.00	18.36	37.95	14.14	31.62	38.83	54.00	-15.17	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.86	31.85	8.67	32.12	44.26	74.00	-29.74	Vertical
7323.00	31.03	36.37	11.72	31.89	47.23	74.00	-26.77	Vertical
9764.00	31.16	38.35	14.25	31.62	52.14	74.00	-21.86	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	39.59	31.85	8.67	32.12	47.99	74.00	-26.01	Horizontal
7323.00	32.91	36.37	11.72	31.89	49.11	74.00	-24.89	Horizontal
9764.00	29.67	38.35	14.25	31.62	50.65	74.00	-23.35	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	25.13	31.85	8.67	32.12	33.53	54.00	-20.47	Vertical
7323.00	19.98	36.37	11.72	31.89	36.18	54.00	-17.82	Vertical
9764.00	19.53	38.35	14.25	31.62	40.51	54.00	-13.49	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.01	31.85	8.67	32.12	37.41	54.00	-16.59	Horizontal
7323.00	22.34	36.37	11.72	31.89	38.54	54.00	-15.46	Horizontal
9764.00	18.37	38.35	14.25	31.62	39.35	54.00	-14.65	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*				3	54.00		Horizontal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.69	31.93	8.73	32.16	44.19	74.00	-29.81	Vertical
7440.00	30.91	36.59	11.79	31.78	47.51	74.00	-26.49	Vertical
9920.00	31.06	38.81	14.38	31.88	52.37	74.00	-21.63	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	39.38	31.93	8.73	32.16	47.88	74.00	-26.12	Horizontal
7440.00	32.78	36.59	11.79	31.78	49.38	74.00	-24.62	Horizontal
9920.00	29.55	38.81	14.38	31.88	50.86	74.00	-23.14	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.99	31.93	8.73	32.16	33.49	54.00	-20.51	Vertical
7440.00	19.89	36.59	11.79	31.78	36.49	54.00	-17.51	Vertical
9920.00	19.45	38.81	14.38	31.88	40.76	54.00	-13.24	Vertical
12400.00						54.00		Vertical
14880.00				8 8	2 2	54.00		Vertical
4960.00	28.86	31.93	8.73	32.16	37.36	54.00	-16.64	Horizontal
7440.00	22.24	36.59	11.79	31.78	38.84	54.00	-15.16	Horizontal
9920.00	18.28	38.81	14.38	31.88	39.59	54.00	-14.41	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*			60 70		54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. "*", means this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

8.7 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	44.14	27.91	5.30	24.64	52.71	74.00	-21.29	Horizontal
2390.00	48.33	27.59	5.38	24.71	56.59	74.00	-17.41	Horizontal
2310.00	45.10	27.91	5.30	24.64	53.67	74.00	-20.33	Vertical
2390.00	48.57	27.59	5.38	24.71	56.83	74.00	-17.17	Vertical
Average val	ue:		~					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.65	27.91	5.30	24.64	43.22	54.00	-10.78	Horizontal
2390.00	36.06	27.59	5.38	24.71	44.32	54.00	-9.68	Horizontal
2310.00	34.63	27.91	5.30	24.64	43.20	54.00	-10.80	Vertical
2390.00	36.58	27.59	5.38	24.71	44.84	54.00	-9.16	Vertical

High CH(GFSK)

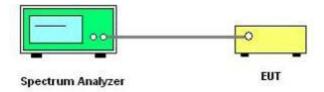
Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	46.36	27.53	5.47	24.80	54.56	74.00	-19.44	Horizontal
2500.00	45.61	27.55	5.49	24.86	53.79	74.00	-20.21	Horizontal
2483.50	47.36	27.53	5.47	24.80	55.56	74.00	-18.44	Vertical
2500.00	46.76	27.55	5.49	24.86	54.94	74.00	-19.06	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	35.49	27.53	5.47	24.80	43.69	54.00	-10.31	Horizontal
2500.00	35.47	27.55	5.49	24.86	43.65	54.00	-10.35	Horizontal
2483.50	36.18	27.53	5.47	24.80	44.38	54.00	-9.62	Vertical
2500.00	35.32	27.55	5.49	24.86	43.50	54.00	-10.50	Vertical

9. AVERAGE TIME OF OCCUPANCY


9.1 LIMIT

	FCC F	Parti 5 (15.247), Su	bpart C
Section	Test Item	Limit	Frequency Range (MHz)
15.247(a)(1)	Average Time of Occupancy	0.4 sec	2400-2483.5

9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37x31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06x31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12x31.6 = 320.

9.3 TEST SETUP

9.4 TEST RESULTS

	AVERAGE_TIME_OF_OCCUPANCY										
CONDITIO	MOD	FREQUENCY(M	PULSE	AVERAGE	LIMIT(M	BURST	RESULT				
N	Е	HZ)	TIME(M	TIME OF	S)	NUMBE	S				
			S)	OCCUPANCY(R					
			-	MS)							
NVNT	1DH1	2402	0.411	131.237	400	319	PASS				
NVNT	1DH3	2402	1.676	261.503	400	156	PASS				
NVNT	1DH5	2402	2.908	311.156	400	107	PASS				

9.5 ORIGINAL TEST DATA

10. HOPPING CHANNEL SEPARATION MEASUREMEN

10.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> 20 dB Bandwidth or Channel Separation		
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)		
VB	100 kHz (20dB Bandwidth) /100 kHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

10.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement
- 10.3 TEST SETUP

Spectrum Analayzer

10.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

Modulation	Frequency (MHz)	Markl Frequency (MHz)	Mark2 Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	2402	2401.872	2402.870	0.998	0.63	Pass
GFSK	2441	2440.870	2441.872	1.002	0.63	Pass
	2480	2478.872	2479.872	1.000	0.65	Pass

Keysight Spectrum Analyzer - Swept SA			
RL RF 50Ω AC	SENSE:PULSE	ALIGN AUTO	10:42:08 AM Jul 18, 2022
enter Freq 2.441500000 GHz		Avg Type: Log Free Run	TYPE M MANAMAN
		1: 36 dB	DET P P P P P
			Mkr2 2.441 872 GHz
0 dB/div Ref -20.60 dBm			-30.60 dBm
30.6	~		
40.6	m		mont
~~~~	home		proved
50.6		and a second sec	ىكى
0.6			
0.6			
0.6			
0.6			
101			
111			
enter 2.441500 GHz Res BW 30 kHz	#VBW 100 I	/H-	Span 2.000 MH Sweep 2.133 ms (1001 pts
	#4044 1001		
IKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2.440 870 2 N 1 f 2.441 872			
3	0112 -00.00 0.011		
4			
6			
7			
8			
0			
1			





#### **11. ANTENNA REQUIREMENT**

#### **11.1 STANDARD REQUIREMENT**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### 11.2 RESULT

The antennas used for this product are PCB antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is -2.3dBi.

*****END OF THE REPORT****