Report Number: 68.950.18.0240.01 FCC/IC - TEST REPORT **Report Number** 68.950.18.0240.01 Date of Issue: June 15, 2018 : Model GO360 : GUARDZILLA 360 ALL-IN-ONE HD OUTDOOR VIDEO CAMERA Product Type Applicant Practecol, LLC Address 3155 Sutton Blvd, Suite 202 St. Louis, MO 63143, USA **Production Facility** : SKY LIGHT Electronic (ShenZhen) Limited Address : No. 1, 5 and 6 Building, JinBi Industrial Area, HuangTian, BaoAn, Shenzhen, China Test Result 1 n Positive **o** Negative Total pages including Appendices : 32

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval



## 1 Table of Contents

| 1  | Table of Contents2                             |  |  |  |  |
|----|------------------------------------------------|--|--|--|--|
| 2  | Details about the Test Laboratory              |  |  |  |  |
| 3  | Description of the Equipment Under Test 4      |  |  |  |  |
| 4  | Summary of Test Standards5                     |  |  |  |  |
| 5  | Summary of Test Results                        |  |  |  |  |
| 6  | General Remarks7                               |  |  |  |  |
| 7  | Test Setups                                    |  |  |  |  |
| 8  | Systems test configuration9                    |  |  |  |  |
| 9  | Technical Requirement                          |  |  |  |  |
| 9. | 1 Conducted Emission 10                        |  |  |  |  |
| 9. | 1 Conducted peak output power 13               |  |  |  |  |
| 9. | 2 Power spectral density                       |  |  |  |  |
| 9. | 3 6 dB Bandwidth and 99% Occupied Bandwidth 15 |  |  |  |  |
| 9. | 4 Spurious RF conducted emissions 19           |  |  |  |  |
| 9. | 5 Band edge 25                                 |  |  |  |  |
| 9. | 6 Spurious radiated emissions for transmitter  |  |  |  |  |
| 10 | Test Equipment List                            |  |  |  |  |
| 11 | System Measurement Uncertainty 32              |  |  |  |  |



## 2 Details about the Test Laboratory

## **Details about the Test Laboratory**

Test Site 1

| Company name:           | TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch<br>Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint<br>Road 2, Nanshan District<br>Shenzhen 518052<br>P.R. China |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Telephone:<br>Fax:      | 86 755 8828 6998<br>86 755 828 5299                                                                                                                                                                       |
| FCC Registration No.:   | 514049                                                                                                                                                                                                    |
| IC Registration<br>No.: | 10320A                                                                                                                                                                                                    |



# 3 Description of the Equipment Under Test

| Product:                      | GUARDZILLA 360 ALL-IN-ONE HD OUTDOOR VIDEO CAMERA                                                                |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|
| Model no.:                    | GO360                                                                                                            |
| FCC ID:                       | 2AND3-GO360                                                                                                      |
| IC:                           | 23183-GO360                                                                                                      |
| Options and accessories:      | Adapter and USB Cable                                                                                            |
| Rating:                       | 3.6Vdc 5200mAh Li-ion Rechargeable battery charged by an external adapter                                        |
| Adapter information:          | Adapter Model: ASSA65a-053200<br>Adapter Input: 100-240Vac, 50/60Hz; 0.45A<br>Adapter Output: 5.3Vdc, 2.0A       |
| RF Transmission<br>Frequency: | 2402MHz-2480MHz                                                                                                  |
| No. of Operated Channel:      | 40                                                                                                               |
| Modulation:                   | GFSK                                                                                                             |
| Antenna Type:                 | Integrated antenna                                                                                               |
| Antenna Gain:                 | 1.3dBi                                                                                                           |
| Description of the EUT:       | The Equipment Under Test (EUT) is a wireless camera which support WiFi and Bluetooth function operated at 2.4GHz |

# 4 Summary of Test Standards

| Test Standards        |                                                                |  |  |  |
|-----------------------|----------------------------------------------------------------|--|--|--|
| FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES                              |  |  |  |
| 10-1-2017 Edition     | Subpart C - Intentional Radiators                              |  |  |  |
| RSS-Gen Issue 5       | General Requirements for Compliance of Radio Apparatus         |  |  |  |
| April 2018            |                                                                |  |  |  |
| RSS-247               | Digital Transmission Systems (DTSS), Frequency Hopping Systems |  |  |  |
| Issue 2 February 2017 | (FHSS) and License-Exempt Local Area Network (LE-LAN) Devices  |  |  |  |

All the test methods were according to KDB 558074 D01 DTS Measurement Guidance v04 DTS Measurement Guidance and ANSI C63.10 (2013).



# 5 Summary of Test Results

| Technical Requirements                                |                                             |        |        |             |      |             |  |
|-------------------------------------------------------|---------------------------------------------|--------|--------|-------------|------|-------------|--|
| FCC Part 15 Subpart C/ RSS-2                          | 47 Issue 2/RSS-Gen Issue                    | 5      | -      |             |      |             |  |
| Test Condition                                        |                                             | Dages  | Test   | Test Result |      |             |  |
| Test Condition                                        |                                             | i ayes | Site   | Pass        | Fail | N/A         |  |
| §15.207 & RSS-GEN 8.8                                 | Conducted emission AC power port            | 10     | Site 1 | $\boxtimes$ |      |             |  |
| §15.247 (b) (1) & RSS-247<br>5.4(d)                   | Conducted peak output power                 | 13     | Site 1 | $\boxtimes$ |      |             |  |
| §15.247(a)(1) & RSS-247<br>5.1(b)                     | 20dB bandwidth                              |        |        |             |      | $\square$   |  |
| §15.247(a)(1) & RSS-247<br>5.1(b)                     | Carrier frequency separation                |        |        |             |      | $\boxtimes$ |  |
| §15.247(a)(1)(iii) & RSS-247<br>5.1(d)                | Number of hopping<br>frequencies            |        |        |             |      | $\square$   |  |
| §15.247(a)(1)(iii) & RSS-247<br>5.1(d)                | Dwell Time                                  |        |        |             |      | $\boxtimes$ |  |
| §15.247(e) & RSS-247 5.2(b)                           | Power spectral density                      | 14     | Site 1 | $\boxtimes$ |      |             |  |
| §15.247(a)(2) & RSS-247<br>5.2(a) & RSS-GEN 6.7       | 6dB bandwidth and 99%<br>Occupied Bandwidth | 15     | Site 1 | $\boxtimes$ |      |             |  |
| §15.247(d) & RSS-247 5.5                              | Spurious RF conducted emissions             | 19     | Site 1 | $\boxtimes$ |      |             |  |
| §15.247(d) & RSS-247 5.5                              | Band edge                                   | 25     | Site 1 | $\square$   |      |             |  |
| §15.247(d) & §15.209 & RSS-<br>247 5.5 & RSS-Gen 6.13 | Spurious radiated emissions for transmitter | 27     | Site 1 | $\boxtimes$ |      |             |  |
| §15.203 & RSS-Gen 6.8                                 | Antenna requirement                         | See r  | note 1 | $\boxtimes$ |      |             |  |

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 1.3dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

## 6 General Remarks

## Remarks

This submittal(s) (test report) is intended for FCC ID: 2AND3-GO360, IC: 23183-GO360, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

## SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- O Not Performed
- The Equipment under Test
- n Fulfills the general approval requirements.
- - **Does not** fulfill the general approval requirements.
- Sample Received Date: June 7, 2018
- Testing Start Date: June 7, 2018
- Testing End Date: June 14, 2018
- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

Prepared by:

Johnshi

John Zhi Section Manager

Alem X300g

Alan Xiong Project Engineer Tested by:

Tree them

Tree Zhan Test Engineer

## 7 Test Setups

## 7.1 AC Power Line Conducted Emission test setups







## Above 1GHz



## 7.3 Conducted RF test setups



TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299



## 8 Systems test configuration

Auxiliary Equipment Used during Test:

| DESCRIPTION | MANUFACTURER | MODEL NO. | S/N |
|-------------|--------------|-----------|-----|
| PC          | Lenovo       | X240      |     |

Test mode sample have been processed by manufacturer, the operation steps are as follows:

1) Connect to PC via USB Cable, and update the driver if possible

2) Open CRT software and enter the serial port

3) Enter the following cord in the CRT software:

root modprobe ambad amba\_debug -g 84 -d 1 amba\_debug -g 87 -d 1 amba\_debug -g 34 -d 1 /usr/local/bin/brcmbt -d --patchram /lib/firmware/cypress/cyw43438/cyw43438.hcd /dev/ttyS1 --no2bytes --baudrate 1500000 --bd\_addr 00:00:88:c0:ff:ee --use\_baudrate\_for\_download hcicmd 01 1E 20 03 00 25 00 hcicmd 01 1E 20 03 00 25 00 for 2402MH hcicmd 01 1E 20 03 13 25 00 for 2440MHz hcicmd 01 1E 20 03 27 25 00 for 2480MHz



## 9 Technical Requirement

## 9.1 Conducted Emission

#### **Test Method**

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

#### Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

| Frequency   | QP Limit | AV Limit |
|-------------|----------|----------|
| MHz         | dBµV     | dBµV     |
| 0.150-0.500 | 66-56*   | 56-46*   |
| 0.500-5     | 56       | 46       |
| 5-30        | 60       | 50       |

n

\*Decreasing linearly with logarithm of the frequency



## **Conducted Emission**

| Product Type        | : | GUARDZILLA 360 ALL-IN-ONE HD OUTDOOR VIDEO CAMERA |
|---------------------|---|---------------------------------------------------|
| M/N                 | : | GO360                                             |
| Operating Condition | : | Charging and normal working Mode                  |
| Test Specification  | : | Line                                              |
| Comment             | : | AC 120V/60Hz                                      |



| Frequency<br>(MHz) | MaxPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Line | Corr.<br>(dB) |
|--------------------|-------------------|-------------------|-----------------|----------------|------|---------------|
| 0.194000           | 51.38             |                   | 63.86           | 12.48          | L1   | 10.2          |
| 0.250000           | 45.32             |                   | 61.76           | 16.44          | L1   | 10.2          |
| 0.550000           | 39.21             |                   | 56.00           | 16.79          | L1   | 10.2          |
| 1.538000           | 30.64             |                   | 56.00           | 25.36          | L1   | 10.2          |
| 3.502000           | 30.84             |                   | 56.00           | 25.16          | L1   | 10.3          |
| 10.786000          | 32.73             |                   | 60.00           | 27.27          | L1   | 10.6          |

\*Correct factor=cable loss + LISN factor



## **Conducted Emission**

| Product Type        | : | GUARDZILLA 360 ALL-IN-ONE HD OUTDOOR VIDEO CAMERA |
|---------------------|---|---------------------------------------------------|
| M/N                 | : | GO360                                             |
| Operating Condition | : | Charging and normal working Mode                  |
| Test Specification  | : | Neutral                                           |
| Comment             | : | AC 120V/60Hz                                      |



| Frequency | MaxPeak | Average | Limit  | Margin | Line | Corr. |
|-----------|---------|---------|--------|--------|------|-------|
| (MHz)     | (dBµV)  | (dBµV)  | (dBµV) | (dB)   |      | (dB)  |
| 0.169500  |         | 24.96   | 54.98  | 30.02  | Ν    | 10.3  |
| 0.169500  | 49.01   |         | 64.98  | 15.97  | Ν    | 10.3  |
| 0.189500  |         | 28.02   | 54.06  | 26.04  | Ν    | 10.3  |
| 0.189500  | 50.24   |         | 64.06  | 13.82  | Ν    | 10.3  |
| 0.422000  | 37.99   |         | 57.41  | 19.42  | Ν    | 10.3  |
| 0.550000  | 38.03   |         | 56.00  | 17.97  | Ν    | 10.4  |
| 2.382000  | 25.37   |         | 56.00  | 30.63  | Ν    | 10.4  |
| 17.858000 | 31.57   | -       | 60.00  | 28.43  | Ν    | 11.4  |

\*Correct factor=cable loss + LISN factor



### **Test Method**

- Use the following spectrum analyzer settings: RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

## Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

| Frequency Range | Limit | Limit |
|-----------------|-------|-------|
| MHz             | W     | dBm   |
| 2400-2483.5     | ≤1    | ≤30   |

Test result as below table

| Frequency<br>MHz       | Conducted Peak<br>Output Power<br>dBm | Result |
|------------------------|---------------------------------------|--------|
| Bottom channel 2402MHz | 8.70                                  | Pass   |
| Middle channel 2440MHz | 7.85                                  | Pass   |
| Top channel 2480MHz    | 7.78                                  | Pass   |



## 9.2 Power spectral density

#### **Test Method**

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

### Limit

|             |                        | Limit [dBm]    |        |
|-------------|------------------------|----------------|--------|
|             |                        | ≤8             |        |
| Test result |                        |                |        |
|             |                        | Power spectral |        |
|             | Frequency              | density        | Result |
|             | MHz                    | dBm            |        |
| -           | Top channel 2402MHz    | -5.71          | Pass   |
|             | Middle channel 2440MHz | -6.62          | Pass   |
|             | Bottom channel 2480MHz | -6.71          | Pass   |



## Test Method for 6 dB Bandwidth

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be  $\geq$  6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

## Test Method for 99 % Bandwidth

1. Use the following spectrum analyzer settings:

RBW=1% to 5% of the actual occupied, VBW≥3RBW, Sweep = auto,

Detector function = peak, Trace = max hold

2. Use the automatic bandwidth measurement capability of an instrument, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be  $\geq$  6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.

## Limit

Limit [kHz]

≥500

Test result

| Frequency<br>MHz       | 6dB bandwidth<br>kHz | 99% bandwidth<br>kHz | Result |
|------------------------|----------------------|----------------------|--------|
| Bottom channel 2402MHz | 724                  | 1059                 | Pass   |
| Middle channel 2440MHz | 724                  | 1059                 | Pass   |
| Top channel 2480MHz    | 720                  | 1063                 | Pass   |



#### 6 dB Bandwidth

Low channel 2402MHz ₽ Spectrum Ref Level 30.00 dBm Offset 1.00 dB 👄 RBW 100 kHz Att 40 dB SWT 18.9 µs 👄 **VBW** 300 kHz Mode Auto FFT Count 100/100 ●1Pk View M1[1] 1.92 dBn 2.40162800 GHz 20 dBm M2[1] 7.95 dBm M 2.40197200 GHz 10 dBm-41 D1 1.953 dB 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm 1001 pts Span 4.0 MHz CF 2.402 GHz Marker Type | Ref | Trc Function **Function Result** X-value Y-value 1.92 dBm 7.95 dBm 2.401628 GHz M1 M2 2.401972 GHz M1 724.0 kHz -0.11 dB D3 1 

Date:9.JUN.2018 15:50:57



### 6 dB Bandwidth and 99% Bandwidth



Date:11.JUN.2018 09:55:03



#### Low channel 2402MHz

Date:9.JUN.2018 15:51:08

EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20

#### 99% Bandwidth

Middle channel 2440MHz Spectrum Ref Level 30.00 dBm Offset 1.00 dB 🖷 RBW 50 kHz SWT 37.9 μs 💿 VBW 200 kHz 40 dB Att Mode Auto FFT Count 100/100 ●1Pk View M1[1] 6.72 dBm 2.43998400 GHz 1.058941059 MHz 20 dBm OCC BW 10 dBm nn 0 dBm -10 dBm--20 dBm -30 dBm--40 dBm -58/d8m -60 dBm-CF 2.44 GHz 1001 pts Span 4.0 MHz

Date:11.JUN.2018 09:53:17



High channel 2480MHz

Date:11.JUN.2018 09:55:14

EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 18 of 32

## 9.4 Spurious RF conducted emissions

### **Test Method**

- 1. Establish a reference level by using the following procedure:
  - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
  - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
  - a. Set the center frequency and span to encompass frequency range to be measured.
  - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

### Limit

| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |

## **Spurious RF conducted emissions**



EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 20 of 32

TUV

#### Report Number: 68.950.18.0240.01



EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 21 of 32



#### Report Number: 68.950.18.0240.01



EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 23 of 32



Remark: Test of above 1GHz were performed with 1MHz RBW, we can't find any burst, so they are considered to fulfill the requirement with 100KHz RBW without further testing.



## 9.5 Band edge

## **Test Method**

1 Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW  $\ge$  RBW, Sweep = auto, Detector function = peak, Trace = max hold.

- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

## Limit

| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |

#### **Band edge testing**



Date:9.JUN.2018 15:51:31

#### 2480MHz

| Spectr   | um     | 1        |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|----------|--------|----------|-------------------|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Ref Le   | evel : | 20.00 df | Bm Offset 1.00 dB | RBW 100 kHz          | Mada Auto Cu | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| Count 3  | 300/3  | 00       |                   | <b>V BVV</b> 300 KH2 | MOUE AULO SW | ,eeh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| ●1Pk Ma  | ax     |          |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|          | Ĩ      |          |                   |                      | M1[1]        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.88 dBm      |
| 10 dBm-  | P      | 41       |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.480010 GHz  |
| 10 00111 |        | X        |                   |                      | M2[1]        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -49.73 dBm    |
| 0 dBm—   |        | Ц —      |                   | - V - 2              | a            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.483500 GHz  |
|          |        | 4        |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -10 dBm  | D      | 1 -13.12 | 20 dBm            |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -20 dBm  |        | 1        |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| E0 dbiii | ľ      | 4        |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -30 dBm  | -      |          |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|          |        |          |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -40 dBm  | 1      | 6.401    |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -50 dBm  | 1      | 1        |                   |                      | 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -ato     |        |          | manage M          | 13                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -00'dBm  |        |          |                   | Enology - moly or    |              | man allow man and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|          |        |          |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| -70 dBm  |        |          | 2                 | 8                    | 12           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Start 2. | .47 G  | Hz       | 107               | 691 pts              | 14           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stop 2.55 GHz |
| Marker   |        |          |                   |                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Туре     | Ref    | Trc      | X-value           | Y-value              | Function F   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ction Result  |
| M1       |        | 1        | 2.48001 GHz       | 6.88 dBm             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| M2       |        | 1        | 2.4835 GHz        | -49.73 dBm           | JBm          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| M3<br>M4 |        | 1        | 2.5 GHz           | -61.15 dBm           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| M14      |        | 1        | 2.403505 GH2      | -49.30 UBM           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
|          |        | Д        |                   |                      | die aswing - | CONTRACTOR DE LA CONTRACTION DE LA CONTRACTICA CONTRACTICA DE LA C | 11.06.2018    |

Date:11.JUN.2018 09:55:36

EMC\_SZ\_FR\_23.03 FCC Release 2017-06-20



### **Test Method**

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz,  $VBW \ge RBW$  for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

#### Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz



#### Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

| Frequency<br>MHz | Field Strength<br>uV/m | Field Strength<br>dBµV/m | Detector |
|------------------|------------------------|--------------------------|----------|
| 30-88            | 100                    | 40                       | QP       |
| 88-216           | 150                    | 43.5                     | QP       |
| 216-960          | 200                    | 46                       | QP       |
| 960-1000         | 500                    | 54                       | QP       |
| Above 1000       | 500                    | 54                       | AV       |
| Above 1000       | 5000                   | 74                       | PK       |





#### Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

### Transmitting spurious emission test result as below:

Low channel 2402MHz Test Result

| Frequency<br>Band | Frequency          | Emission<br>Level | Polarization | Limit  | Detector | Margin | Correct<br>factor | Result |
|-------------------|--------------------|-------------------|--------------|--------|----------|--------|-------------------|--------|
| Band              | MHz                | dBuV/m            |              | dBµV/m |          | dBuV/m | (dB)              |        |
|                   | 192.42             | 27.83             | Н            | 43.5   | QP       | 15.67  | -30.2             | Pass   |
|                   | 295.30             | 36.21             | Н            | 46     | QP       | 9.79   | -23.5             | Pass   |
|                   | 373.16             | 33.69             | Н            | 46     | QP       | 12.31  | -24.0             | Pass   |
|                   | Other              |                   | Ц            |        |          |        |                   | Pass   |
| 30-<br>1000MHz    | Frequency          |                   | п            |        |          |        |                   |        |
|                   | 286.46             | 42.95             | V            | 46     | QP       | 3.05   | -22.1             | Pass   |
|                   | 382.33             | 35.05             | V            | 46     | QP       | 10.95  | -24.1             | Pass   |
|                   | 878.32             | 25.71             | V            | 46     | QP       | 20.29  | -15.7             | Pass   |
|                   | Other              |                   | V            |        |          |        |                   | Pass   |
|                   | Frequency          |                   |              |        |          |        |                   | 1 835  |
|                   | *1598.56           | 33.66             | H            | 74     | PK       | 40.34  | -9.7              | Pass   |
|                   | Other              |                   | н            | 74     |          |        |                   | Pass   |
| 1000-<br>25000MHz | Frequency          |                   | 11           | 74     |          |        |                   |        |
|                   | *2247.88           | 32.43             | V            | 74     | PK       | 41.57  | -6.3              | Pass   |
|                   | Other<br>Frequency |                   | V            | 74     |          |        |                   | Pass   |

Middle channel 2440MHz Test Result

| Frequency | Frequency          | Emission<br>Level | Polarization | Limit  | Detector | Margin | Correct<br>factor | Result |
|-----------|--------------------|-------------------|--------------|--------|----------|--------|-------------------|--------|
| Бапо      | MHz                | dBuV/m            |              | dBµV/m |          | dBuV/m | (dB)              |        |
|           | *1592.63           | 37.81             | Н            | 74     | PK       | 36.19  | -9.7              | Pass   |
| 1000-     | Other<br>Frequency |                   | Н            | 74     |          |        |                   | Pass   |
| 25000MHz  | *2244.50           | 33.68             | V            | 74     | PK       | 40.32  | -6.2              | Pass   |
|           | Other<br>Frequency |                   | V            | 74     |          |        |                   | Pass   |

High channel 2480MHz Test Result

| Frequency | Frequency          | Emission<br>Level | Polarization | Limit  | Detector | Margin | Correct<br>factor | Result |
|-----------|--------------------|-------------------|--------------|--------|----------|--------|-------------------|--------|
| Dallu     | MHz                | dBuV/m            |              | dBµV/m |          | dBuV/m | (dB)              |        |
|           | *1599.81           | 38.33             | Н            | 74     | PK       | 35.67  | -9.6              | Pass   |
| 1000-     | Other<br>Frequency |                   | н            |        |          |        |                   | Pass   |
| 25000MHz  | *1502.56           | 32.04             | V            | 74     | PK       | 41.96  | -10.4             | Pass   |
|           | Other<br>Frequency |                   | V            |        |          |        |                   | Pass   |

Remark:



- (1) "\*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

# **10 Test Equipment List**

### **List of Test Instruments**

| Radiated Emission Test                 |                 |           |                 |               |  |  |  |  |
|----------------------------------------|-----------------|-----------|-----------------|---------------|--|--|--|--|
| Description                            | Manufacturer    | Model no. | Serial no.      | cal. due date |  |  |  |  |
| EMI Test Receiver                      | Rohde & Schwarz | ESR 26    | 101269          | 2018-7-14     |  |  |  |  |
| Trilog Super Broadband Test<br>Antenna | Schwarzbeck     | VULB 9163 | 707             | 2018-7-14     |  |  |  |  |
| Horn Antenna                           | Rohde & Schwarz | HF907     | 102294          | 2018-7-14     |  |  |  |  |
| Pre-amplifier                          | Rohde & Schwarz | SCU 18    | 102230          | 2018-7-14     |  |  |  |  |
| Signal Generator                       | Rohde & Schwarz | SMY01     | 839369/005      | 2018-7-7      |  |  |  |  |
| Attenuator                             | Agilent         | 8491A     | MY39264334      | 2018-7-7      |  |  |  |  |
| 3m Semi-anechoic chamber               | TDK             | 9X6X6     |                 | 2020-7-7      |  |  |  |  |
| Test software                          | Rohde & Schwarz | EMC32     | Version 9.15.00 | N/A           |  |  |  |  |

#### TS8997 Test System

| Description                                     | Manufacturer    | Model no.          | Serial no.          | cal. due date |
|-------------------------------------------------|-----------------|--------------------|---------------------|---------------|
| Signal Generator                                | Rohde & Schwarz | SMB100A            | 108272              | 2018-7-7      |
| Vector Signal Generator                         | Rohde & Schwarz | SMBV100A           | 262825              | 2018-7-23     |
| Communication<br>Synthetical Test<br>Instrument | Rohde & Schwarz | CMW 270            | 101251              | 2019-2-15     |
| Signal Analyzer                                 | Rohde & Schwarz | FSV40              | 101030              | 2018-7-7      |
| Vector Signal Generator                         | Rohde & Schwarz | SMU 200A           | 105324              | 2018-7-7      |
| RF Switch Module                                | Rohde & Schwarz | OSP120/OSP-B157    | 101226/100851       | 2018-7-7      |
| Power Splitter                                  | Weinschel       | 1580               | SC319               | 2018-7-7      |
| 10dB Attenuator                                 | Weinschel       | 56-10              | 58764               | 2018-7-14     |
| 10dB Attenuator                                 | R&S             | DNF                | DNF-001             | 2018-7-14     |
| 10dB Attenuator                                 | R&S             | DNF                | DNF-002             | 2018-7-14     |
| 10dB Attenuator                                 | R&S             | DNF                | DNF-003             | 2018-7-14     |
| 10dB Attenuator                                 | R&S             | DNF                | DNF-004             | 2018-7-14     |
| Test software                                   | Rohde & Schwarz | EMC32              | Version<br>10.38.00 | N/A           |
| Test software                                   | Tonscend        | System for BT/WIFI | Version 2.6         | N/A           |



# 11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| System Measurement Uncertainty                      |                                                |  |  |  |
|-----------------------------------------------------|------------------------------------------------|--|--|--|
| Test Items                                          | Extended Uncertainty                           |  |  |  |
| Uncertainty for Radiated Spurious Emission 25MHz-   | Horizontal: 4.98dB;                            |  |  |  |
| 3000MHz                                             | Vertical: 5.06dB;                              |  |  |  |
| Uncertainty for Radiated Spurious Emission 3000MHz- | Horizontal: 4.95dB;                            |  |  |  |
| 18000MHz                                            | Vertical: 4.94dB;                              |  |  |  |
| Uncortainty for Conducted PE test with TS 8007      | Power level test involved: 2.06dB              |  |  |  |
| Oncertainty for Conducted RF test with 13 6997      | Frequency test involved: 1.16×10 <sup>-7</sup> |  |  |  |