

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053

Fax: +86 (0) 755 2671 0594 Report No.: SZEM171001110302

Email: ee.shenzhen@sgs.com Page: 1 of 97

FCC REPORT

Application No: SZEM1710011103RG

Applicant: Saygus **Manufacturer:** Saygus

Factory: Smart Gadgets (Shenzhen), LTD
Product Name: Saygus smartphone V-Squared

Model No.(EUT): SG02
Trade Mark: Saygus

FCC ID: 2ANBZ-F10104215

Standards: 47 CFR Part 15, Subpart C

Test Method KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10 (2013)

Date of Receipt: 2017-12-08

Date of Test: 2017-12-09 to 2017-12-29

Date of Issue: 2018-01-04

Test Result: PASS *

. * In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM171001110302

Page: 2 of 97

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2018-01-04		Original			

Authorized for issue by:			
Tested By	Mike Mu (Mike Hu) /Project En		2017-12-29 Date
Checked By	Jim Huang) /Reviewe	er	2018-01-04 Date

Report No.: SZEM171001110302

Page: 3 of 97

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission) 47 CFR Part 15, Subpart C Section 15.205/15.209		ANSI C63.10 2013	PASS

Report No.: SZEM171001110302

Page: 4 of 97

4 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3	3 TEST SUMMARY	3
4	4 CONTENTS	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF EUT	5
	5.3 TEST ENVIRONMENT AND MODE	
	5.4 DESCRIPTION OF SUPPORT UNITS	
	5.5 TEST LOCATION	
	5.6 TEST FACILITY	
	5.7 DEVIATION FROM STANDARDS	
	5.8 ABNORMALITIES FROM STANDARD CONDITIONS	-
	5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10 Measurement Uncertainty (95% confidence levels, F	
	5.11 EQUIPMENT LIST	
6	6 TEST RESULTS AND MEASUREMENT DATA	
	6.1 ANTENNA REQUIREMENT	
	6.2 CONDUCTED EMISSIONS	
	6.3 CONDUCTED PEAK OUTPUT POWER	
	6.4 6DB OCCUPY BANDWIDTH	
	6.5 POWER SPECTRAL DENSITY	
	6.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7 RF CONDUCTED SPURIOUS EMISSIONS	
	6.8 RADIATED SPURIOUS EMISSIONS	
	6.8.1 Radiated emission below 1GHz	
	6.8.2 Transmitter emission above 1GHz	
	6.9 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	79
7	7 PHOTOGRAPHS - FUT CONSTRUCTIONAL DETAILS	97

Report No.: SZEM171001110302

Page: 5 of 97

5 General Information

5.1 Client Information

Applicant:	Saygus		
Address of Applicant:	10421 South Jordan Gateway, Suite 500, South Jordan, UT 84095		
Manufacturer:	Saygus		
Address of Manufacturer:	10421 South Jordan Gateway, Suite 500, South Jordan, UT 84095		
Factory:	Smart Gadgets (Shenzhen), LTD		
Address of Factory:	912 Building 1 A, Hezheng-Huiyi Cheng, Xinhu Road, Xixiang Baoan District, Shenzhen, China		

5.2 General Description of EUT

Product Name:	Saygus smartphone V-Squared		
Model No.:	SG02		
Trade Mark:	Saygus		
Operation Fraguency	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz		
Operation Frequency:	IEEE 802.11n(HT40): 2422MHz to 2452MHz		
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels		
Channel Numbers.	IEEE 802.11n HT40: 7 Channels		
Channel Separation:	5MHz		
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)		
Type of Madulation:	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)		
Type of Modulation:	IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM,		
	QPSK,BPSK)		
Sample Type:	Portable Device		
Antenna Type:	Intergral		
Antenna Gain:	-1.8dBi		
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery) 2500mAh		
Power Supply	Battery: Charge by DC 5V		
	Model:MCS-02WR2		
AC adaptor:	Input: AC100-240V 50/60Hz 0.2A		
	Output:DC5.0V 0.85A		

Report No.: SZEM171001110302

Page: 6 of 97

Operation Frequency each of channel(802.11b/g/n HT20)											
Channel	Fre	equency	Channe	I Frequency	Channel	Fre	quency Char		nel	Frequency	
1	24	112MHz	4	2427MHz	7	244	12MHz)	2457MHz	
2	24	117MHz	5	2432MHz	8	244	47MHz	7MHz 11		2462MHz	
3	24	122MHz	6	2437MHz	9	24	2452MHz				
Operation F	requ	ency each	of channe	el(802.11n HT40)	ı						
Channel Frequency				Channel	Frequen	су	Chan	nel		Frequency	
3		2422	MHz	6	2437MF	łz	9			2452MHz	
4	4 2427MHz 7 2442MHz										
5 2432MHz 8 2447MHz											

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

For 802.11n (HT40):

0: 00=:::::(::::(::::0):				
Channel	Frequency			
The Lowest channel	2422MHz			
The Middle channel	2437MHz			
The Highest channel	2452MHz			

Report No.: SZEM171001110302

Page: 7 of 97

5.3 Test Environment and Mode

Operating Environment:					
Temperature:	25.0 °C				
Humidity:	50 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM171001110302

Page: 8 of 97

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Total RF power, conducted	0.75dB		
2	RF power density, conducted	2.84dB		
3	Spurious emissions, conducted	0.75dB		
		4.5dB (30MHz-1GHz)		
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)		
5	Conduct emission test	3.12 dB(9KHz- 30MHz)		
6	Temperature test	1°C		
7	Humidity test	3%		
8	DC and low frequency voltages	0.5%		

Report No.: SZEM171001110302

Page: 9 of 97

5.11 Equipment List

	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10		
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09		
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14		
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09		

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09

Report No.: SZEM171001110302

Page: 10 of 97

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14

Report No.: SZEM171001110302

Page: 11 of 97

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017-11-24	2020-11-24
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

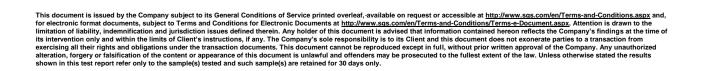
Report No.: SZEM171001110302

Page: 12 of 97

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.8dBi.

Report No.: SZEM171001110302

Page: 13 of 97

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
	Fraguenov rango (MHz)	Limit (c	dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
Limit:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 					
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver			

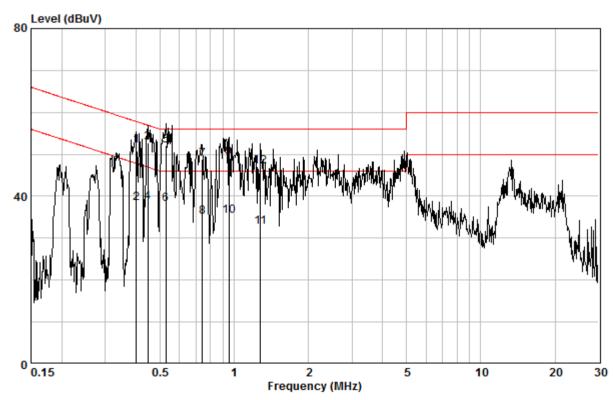
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM171001110302

Page: 14 of 97

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
First Toy Made	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM171001110302


Page: 15 of 97

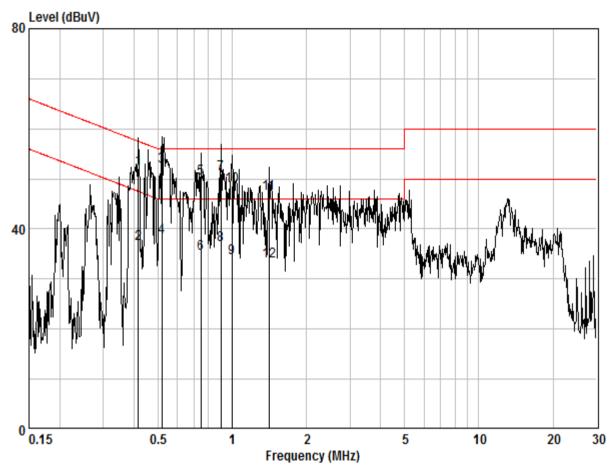
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room Condition : CE LINE Job No. : 03519RG Test Mode : g


		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
•	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.40187	0.02	9.64	42.53	52.19	57.81	-5.62	QP
2	0.40187	0.02	9.64	28.60	38.26	47.81	-9.56	AVERAGE
3	0.44679	0.02	9.64	43.14	52.80	56.93	-4.14	QP
4	0.44679	0.02	9.64	28.96	38.62	46.93	-8.31	AVERAGE
5	0.52934	0.02	9.64	42.36	52.02	56.00	-3.98	QP
6	0.52934	0.02	9.64	28.49	38.16	46.00	-7.84	AVERAGE
7	0.74302	0.03	9.65	39.17	48.84	56.00	-7.16	QP
8	0.74302	0.03	9.65	25.46	35.13	46.00	-10.87	AVERAGE
9	0.95313	0.03	9.65	39.65	49.33	56.00	-6.67	QP
10	0.95313	0.03	9.65	25.53	35.21	46.00	-10.79	AVERAGE
11	1.276	0.03	9.66	23.06	32.75	46.00	-13.25	AVERAGE
12	1.276	0.03	9.66	37.47	47.16	56.00	-8.84	QP

Report No.: SZEM171001110302

Page: 16 of 97

Neutral Line:

Site : Shielding Room Condition : CE NEUTRAL Job No. : 03519RG Test Mode : g

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.41705	0.02	9.63	42.38	52.03	57.51	-5.48	QP
2		0.41705	0.02	9.63	27.33	36.98	47.51	-10.53	AVERAGE
3	@	0.51824	0.02	9.63	42.94	52.59	56.00	-3.41	QP
4		0.51824	0.02	9.63	28.67	38.32	46.00	-7.68	AVERAGE
5		0.74697	0.03	9.64	40.41	50.08	56.00	-5.92	QP
6		0.74697	0.03	9.64	25.51	35.17	46.00	-10.83	AVERAGE
7		0.89917	0.03	9.64	41.30	50.97	56.00	-5.03	QP
8		0.89917	0.03	9.64	27.19	36.85	46.00	-9.15	AVERAGE
9		0.99968	0.03	9.64	24.57	34.24	46.00	-11.76	AVERAGE
10		0.99968	0.03	9.64	38.91	48.58	56.00	-7.42	QP
11		1.411	0.03	9.65	37.44	47.12	56.00	-8.88	QP
12		1.411	0.03	9.65	23.99	33.66	46.00	-12.34	AVERAGE

Report No.: SZEM171001110302

Page: 17 of 97

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM171001110302

Page: 18 of 97

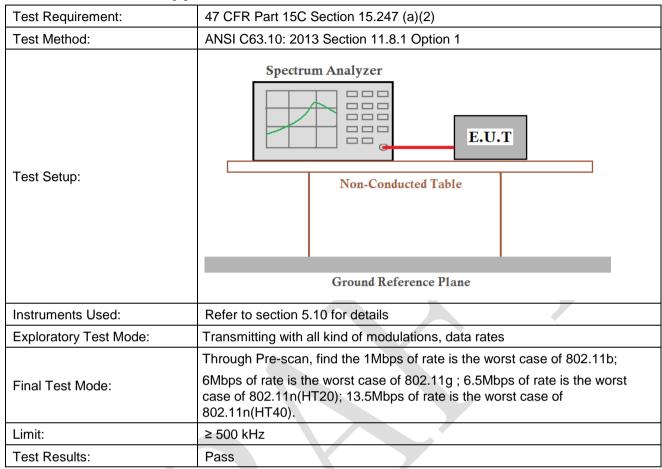
6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10 :2013 Section 11.9.1.3			
Test Setup:	POWER METER E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).			
Limit:	30dBm			
Test Results:	Pass			

Report No.: SZEM171001110302

Page: 19 of 97

Measurement Data


Weasurement Data						
	802.11b mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	16.76	30.00	Pass			
Middle	15.48	30.00	Pass			
Highest	14.30	30.00	Pass			
	802.11g mo	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	21.41	30.00	Pass			
Middle	21.11	30.00	Pass			
Highest	20.19	30.00	Pass			
	802.11n(HT20)	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	20.81	30.00	Pass			
Middle	18.59	30.00	Pass			
Highest	18.14	30.00	Pass			
	802.11n(HT40)	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	18.65	30.00	Pass			
Middle	17.92	30.00	Pass			
Highest	18.61	30.00	Pass			

Report No.: SZEM171001110302

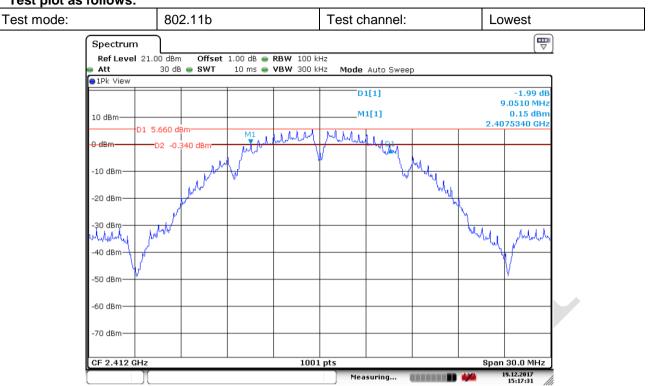
Page: 20 of 97

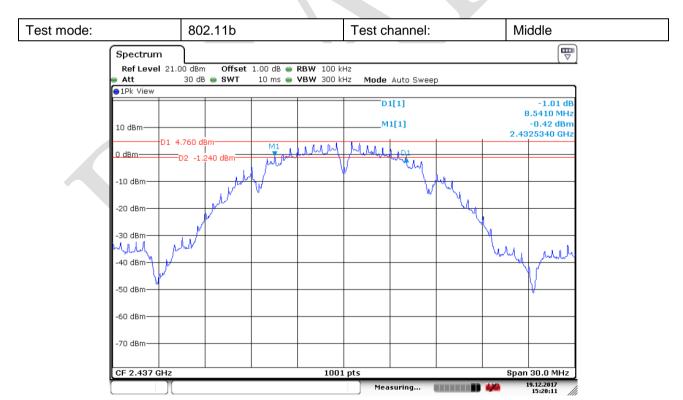
6.4 6dB Occupy Bandwidth

Report No.: SZEM171001110302

Page: 21 of 97

Measurement Data

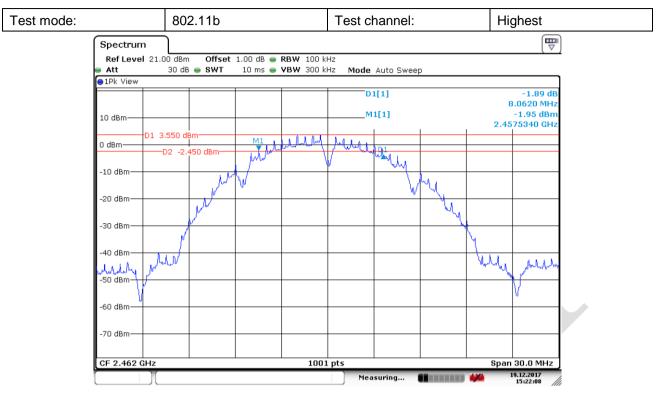

Weasurement Data						
	802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	9.05	≥500	Pass			
Middle	9.54	≥500	Pass			
Highest	8.06	≥500	Pass			
	802.11g mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	16.18	≥500	Pass			
Middle	16.12	≥500	Pass			
Highest	15.61	≥500	Pass			
	802.11n(HT20) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	17.59	≥500	Pass			
Middle	17.08	≥500	Pass			
Highest	15.73	≥500	Pass			
	802.11n(HT40) mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	35.18	≥500	Pass			
Middle	36.08	≥500	Pass			
Highest	33.87	≥500	Pass			


Report No.: SZEM171001110302

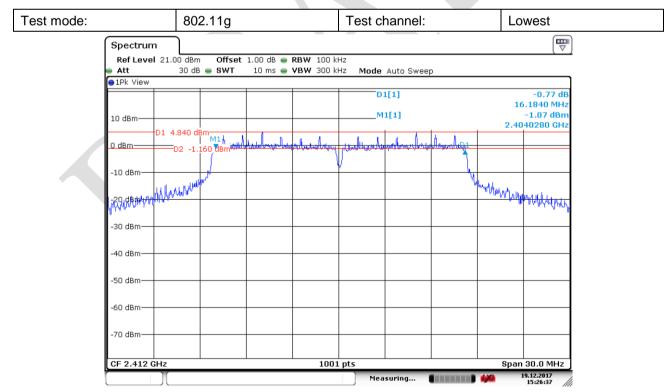
Page: 22 of 97

Test plot as follows:

Date: 19.DEC.2017 15:17:31



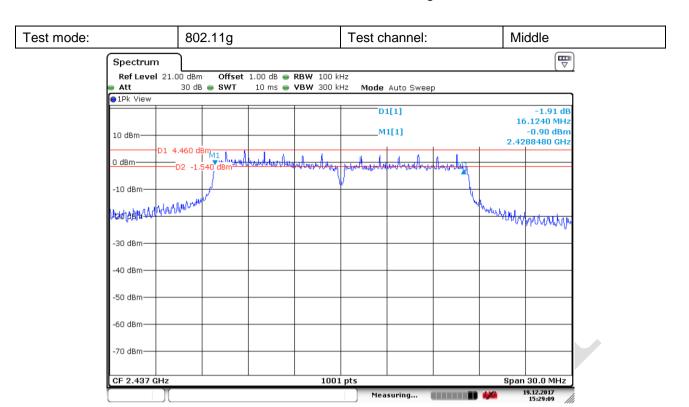
Date: 19.DEC.2017 15:20:11



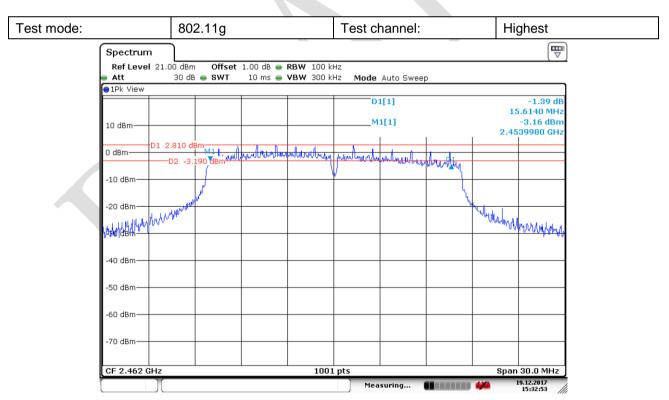
Report No.: SZEM171001110302

Page: 23 of 97

Date: 19.DEC.2017 15:22:08



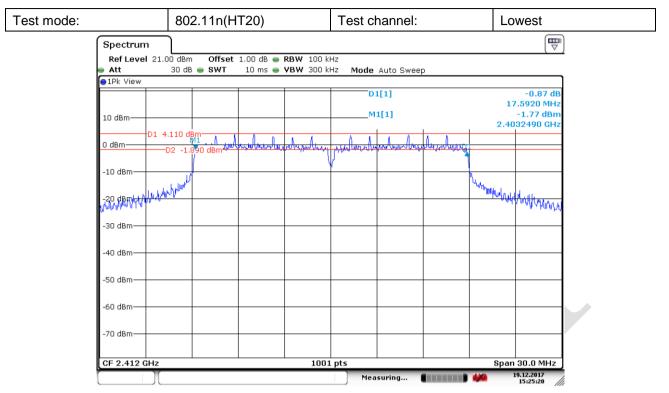
Date: 19.DEC.2017 15:26:38



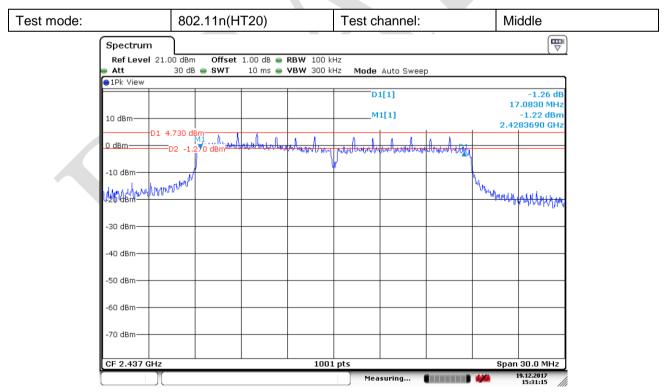
Report No.: SZEM171001110302

Page: 24 of 97

Date: 19.DEC.2017 15:29:09



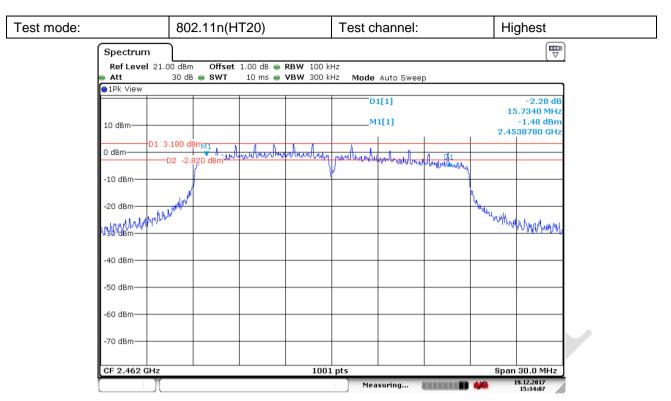
Date: 19.DEC.2017 15:32:53



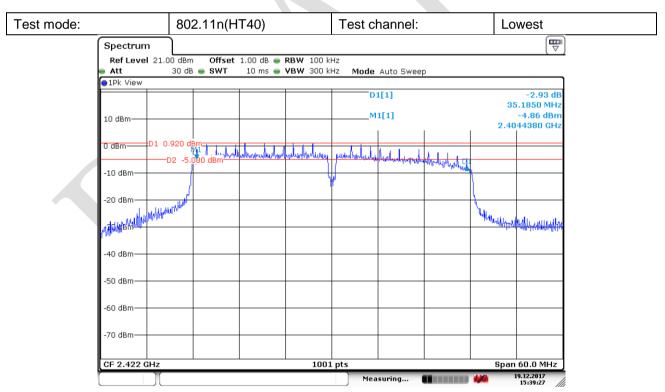
Report No.: SZEM171001110302

Page: 25 of 97

Date: 19.DEC.2017 15:25:20



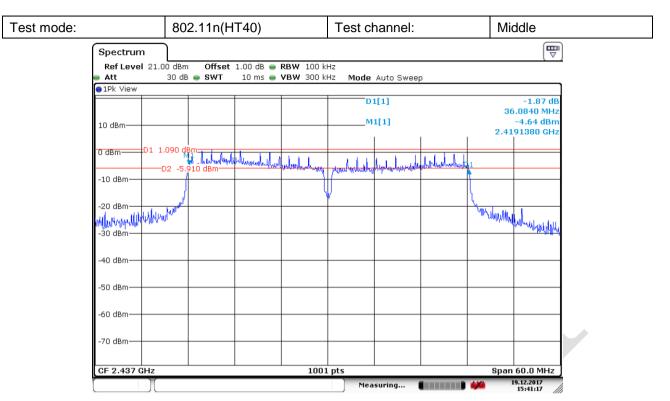
Date: 19.DEC.2017 15:31:16



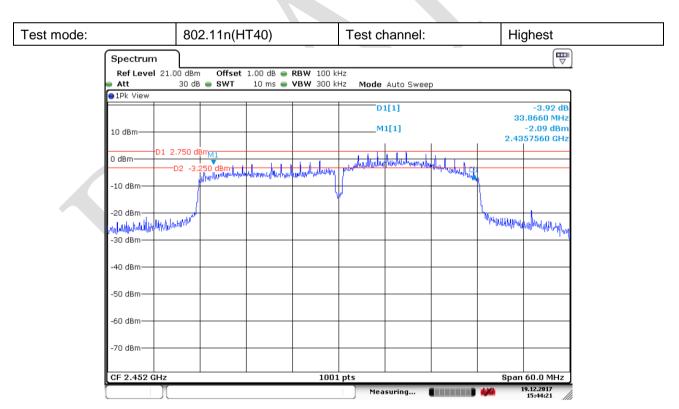
Report No.: SZEM171001110302

Page: 26 of 97

Date: 19.DEC.2017 15:34:07



Date: 19.DEC.2017 15:39:28



Report No.: SZEM171001110302

Page: 27 of 97

Date: 19.DEC.2017 15:41:17

Date: 19.DEC.2017 15:44:21

Report No.: SZEM171001110302

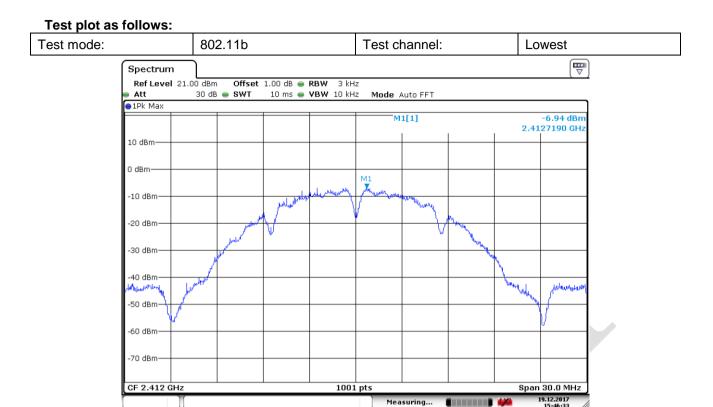
Page: 28 of 97

6.5 Power Spectral Density

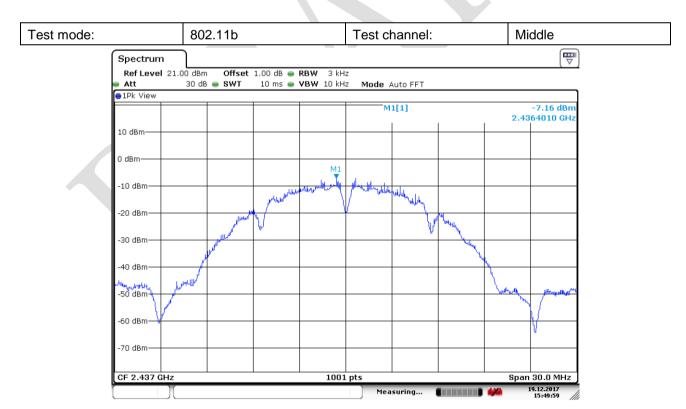
Test Requirement:	47 CFR Part 15C Section 15.247 (e)			
Test Method:	ANSI C63.10 :2013 Section 11.10.2			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.10 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);13.5Mbps of rate is the worst case of 802.11n(HT40).			
Limit:	≤8.00dBm/3kHz			
Test Results:	Pass			

Report No.: SZEM171001110302

Page: 29 of 97


Measurement Data

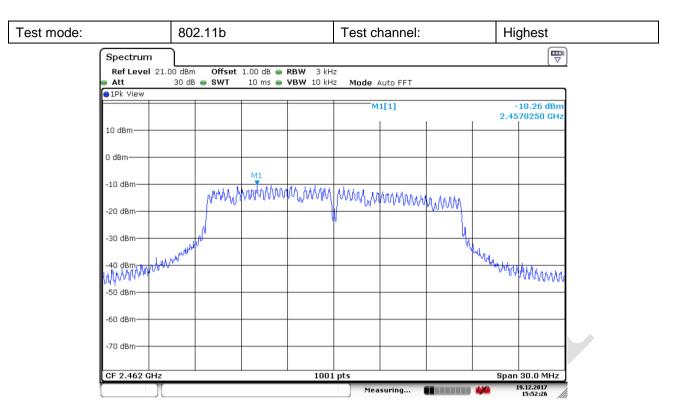
asurement Data			
	802.11b mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-6.94	≤8.00	Pass
Middle	-7.16	≤8.00	Pass
Highest	-10.48	≤8.00	Pass
	802.11g mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-7.84	≤8.00	Pass
Middle	-9.31	≤8.00	Pass
Highest	-10.26	≤8.00	Pass
	802.11n(HT20) mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-9.23	≤8.00	Pass
Middle	-8.92	≤8.00	Pass
Highest	-9.61	≤8.00	Pass
	802.11n(HT40) mode		
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-12.88	≤8.00	Pass
Middle	-13.11	≤8.00	Pass
Highest	-11.44	≤8.00	Pass



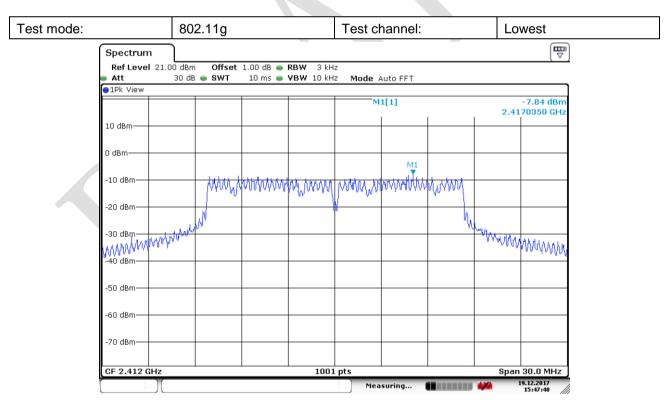
Report No.: SZEM171001110302

Page: 30 of 97

Date: 19.DEC.2017 15:46:33



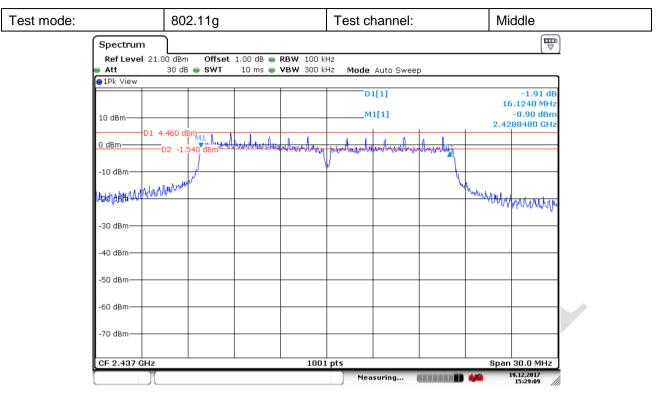
Date: 19.DEC.2017 15:49:59



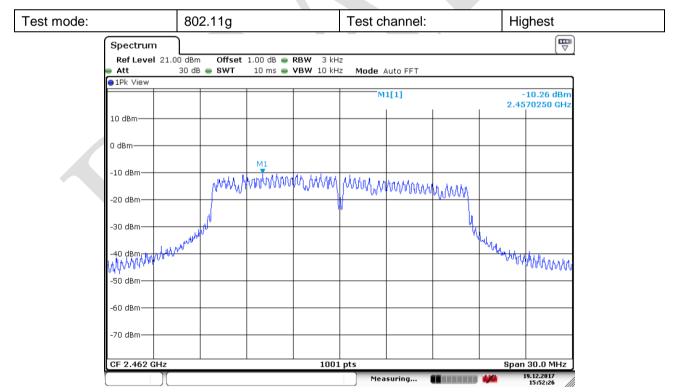
Report No.: SZEM171001110302

Page: 31 of 97

Date: 19.DEC.2017 15:52:26

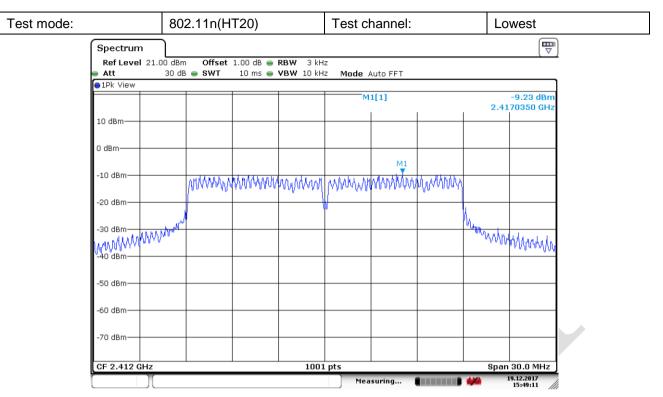


Date: 19.DEC.2017 15:47:48

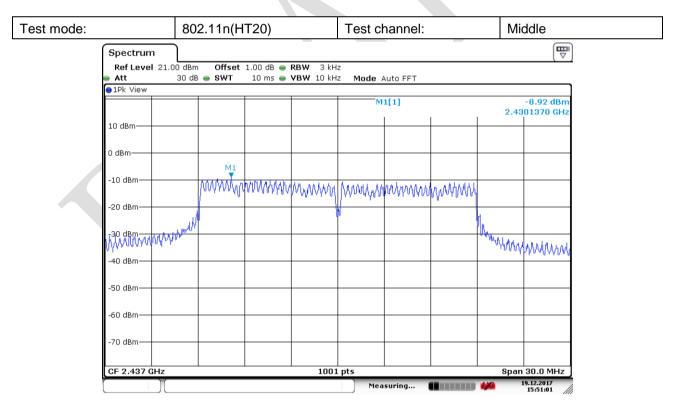


Report No.: SZEM171001110302

Page: 32 of 97



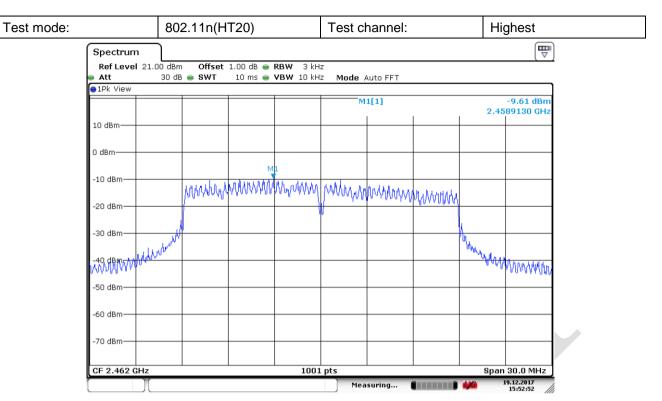
Date: 19.DEC.2017 15:52:26



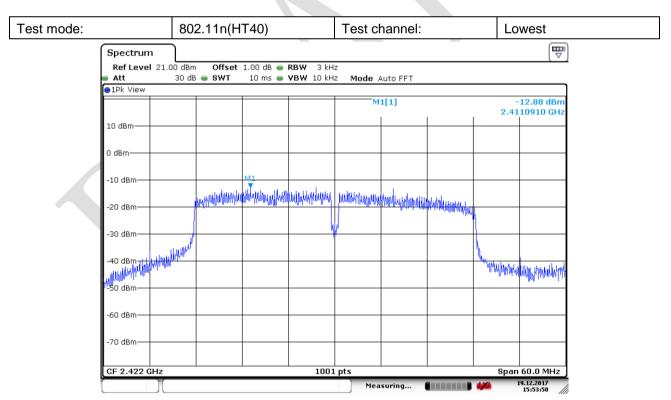
Report No.: SZEM171001110302

Page: 33 of 97

Date: 19.DEC.2017 15:49:11



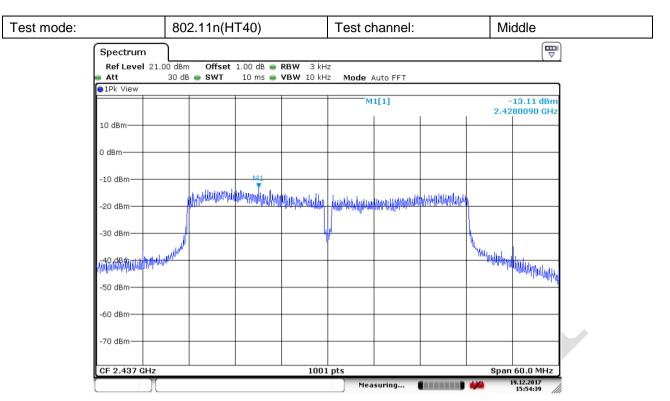
Date: 19.DEC.2017 15:51:01



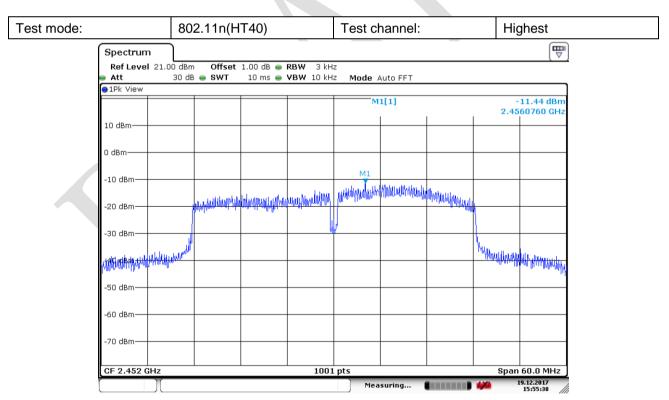
Report No.: SZEM171001110302

Page: 34 of 97

Date: 19.DEC.2017 15:52:52



Date: 19.DEC.2017 15:53:50



Report No.: SZEM171001110302

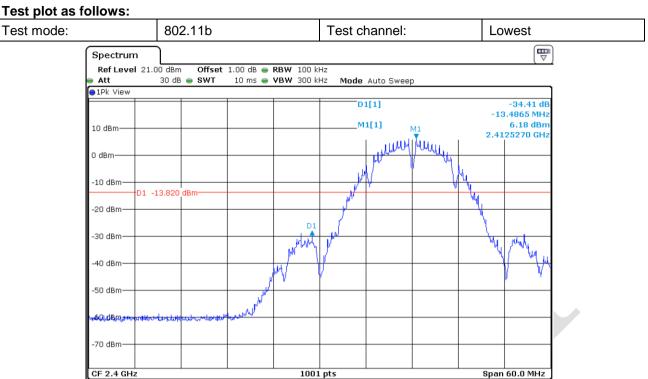
Page: 35 of 97

Date: 19.DEC.2017 15:54:39

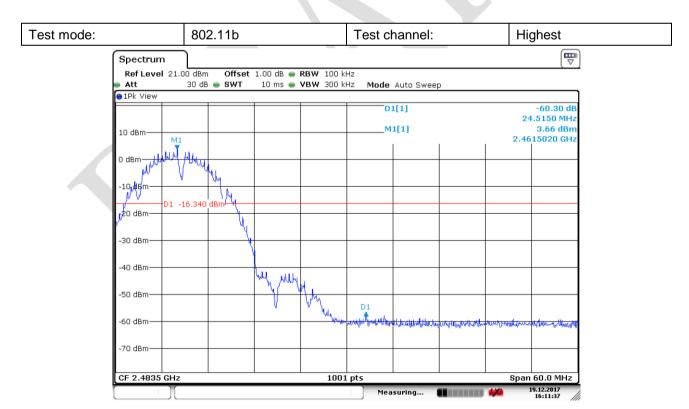
Date: 19.DEC.2017 15:55:38

Report No.: SZEM171001110302

Page: 36 of 97


6.6 Band-edge for RF Conducted Emissions

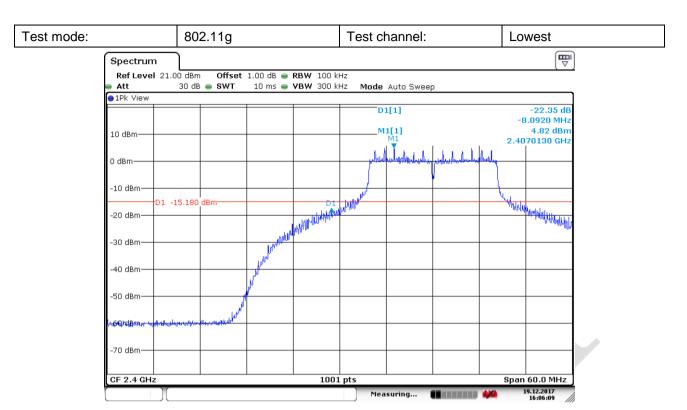
Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10: 2013 Section 11.13	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Instruments Used:	Refer to section 5.10 for details	
Test Results:	Pass	


Report No.: SZEM171001110302

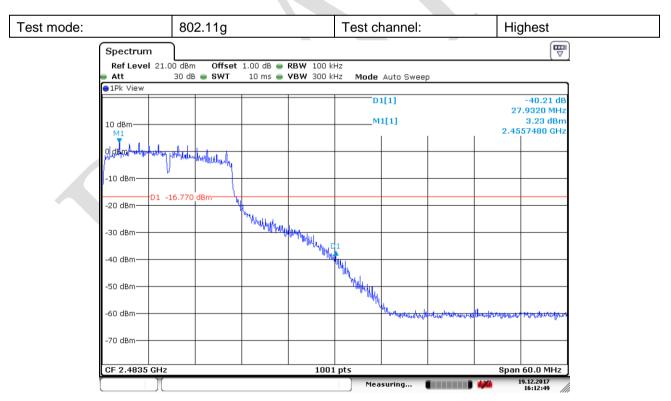
Page: 37 of 97

Measuring...

Date: 19.DEC.2017 16:03:38



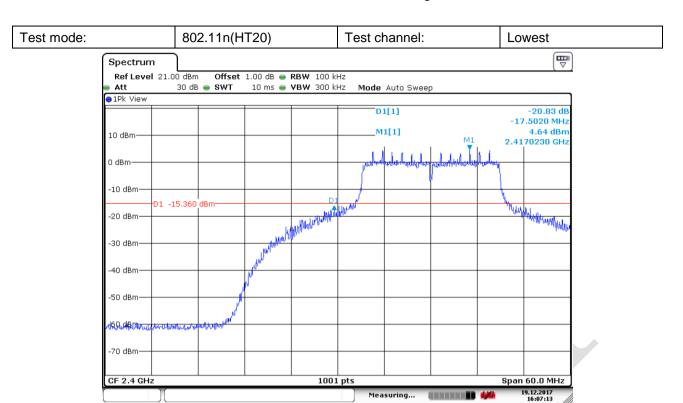
Date: 19.DEC.2017 16:11:37



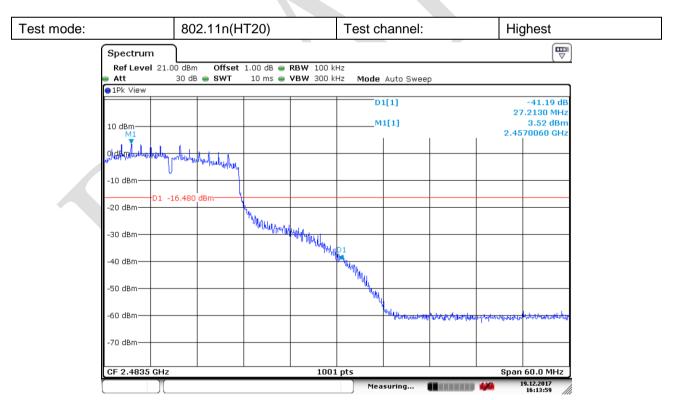
Report No.: SZEM171001110302

Page: 38 of 97

Date: 19.DEC.2017 16:06:09



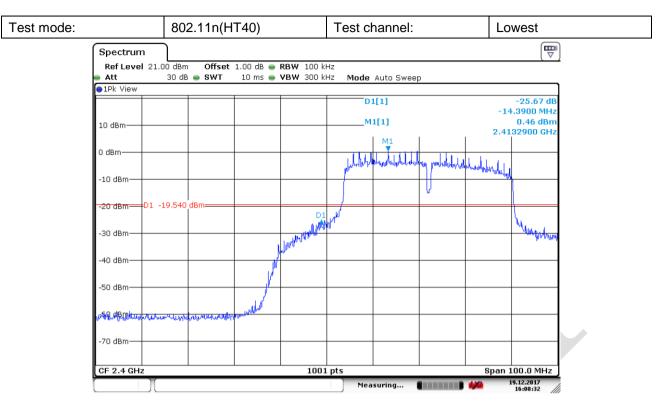
Date: 19.DEC.2017 16:12:49



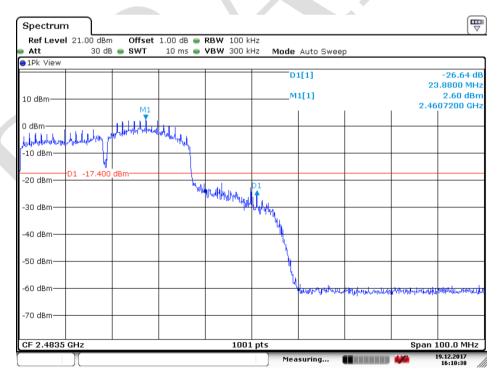
Report No.: SZEM171001110302

Page: 39 of 97

Date: 19.DEC.2017 16:07:13



Date: 19.DEC.2017 16:13:59


Report No.: SZEM171001110302

Page: 40 of 97

Date: 19.DEC.2017 16:08:33

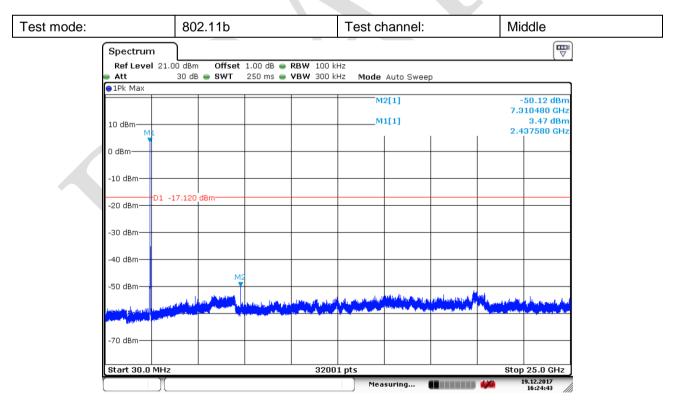
Date: 19.DEC.2017 16:10:38

Report No.: SZEM171001110302

Page: 41 of 97

6.7 RF Conducted Spurious Emissions

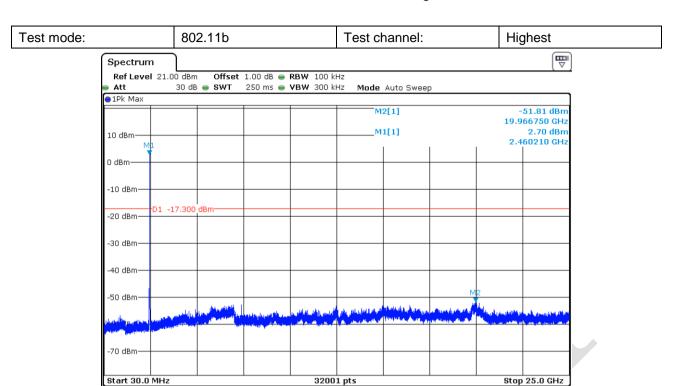
Test Requirement:	47 CFR Part 15C Section 15.247 (d)							
Test Method:	ANSI C63.10: 2013 Section 11.11							
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates							
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Instruments Used:	Refer to section 5.10 for details							
Test Results:	Pass							


Report No.: SZEM171001110302

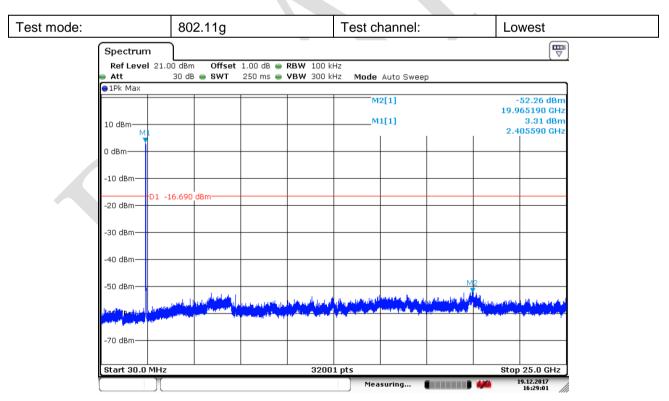
19.12.2017

Page: 42 of 97

Date: 19.DEC.2017 16:28:10



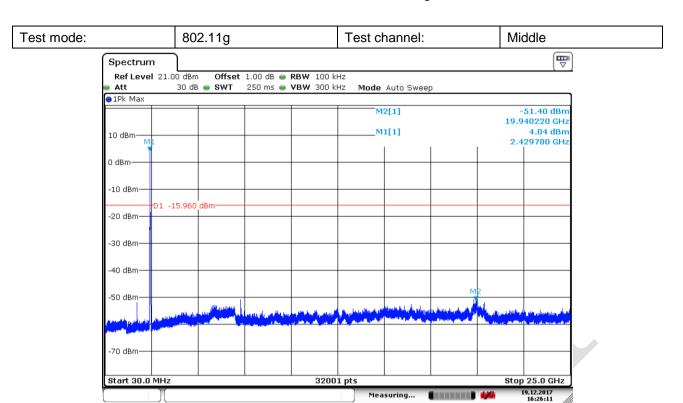
Date: 19.DEC.2017 16:24:43


Report No.: SZEM171001110302

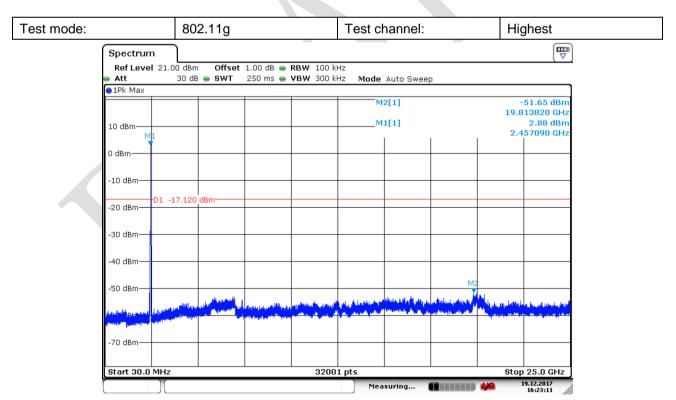
Page: 43 of 97

Measuring...

Date: 19.DEC.2017 16:19:32



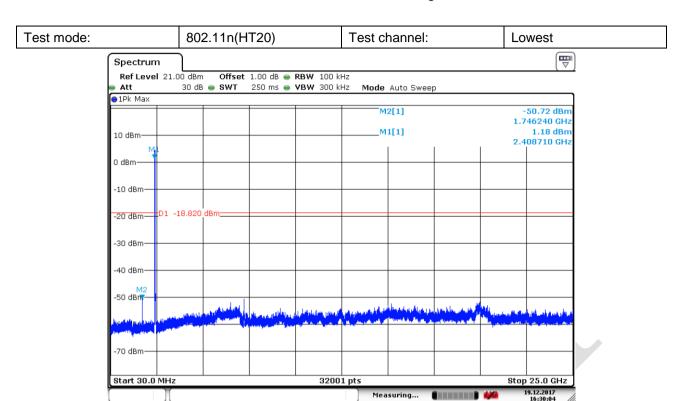
Date: 19.DEC.2017 16:29:02



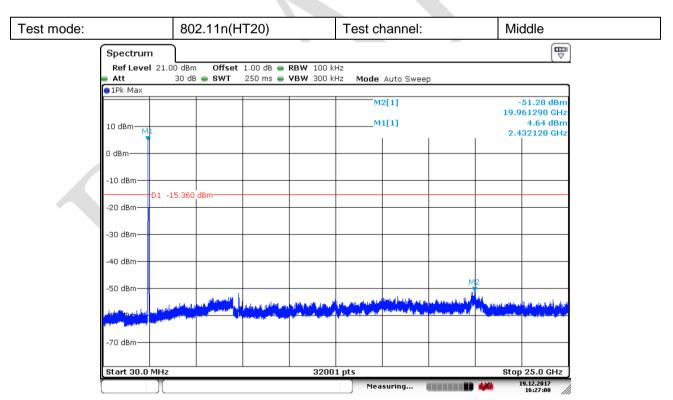
Report No.: SZEM171001110302

Page: 44 of 97

Date: 19.DEC.2017 16:26:11



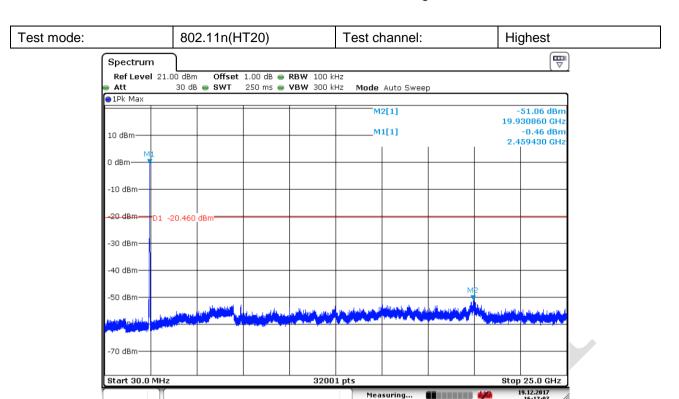
Date: 19.DEC.2017 16:23:12



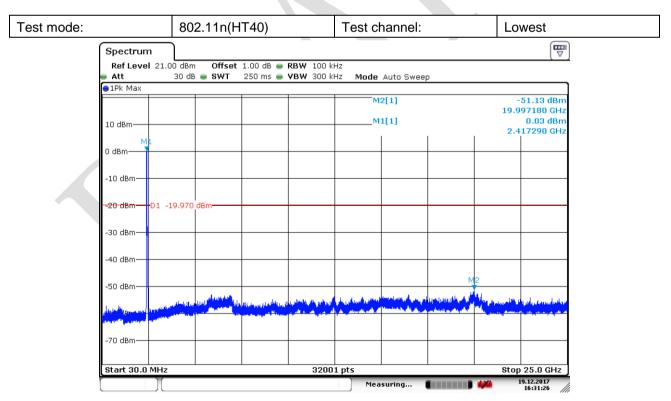
Report No.: SZEM171001110302

Page: 45 of 97

Date: 19.DEC.2017 16:30:04



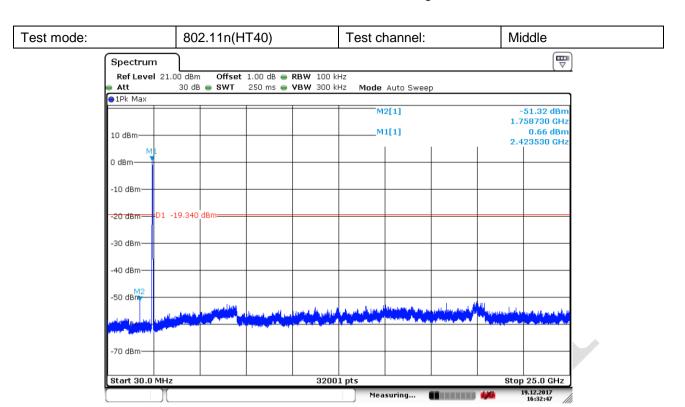
Date: 19.DEC.2017 16:27:00



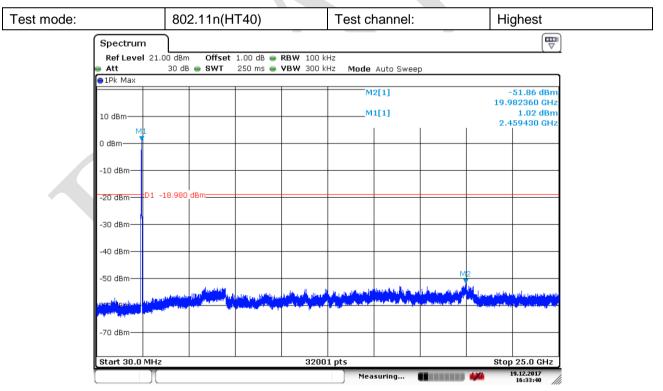
Report No.: SZEM171001110302

Page: 46 of 97

Date: 19.DEC.2017 16:17:08



Date: 19.DEC.2017 16:31:26



Report No.: SZEM171001110302

Page: 47 of 97

Date: 19.DEC.2017 16:32:47

Date: 19.DEC.2017 16:33:40

Report No.: SZEM171001110302

Page: 48 of 97

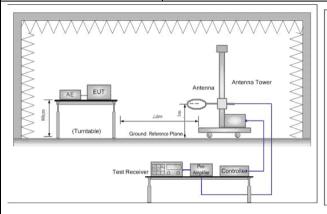
Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM171001110302

Page: 49 of 97

6.8 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 :2013 Section 11.12								
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
	Frequency	Frequency Detector RBW VBW Rer							
	0.009MHz-0.090MHz		10kHz	30kHz	Peak				
	0.009MHz-0.090MHz		10kHz	30kHz	Average				
	0.090MHz-0.110MHz		10kHz	30kHz	Quasi-peak				
Receiver Setup:	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)		-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless of	herwise specified,	the limit on p	eak radio fre	quency				
	emissions is 20dB above	the maximum per	mitted avera	ge emission l	imit				
	applicable to the equipme	ent under test. This	s peak limit a	pplies to the t	total peak				
	emission level radi	ated by the device.	•						

Report No.: SZEM171001110302

Page: 50 of 97

Test Setup:

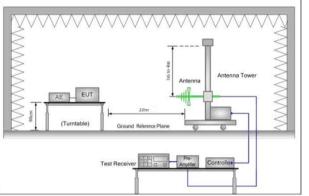


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

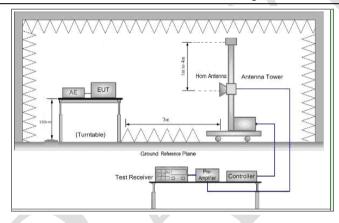
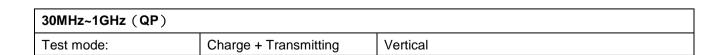


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the

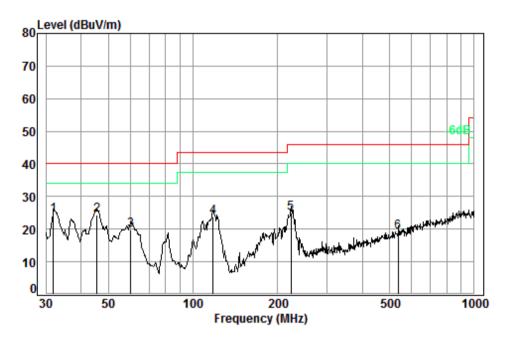
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM171001110302

Page: 51 of 97

Test Results:	Pass				
Instruments Used:	Refer to section 5.10 for details				
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.				
	of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40)				
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case				
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.				
	Charge + Transmitting mode.				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.				
	j. Repeat above procedures until all frequencies measured was complete.				
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.				
	h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel				
	EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				

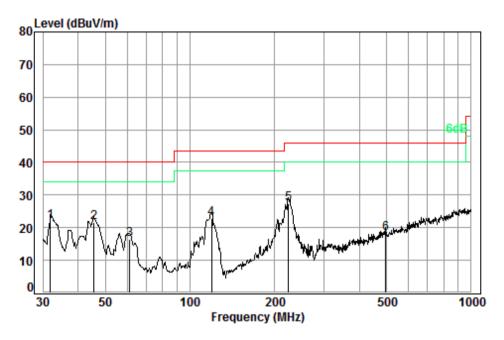

6.8.1 Radiated emission below 1GHz

Report No.: SZEM171001110302

Page: 52 of 97

Condition: 3m VERTICAL Job No. : 03519RG

Test mode: f


	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	0.60	17.61	27.35	33.33	24.19	40.00	-15.81
2 pp	45.53	0.72	10.66	27.30	40.20	24.28	40.00	-15.72
3	60.07	0.80	7.20	27.27	39.14	19.87	40.00	-20.13
4	118.19	1.25	8.03	27.08	41.55	23.75	43.50	-19.75
5	222.95	1.53	11.39	26.62	38.73	25.03	46.00	-20.97
6	537.59	2.64	18.70	27.63	25.39	19.10	46.00	-26.90

Report No.: SZEM171001110302

Page: 53 of 97

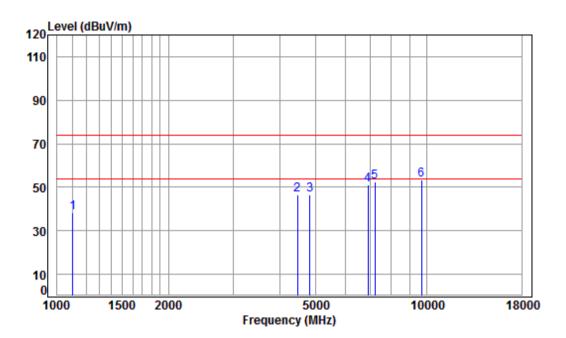
Test mode:	Charge + Transmitting	Horizontal
------------	-----------------------	------------

Condition: 3m HORIZONTAL

Job No. : 03519RG

Test mode: f

Freq				Preamp Factor				Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	31.95	0.60	17.61	27.35	31.16	22.02	40.00	-17.98
2	45.53	0.72	10.66	27.30	37.45	21.53	40.00	-18.47
3	61.13	0.80	7.17	27.26	35.68	16.39	40.00	-23.61
4	119.44	1.25	7.94	27.07	40.55	22.67	43.50	-20.83
5	223.73	1.54	11.43	26.62	41.00	27.35	46.00	-18.65
6	497.68	2.59	17.80	27.70	25.50	18.19	46.00	-27.81



Report No.: SZEM171001110302

Page: 54 of 97

6.8.2 Transmitter emission above 1GHz

Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11B


ote	. 2.4	G MILI	IID							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
4	1102 264	4 02	22.00	41 10	E4 27	20 27	74.00	25 72		
1	1103.264	4.02	23.90	41.10	51.5/	30.2/	74.00	-35./3	peak	
2	4469.214	7.53	33.60	42.41	47.70	46.42	74.00	-27.58	peak	
3	4824.000	7.91	34.19	42.47	47.04	46.67	74.00	-27.33	peak	
4	6914.763	10.36	36.27	40.91	45.52	51.24	74.00	-22.76	peak	
5	7236.000	10.07	36.40	40.69	46.86	52.64	74.00	-21.36	peak	
6 1	op 9648.000	10.77	37.53	37.68	42.91	53.53	74.00	-20.47	peak	

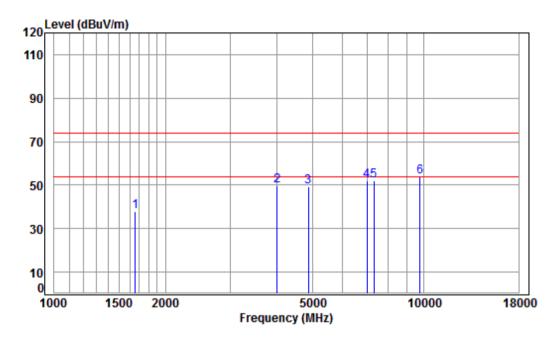
Report No.: SZEM171001110302

Page: 55 of 97

Test mode:	802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG


Mode : 2412 TX RSE Note : 2.4G WIFI 11B

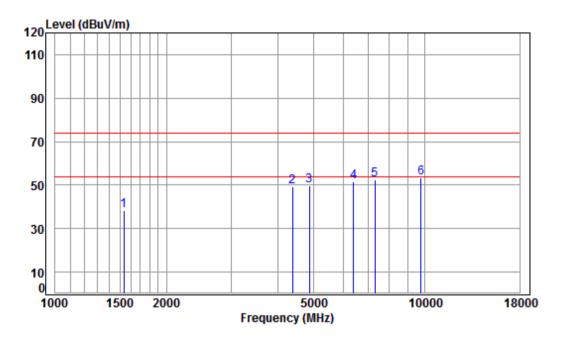
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1648.778	5.29	26.46	41.50	46.06	36.31	74.00	-37.69	peak
2		4482.150	7.54	33.60	42.41	47.65	46.38	74.00	-27.62	peak
3		4824.000	7.91	34.19	42.47	48.03	47.66	74.00	-26.34	peak
4		6995.172	10.14	36.49	40.86	45.62	51.39	74.00	-22.61	peak
5		7236.000	10.07	36.40	40.69	46.26	52.04	74.00	-21.96	peak
6	pp	9648.000	10.77	37.53	37.68	42.81	53.43	74.00	-20.57	peak

Report No.: SZEM171001110302

Page: 56 of 97

Condition: 3m VERTICAL

Job No : 11103RG


Mode : 2437 TX RSE

		Freq			Preamp Factor		Level			Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1658.337	5.28	26.50	38.03	44.17	37.92	74.00	-36.08	peak
2		4004.339	6.99	33.60	38.00	47.28	49.87	74.00	-24.13	peak
3		4874.000	7.96	34.28	38.44	45.33	49.13	74.00	-24.87	peak
4		6995.172	10.14	36.49	37.30	42.75	52.08	74.00	-21.92	peak
5		7311.000	10.05	36.37	37.01	42.73	52.14	74.00	-21.86	peak
6	pp	9748.000	10.82	37.55	35.02	40.49	53.84	74.00	-20.16	peak

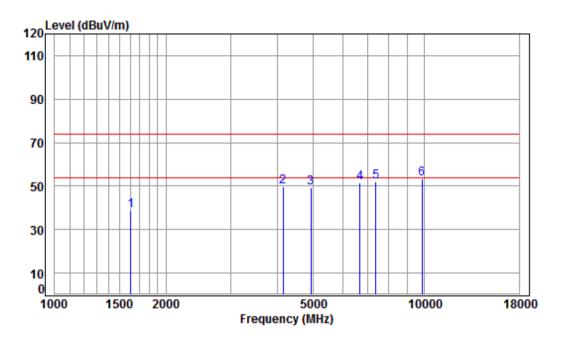
Report No.: SZEM171001110302

Page: 57 of 97

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dB dB/m dΒ dB 1533.841 5.44 25.96 38.04 45.04 38.40 74.00 -35.60 peak 1 2 4379.699 7.43 33.60 38.20 46.30 49.13 74.00 -24.87 peak 3 4874.000 7.96 34.28 38.44 45.85 49.65 74.00 -24.35 peak 4 6414.167 11.38 35.03 37.87 43.19 51.73 74.00 -22.27 peak 5 7311.000 10.05 36.37 37.01 42.92 52.33 74.00 -21.67 peak 6 pp 9748.000 10.82 37.55 35.02 39.82 53.17 74.00 -20.83 peak

Report No.: SZEM171001110302

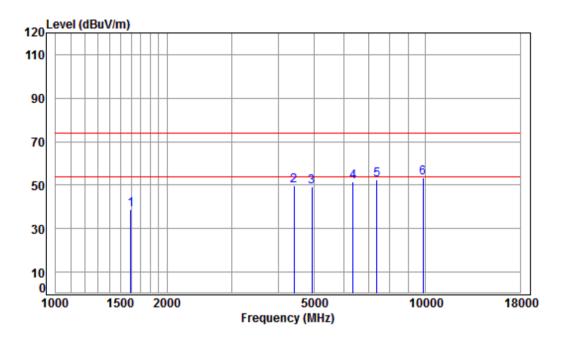
Page: 58 of 97

Test mode: 802.11b	Test channel:	Highest	Remark:	Peak	Vertical
--------------------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


_									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1606.441	5.34	26.28	38.03	45.36	38.95	74.00	-35.05	peak
	4145.664	7.16	33.60	38.08	47.24	49.92	74.00	-24.08	peak
	4924.000	8.01	34.37	38.47	45.33	49.24	74.00	-24.76	peak
	6698.373	10.97	35.67	37.59	42.73	51.78	74.00	-22.22	peak
	7386.000	10.03	36.34	36.94	42.67	52.10	74.00	-21.90	peak
pp	9848.000	10.87	37.57	34.97	39.78	53.25	74.00	-20.75	peak
		MHz 1606.441 4145.664 4924.000 6698.373 7386.000	Freq Loss MHz dB 1606.441 5.34 4145.664 7.16 4924.000 8.01 6698.373 10.97 7386.000 10.03	Freq Loss Factor MHz dB dB/m 1606.441 5.34 26.28 4145.664 7.16 33.60 4924.000 8.01 34.37 6698.373 10.97 35.67 7386.000 10.03 36.34	Freq Loss Factor Factor MHz dB dB/m dB 1606.441 5.34 26.28 38.03 4145.664 7.16 33.60 38.08 4924.000 8.01 34.37 38.47 6698.373 10.97 35.67 37.59 7386.000 10.03 36.34 36.94	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1606.441 5.34 26.28 38.03 45.36 4145.664 7.16 33.60 38.08 47.24 4924.000 8.01 34.37 38.47 45.33 6698.373 10.97 35.67 37.59 42.73 7386.000 10.03 36.34 36.94 42.67	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1606.441 5.34 26.28 38.03 45.36 38.95 4145.664 7.16 33.60 38.08 47.24 49.92 4924.000 8.01 34.37 38.47 45.33 49.24 6698.373 10.97 35.67 37.59 42.73 51.78 7386.000 10.03 36.34 36.94 42.67 52.10	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1606.441 5.34 26.28 38.03 45.36 38.95 74.00 4145.664 7.16 33.60 38.08 47.24 49.92 74.00 4924.000 8.01 34.37 38.47 45.33 49.24 74.00 6698.373 10.97 35.67 37.59 42.73 51.78 74.00 7386.000 10.03 36.34 36.94 42.67 52.10 74.00	1606.441 5.34 26.28 38.03 45.36 38.95 74.00 -35.05 4145.664 7.16 33.60 38.08 47.24 49.92 74.00 -24.08

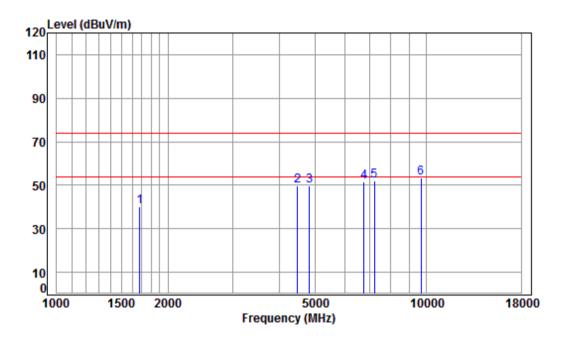
Report No.: SZEM171001110302

Page: 59 of 97

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG


Mode : 2462 TX RSE

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	38.03	45.42	38.98	74.00	-35.02	peak
2	4405.090	7.46	33.60	38.22	47.02	49.86	74.00	-24.14	peak
3	4924.000	8.01	34.37	38.47	45.17	49.08	74.00	-24.92	peak
4	6358.789	11.27	34.99	37.92	43.23	51.57	74.00	-22.43	peak
5	7386.000	10.03	36.34	36.94	42.97	52.40	74.00	-21.60	peak
6	pp 9848.000	10.87	37.57	34.97	40.02	53.49	74.00	-20.51	peak

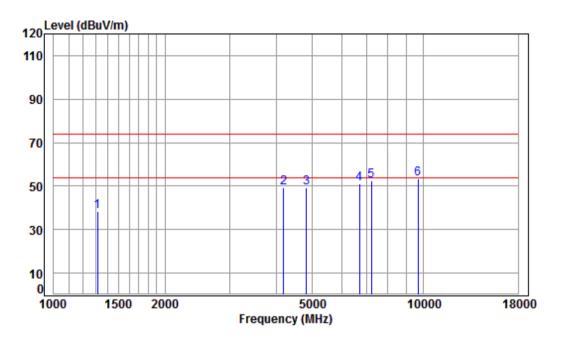
Report No.: SZEM171001110302

Page: 60 of 97

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2412 TX RSE


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MII-					JD: 3//	JD: 3//		
		MHz	dB	ab/m	dB	abuv	abuv/m	abuv/m	dB	
1		1677.621	5.25	26.58	38.03	46.31	40.11	74.00	-33.89	peak
2		4482.150	7.54	33.60	38.26	46.97	49.85	74.00	-24.15	peak
3		4824.000	7.91	34.19	38.42	46.06	49.74	74.00	-24.26	peak
4		6776.265	10.75	35.89	37.51	42.60	51.73	74.00	-22.27	peak
5		7236.000	10.07	36.40	37.08	42.67	52.06	74.00	-21.94	peak
6	pp	9648.000	10.77	37.53	35.07	40.25	53.48	74.00	-20.52	peak

Report No.: SZEM171001110302

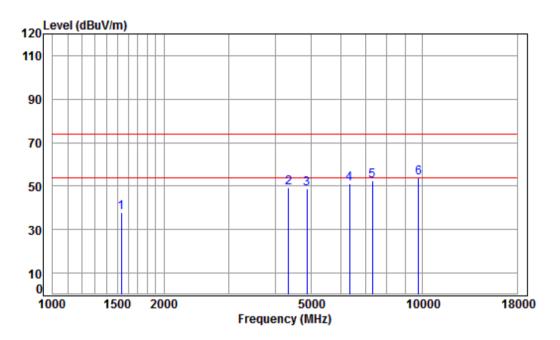
Page: 61 of 97

Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

: 2412 TX RSE Mode


_									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1315.985	4.86	25.03	38.06	46.58	38.41	74.00	-35.59	peak
	4181.768	7.20	33.60	38.10	46.78	49.48	74.00	-24.52	peak
	4824.000	7.91	34.19	38.42	45.74	49.42	74.00	-24.58	peak
	6717.762	10.91	35.72	37.57	42.05	51.11	74.00	-22.89	peak
	7236.000	10.07	36.40	37.08	42.90	52.29	74.00	-21.71	peak
pp	9648.000	10.77	37.53	35.07	40.31	53.54	74.00	-20.46	peak
		MHz 1315.985 4181.768 4824.000 6717.762 7236.000	Freq Loss MHz dB 1315.985 4.86 4181.768 7.20 4824.000 7.91 6717.762 10.91 7236.000 10.07	Freq Loss Factor MHz dB dB/m 1315.985 4.86 25.03 4181.768 7.20 33.60 4824.000 7.91 34.19 6717.762 10.91 35.72 7236.000 10.07 36.40	Freq Loss Factor Factor MHz dB dB/m dB 1315.985 4.86 25.03 38.06 4181.768 7.20 33.60 38.10 4824.000 7.91 34.19 38.42 6717.762 10.91 35.72 37.57 7236.000 10.07 36.40 37.08	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1315.985 4.86 25.03 38.06 46.58 4181.768 7.20 33.60 38.10 46.78 4824.000 7.91 34.19 38.42 45.74 6717.762 10.91 35.72 37.57 42.05 7236.000 10.07 36.40 37.08 42.90	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1315.985 4.86 25.03 38.06 46.58 38.41 4181.768 7.20 33.60 38.10 46.78 49.48 4824.000 7.91 34.19 38.42 45.74 49.42 6717.762 10.91 35.72 37.57 42.05 51.11 7236.000 10.07 36.40 37.08 42.90 52.29	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1315.985 4.86 25.03 38.06 46.58 38.41 74.00 4181.768 7.20 33.60 38.10 46.78 49.48 74.00 4824.000 7.91 34.19 38.42 45.74 49.42 74.00 6717.762 10.91 35.72 37.57 42.05 51.11 74.00 7236.000 10.07 36.40 37.08 42.90 52.29 74.00	1315.985

Report No.: SZEM171001110302

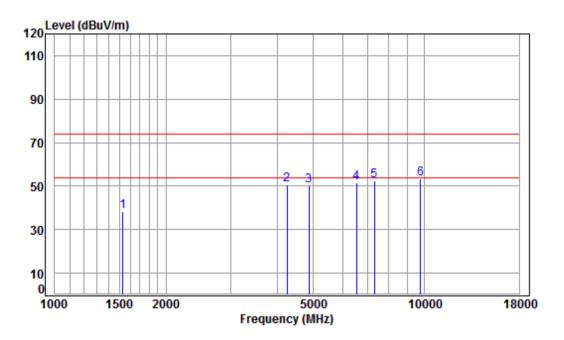
62 of 97 Page:

Test mode: 802.11g Test channel: N	Middle Re	emark: Pea	eak Vertical
------------------------------------	-----------	------------	--------------

Condition: 3m VERTICAL

Job No : 11103RG

: 2437 TX RSE Mode


				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1533.841	5.44	25.96	38.04	44.72	38.08	74.00	-35.92	peak
2	4341.886	7.38	33.60	38.18	46.34	49.14	74.00	-24.86	peak
3	4874.000	7.96	34.28	38.44	45.17	48.97	74.00	-25.03	peak
4	6340.436	11.24	34.98	37.94	42.75	51.03	74.00	-22.97	peak
5	7311.000	10.05	36.37	37.01	43.11	52.52	74.00	-21.48	peak
6 p	p 9748.000	10.82	37.55	35.02	40.32	53.67	74.00	-20.33	peak

Report No.: SZEM171001110302

Page: 63 of 97

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

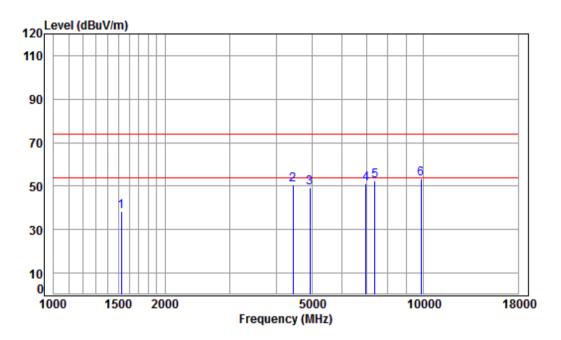
1 2

3

4

5

: 2437 TX RSE Mode : 2.4G WIFI 11G Note


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dB dΒ dB/m dB 1529.414 5.44 25.94 38.04 44.98 38.32 74.00 -35.68 peak 4242.641 7.27 33.60 38.13 47.88 50.62 74.00 -23.38 peak 4874.000 7.96 34.28 38.44 46.28 50.08 74.00 -23.92 peak 6545.263 11.41 35.23 37.74 42.53 51.43 74.00 -22.57 peak 7311.000 10.05 36.37 37.01 42.88 52.29 74.00 -21.71 peak 6 pp 9748.000 10.82 37.55 35.02 39.84 53.19 74.00 -20.81 peak

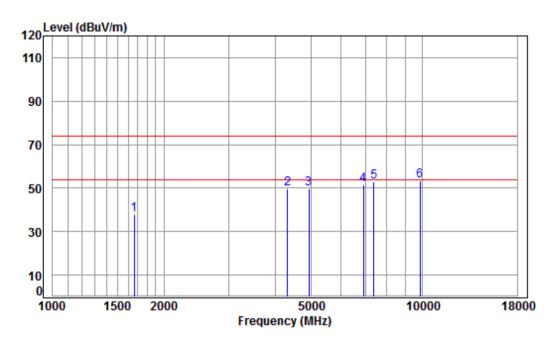
Report No.: SZEM171001110302

Page: 64 of 97

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical

Condition: 3m VERTICAL

Job No : 11103RG


Mode : 2462 TX RSE

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1525.000	5.45	25.91	38.04	45.17	38.49	74.00	-35.51	peak
2	4443.453	7.50	33.60	38.24	47.75	50.61	74.00	-23.39	peak
3	4924.000	8.01	34.37	38.47	45.25	49.16	74.00	-24.84	peak
4	6974.982	10.20	36.43	37.32	41.80	51.11	74.00	-22.89	peak
5	7386.000	10.03	36.34	36.94	43.24	52.67	74.00	-21.33	peak
6	pp 9848.000	10.87	37.57	34.97	39.77	53.24	74.00	-20.76	peak

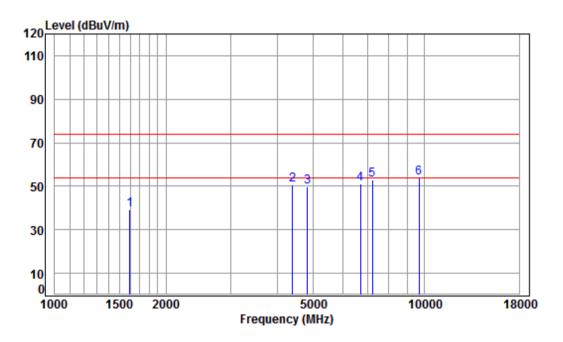
Report No.: SZEM171001110302

Page: 65 of 97

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2462 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1663.137	5.27	26.52	38.03	44.15	37.91	74.00	-36.09	peak
	4316.859	7.36	33.60	38.17	46.96	49.75	74.00	-24.25	peak
	4924.000	8.01	34.37	38.47	45.79	49.70	74.00	-24.30	peak
	6914.763	10.36	36.27	37.38	42.26	51.51	74.00	-22.49	peak
	7386.000	10.03	36.34	36.94	43.40	52.83	74.00	-21.17	peak
pp	9848.000	10.87	37.57	34.97	39.85	53.32	74.00	-20.68	peak
		MHz 1663.137 4316.859 4924.000 6914.763 7386.000	Freq Loss MHz dB 1663.137 5.27 4316.859 7.36 4924.000 8.01 6914.763 10.36 7386.000 10.03	Freq Loss Factor MHz dB dB/m 1663.137 5.27 26.52 4316.859 7.36 33.60 4924.000 8.01 34.37 6914.763 10.36 36.27 7386.000 10.03 36.34	Freq Loss Factor Factor MHz dB dB/m dB 1663.137 5.27 26.52 38.03 4316.859 7.36 33.60 38.17 4924.000 8.01 34.37 38.47 6914.763 10.36 36.27 37.38 7386.000 10.03 36.34 36.94	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1663.137 5.27 26.52 38.03 44.15 4316.859 7.36 33.60 38.17 46.96 4924.000 8.01 34.37 38.47 45.79 6914.763 10.36 36.27 37.38 42.26 7386.000 10.03 36.34 36.94 43.40	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1663.137 5.27 26.52 38.03 44.15 37.91 4316.859 7.36 33.60 38.17 46.96 49.75 4924.000 8.01 34.37 38.47 45.79 49.70 6914.763 10.36 36.27 37.38 42.26 51.51 7386.000 10.03 36.34 36.94 43.40 52.83	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1663.137 5.27 26.52 38.03 44.15 37.91 74.00 4316.859 7.36 33.60 38.17 46.96 49.75 74.00 4924.000 8.01 34.37 38.47 45.79 49.70 74.00 6914.763 10.36 36.27 37.38 42.26 51.51 74.00 7386.000 10.03 36.34 36.94 43.40 52.83 74.00	1663.137 5.27 26.52 38.03 44.15 37.91 74.00 -36.09 4316.859 7.36 33.60 38.17 46.96 49.75 74.00 -24.25

Report No.: SZEM171001110302

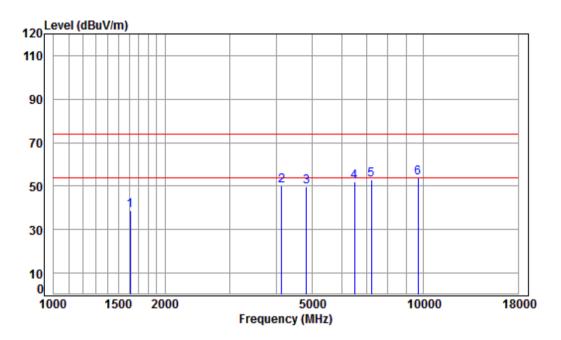
Page: 66 of 97

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Vertical
------------	---------------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2412 TX RSE


0	. 2.7	G W11 1	1114 2	•					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	38.03	45.53	39.09	74.00	-34.91	peak
2	4392.376	7.44	33.60	38.21	47.76	50.59	74.00	-23.41	peak
3	4824.000	7.91	34.19	38.42	46.27	49.95	74.00	-24.05	peak
4	6717.762	10.91	35.72	37.57	42.05	51.11	74.00	-22.89	peak
5	7236.000	10.07	36.40	37.08	43.43	52.82	74.00	-21.18	peak
6 p	pp 9648.000	10.77	37.53	35.07	40.50	53.73	74.00	-20.27	peak

Report No.: SZEM171001110302

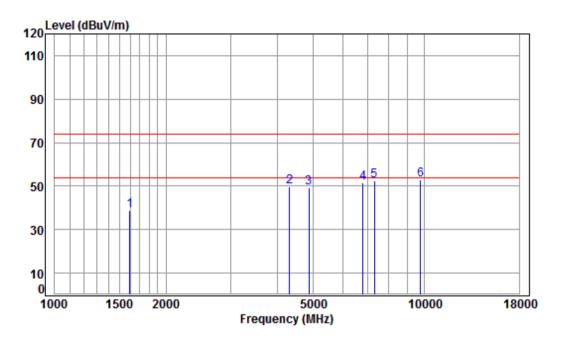
Page: 67 of 97

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2412 TX RSE


	_				-					
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1611.091	5.34	26.30	38.03	45.40	39.01	74.00	-34.99	peak
2		4133.699	7.14	33.60	38.07	47.50	50.17	74.00	-23.83	peak
3		4824.000	7.91	34.19	38.42	46.13	49.81	74.00	-24.19	peak
4		6507.536	11.52	35.12	37.77	43.00	51.87	74.00	-22.13	peak
5		7236.000	10.07	36.40	37.08	43.46	52.85	74.00	-21.15	peak
6	pp	9648.000	10.77	37.53	35.07	40.67	53.90	74.00	-20.10	peak

Report No.: SZEM171001110302

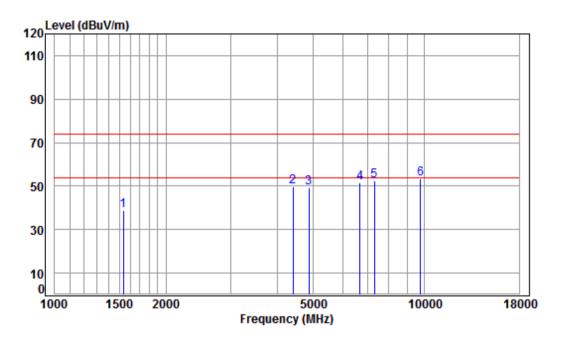
Page: 68 of 97

Test mode: 802.11n(HT20)	Test channel: N	Middle Remark:	Peak	Vertical
--------------------------	-----------------	----------------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2437 TX RSE


				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	38.03	45.00	38.56	74.00	-35.44	peak
2	4316.859	7.36	33.60	38.17	46.77	49.56	74.00	-24.44	peak
3	4874.000	7.96	34.28	38.44	45.65	49.45	74.00	-24.55	peak
4	6815.551	10.64	36.00	37.47	42.44	51.61	74.00	-22.39	peak
5	7311.000	10.05	36.37	37.01	42.99	52.40	74.00	-21.60	peak
6 p	p 9748.000	10.82	37.55	35.02	39.78	53.13	74.00	-20.87	peak

Report No.: SZEM171001110302

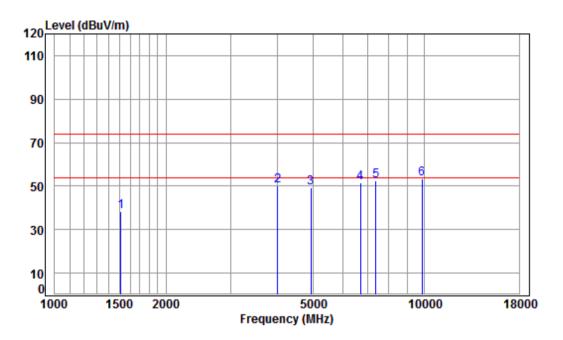
Page: 69 of 97

Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2437 TX RSE


				-					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
_									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	1533.841	5.44	25.96	38.04	45.64	39.00	74.00	-35.00	peak
	4405.090	7.46	33.60	38.22	46.77	49.61	74.00	-24.39	peak
	4874.000	7.96	34.28	38.44	45.39	49.19	74.00	-24.81	peak
	6679.040	11.02	35.61	37.60	42.66	51.69	74.00	-22.31	peak
	7311.000	10.05	36.37	37.01	43.05	52.46	74.00	-21.54	peak
pp	9748.000	10.82	37.55	35.02	40.14	53.49	74.00	-20.51	peak
		MHz 1533.841 4405.090 4874.000 6679.040 7311.000	Freq Loss MHz dB 1533.841 5.44 4405.090 7.46 4874.000 7.96 6679.040 11.02 7311.000 10.05	Freq Loss Factor MHz dB dB/m 1533.841 5.44 25.96 4405.090 7.46 33.60 4874.000 7.96 34.28 6679.040 11.02 35.61 7311.000 10.05 36.37	Freq Loss Factor Factor MHz dB dB/m dB 1533.841 5.44 25.96 38.04 4405.090 7.46 33.60 38.22 4874.000 7.96 34.28 38.44 6679.040 11.02 35.61 37.60 7311.000 10.05 36.37 37.01	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1533.841 5.44 25.96 38.04 45.64 4405.090 7.46 33.60 38.22 46.77 4874.000 7.96 34.28 38.44 45.39 6679.040 11.02 35.61 37.60 42.66 7311.000 10.05 36.37 37.01 43.05	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1533.841 5.44 25.96 38.04 45.64 39.00 4405.090 7.46 33.60 38.22 46.77 49.61 4874.000 7.96 34.28 38.44 45.39 49.19 6679.040 11.02 35.61 37.60 42.66 51.69 7311.000 10.05 36.37 37.01 43.05 52.46	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1533.841 5.44 25.96 38.04 45.64 39.00 74.00 4405.090 7.46 33.60 38.22 46.77 49.61 74.00 4874.000 7.96 34.28 38.44 45.39 49.19 74.00 6679.040 11.02 35.61 37.60 42.66 51.69 74.00 7311.000 10.05 36.37 37.01 43.05 52.46 74.00	1533.841 5.44 25.96 38.04 45.64 39.00 74.00 -35.00 4405.090 7.46 33.60 38.22 46.77 49.61 74.00 -24.39

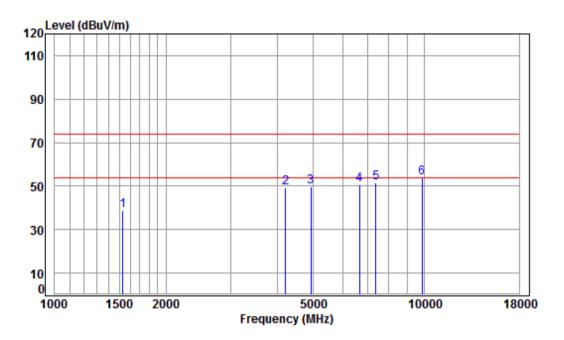
Report No.: SZEM171001110302

Page: 70 of 97

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical
------------	---------------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG


Mode : 2462 TX RSE

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1511.833	5.46	25.85	38.04	45.11	38.38	74.00	-35.62	peak
2	4004.339	6.99	33.60	38.00	47.51	50.10	74.00	-23.90	peak
3	4924.000	8.01	34.37	38.47	45.30	49.21	74.00	-24.79	peak
4	6717.762	10.91	35.72	37.57	42.56	51.62	74.00	-22.38	peak
5	7386.000	10.03	36.34	36.94	43.07	52.50	74.00	-21.50	peak
6 p	pp 9848.000	10.87	37.57	34.97	39.89	53.36	74.00	-20.64	peak

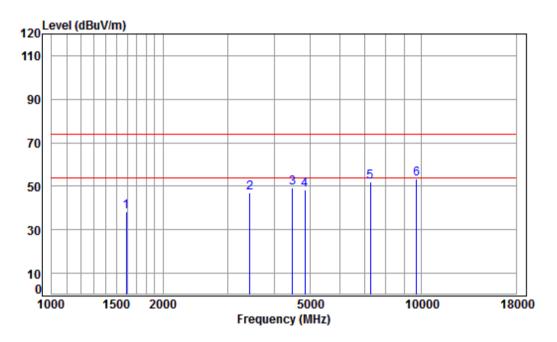
Report No.: SZEM171001110302

Page: 71 of 97

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2462 TX RSE


				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1529.414	5.44	25.94	38.04	45.50	38.84	74.00	-35.16	peak
2	4206.011	7.23	33.60	38.11	46.65	49.37	74.00	-24.63	peak
3	4924.000	8.01	34.37	38.47	45.87	49.78	74.00	-24.22	peak
4	6659.763	11.08	35.56	37.62	41.45	50.47	74.00	-23.53	peak
5	7386.000	10.03	36.34	36.94	42.34	51.77	74.00	-22.23	peak
6 p	op 9848.000	10.87	37.57	34.97	40.29	53.76	74.00	-20.24	peak

Report No.: SZEM171001110302

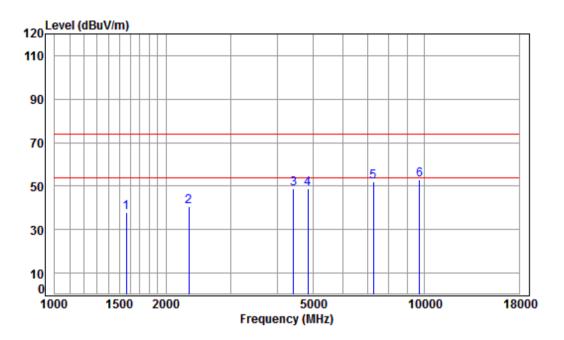
Page: 72 of 97

Test mode:	802.11n(HT40)	Test channel:	Lowest	Remark:	Peak	Vertical
------------	---------------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2422 TX SE

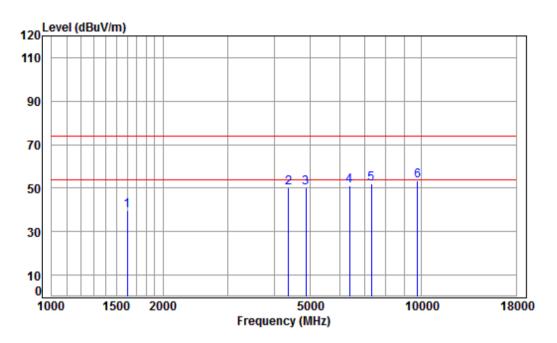

Note : 2.4G WiFi 11N 40

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1592.571	5.36	26.22	38.03	44.71	38.26	74.00	-35.74	peak
2		3435.590	6.40	32.09	37.95	46.30	46.84	74.00	-27.16	Peak
3		4482.150	7.54	33.60	38.26	46.62	49.50	74.00	-24.50	peak
4		4844.000	7.93	34.23	38.43	44.41	48.14	74.00	-25.86	peak
5		7266.000	10.06	36.39	37.05	42.82	52.22	74.00	-21.78	peak
6	pp	9688.000	10.79	37.54	35.05	40.16	53.44	74.00	-20.56	peak

Report No.: SZEM171001110302

Page: 73 of 97

Condition: 3m HORIZONTAL


Job No : 11103RG Mode : 2422 TX SE

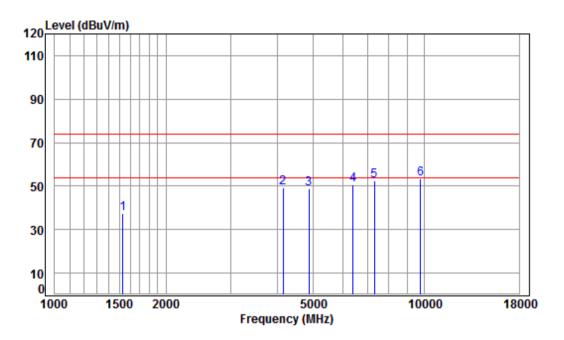
	_			Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Kemark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1565.191	5.39	26.10	38.04	44.23	37.68	74.00	-36.32	peak
2	2305.546	5.36	28.82	37.96	44.33	40.55	74.00	-33.45	Peak
3	4417.841	7.47	33.60	38.22	46.17	49.02	74.00	-24.98	peak
4	4844.000	7.93	34.23	38.43	44.93	48.66	74.00	-25.34	peak
5	7266.000	10.06	36.39	37.05	42.44	51.84	74.00	-22.16	peak
6	pp 9688.000	10.79	37.54	35.05	39.50	52.78	74.00	-21.22	peak

Report No.: SZEM171001110302

Page: 74 of 97

Condition: 3m VERTICAL

Job No : 11103RG

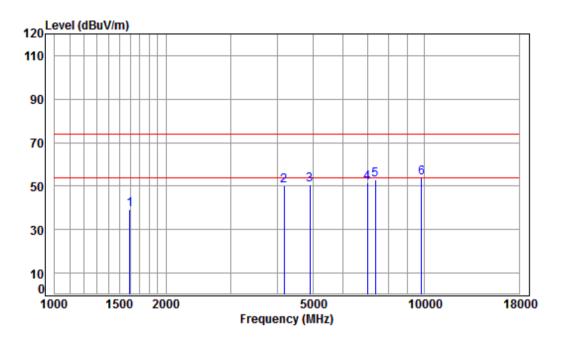

Mode : 2437 TX SE

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1601.804	5.35	26.26	38.03	46.04	39.62	74.00	-34.38	peak
2	4367.058	7.41	33.60	38.20	47.23	50.04	74.00	-23.96	peak
3	4874.000	7.96	34.28	38.44	46.32	50.12	74.00	-23.88	peak
4	6395.654	11.34	35.02	37.89	42.56	51.03	74.00	-22.97	peak
5	7311.000	10.05	36.37	37.01	42.70	52.11	74.00	-21.89	peak
6 p	pp 9748.000	10.82	37.55	35.02	39.83	53.18	74.00	-20.82	peak

Report No.: SZEM171001110302

Page: 75 of 97

Condition: 3m HORIZONTAL

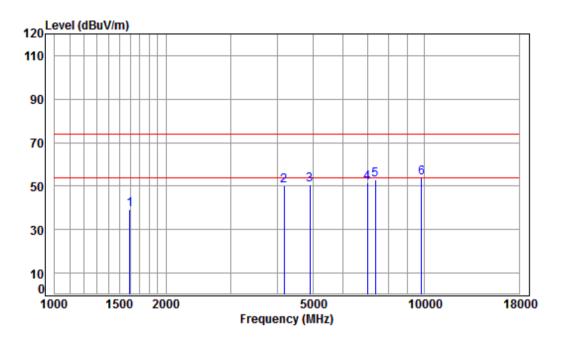

Job No : 11103RG Mode : 2437 TX SE

		Freq			Preamp Factor					Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1529.414	5.44	25.94	38.04	43.97	37.31	74.00	-36.69	peak
2		4145.664	7.16	33.60	38.08	46.49	49.17	74.00	-24.83	peak
3		4874.000	7.96	34.28	38.44	44.95	48.75	74.00	-25.25	peak
4		6414.167	11.38	35.03	37.87	42.19	50.73	74.00	-23.27	peak
5		7311.000	10.05	36.37	37.01	43.18	52.59	74.00	-21.41	peak
6	pp	9748.000	10.82	37.55	35.02	40.16	53.51	74.00	-20.49	peak

Report No.: SZEM171001110302

Page: 76 of 97

Condition: 3m HORIZONTAL


Job No : 11103RG Mode : 2452 TX SE

		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1597.181	5.35	26.24	38.03	45.88	39.44	74.00	-34.56	peak
2		4169.698	7.18	33.60	38.09	47.53	50.22	74.00	-23.78	peak
3		4904.000	7.99	34.33	38.46	47.01	50.87	74.00	-23.13	peak
4		6995.172	10.14	36.49	37.30	42.24	51.57	74.00	-22.43	peak
5		7356.000	10.04	36.36	36.97	43.57	53.00	74.00	-21.00	peak
6	pp	9808.000	10.85	37.56	34.99	40.28	53.70	74.00	-20.30	peak

Report No.: SZEM171001110302

Page: 77 of 97

Condition: 3m HORIZONTAL

Job No : 11103RG Mode : 2452 TX SE

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1597.181	5.35	26.24	38.03	45.88	39.44	74.00	-34.56	peak
2	4169.698	7.18	33.60	38.09	47.53	50.22	74.00	-23.78	peak
3	4904.000	7.99	34.33	38.46	47.01	50.87	74.00	-23.13	peak
4	6995.172	10.14	36.49	37.30	42.24	51.57	74.00	-22.43	peak
5	7356.000	10.04	36.36	36.97	43.57	53.00	74.00	-21.00	peak
6 pp	9808.000	10.85	37.56	34.99	40.28	53.70	74.00	-20.30	peak

Report No.: SZEM171001110302

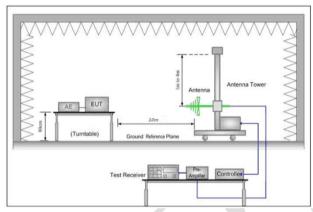
Page: 78 of 97

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz,The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM171001110302

79 of 97 Page:

Restricted bands around fundamental frequency 6.9

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12						
Test Site:	Measurement Distance: 3n	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)						
	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
Limit:	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 4CUL	54.0	Average Value					
	Above 1GHz	74.0	Peak Value					
Test Setup:								

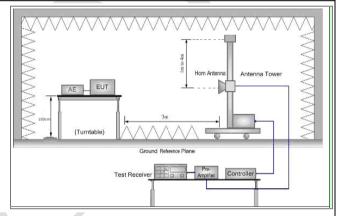


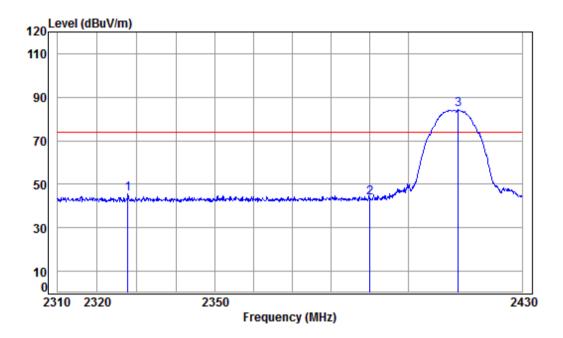
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM171001110302

Page: 80 of 97

	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.					
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.					
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.					
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.					
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.					
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel					
	h. Test the EUT in the lowest channel , the Highest channel					
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.					
	j. Repeat above procedures until all frequencies measured was complete.					
Exploratory Tost Mode:	Transmitting with all kind of modulations, data rates.					
Exploratory Test Mode:	Charge + Transmitting mode.					
	Pretest the EUT at Charge +Transmitting mode.					
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
Final Test Mode:	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					



Report No.: SZEM171001110302

Page: 81 of 97

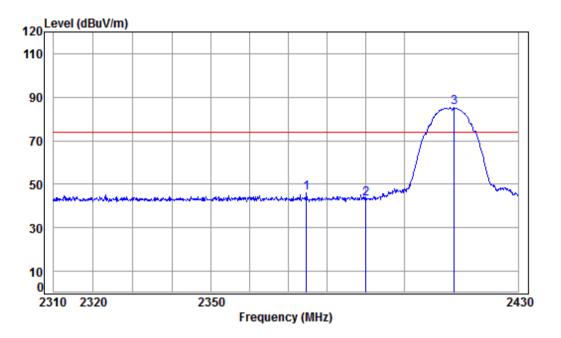
Test plot as follows:

Condition: 3m VERTICAL

Job No : 11103RG

1 2 3

Mode : 2412 Band edge Note : 2.4G WiFi 11B


		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	d Bu V/m	dBuV/m	dB		
	2327.733	5.39	28.89	41.85	53.21	45.64	74.00	-28.36	peak	
	2390.000	5.47	29.08	41.87	50.91	43.59	74.00	-30.41	peak	
-	op 2413.076	5.51	29.15	41.88	91.44	84.22	74.00	10.22	peak	

Report No.: SZEM171001110302

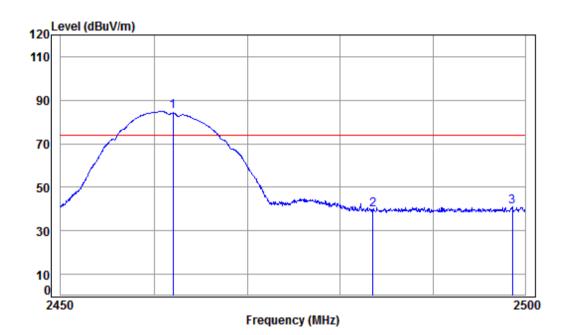
Page: 82 of 97

Worse case mode: 802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal	
--------------------------	---------------	--------	---------	------	------------	--

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2412 Band edge Note : 2.4G WiFi 11B


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2374.526	5.45	29.03	41.87	53.36	45.97	74.00	-28.03	peak
2	2390.000	5.47	29.08	41.87	50.82	43.50	74.00	-30.50	peak
3 рр	2413.076	5.51	29.15	41.88	92.37	85.15	74.00	11.15	peak

Report No.: SZEM171001110302

Page: 83 of 97

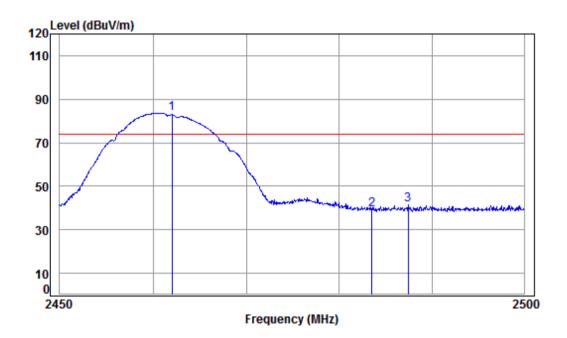
Worse case mode: 80	02.11b	Test channel:	Highest	Remark:	Peak	Vertical
---------------------	--------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

1 2 3

Mode : 2462 Band edge Note : 2.4G WiFi 11B


.e	. 2.4	g MILI	IID							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
			,							
nn	2462.000	5 57	29 29	41 90	91 80	84 76	74 99	10 76	Peak	
	2483.500	5.60	29.35	41.91	46.82	39.86	74.00	-34.14	Peak	
	2498.586	5.62	29.40	41.92	47.98	41.08	74.00	-32.92	Peak	

Report No.: SZEM171001110302

Page: 84 of 97

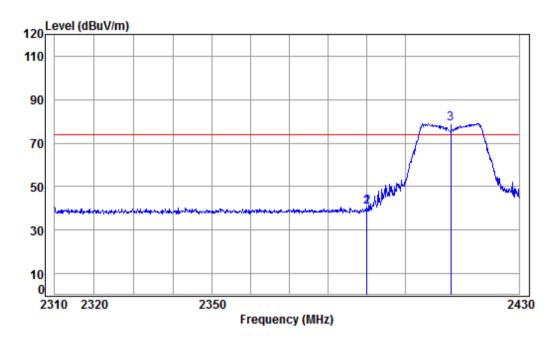
Worse case mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

1 2 3

Mode : 2462 Band edge Note : 2.4G WiFi 11B


_	. 2.	+O MILI	. 110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	pp 2462.000	5.57	29.29	41.90	90.75	83.71	74.00	9.71	peak
)	2483.500	5.60	29.35	41.91	46.00	39.04	74.00	-34.96	peak
	2487 405	5 60	29 36	41 91	48 26	41 31	74 99	-32 69	neak

Report No.: SZEM171001110302

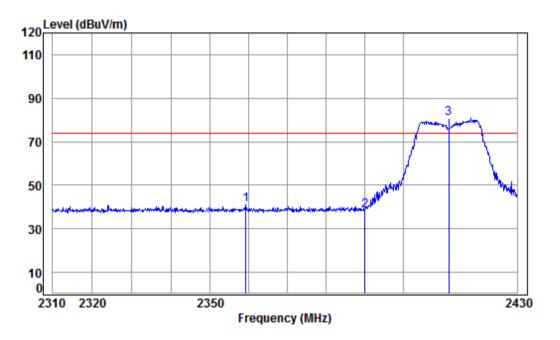
Page: 85 of 97

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical	
------------------	---------	---------------	--------	---------	------	----------	--

Condition: 3m VERTICAL

Job No : 11103RG

Mode : 2412 Band edge Note : 2.4G WiFi 11G


		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.968	5.47	29.08	41.87	48.02	40.70	74.00	-33.30	Peak
2		2390.000	5.47	29.08	41.87	48.02	40.70	74.00	-33.30	Peak
3	pp	2412.000	5.50	29.14	41.88	86.32	79.08	74.00	5.08	Peak

Report No.: SZEM171001110302

Page: 86 of 97

Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2412 Band edge Note : 2.4G WiFi 11G

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2359.183	5.43	28.98	41.86	48.40	40.95	74.00	-33.05	peak
2	2390.000	5.47	29.08	41.87	45.87	38.55	74.00	-35.45	peak
3 рр	2412.000	5.50	29.14	41.88	87.94	80.70	74.00	6.70	peak

Report No.: SZEM171001110302

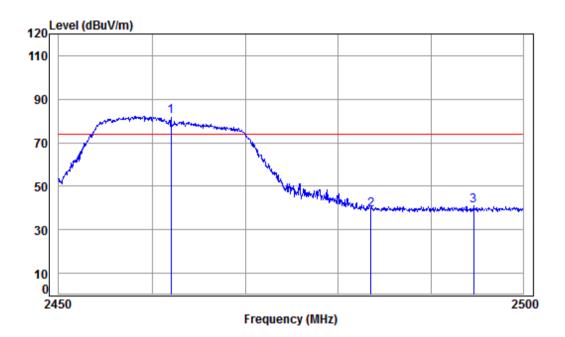
87 of 97 Page:

Worse case mode: 802	02.11g Test channel:	Highest Remark:	Peak	Vertical
----------------------	----------------------	-----------------	------	----------

Condition: 3m VERTICAL

Job No : 11103RG

: 2462 Band edge Mode · 2.4G WiFi 11G Note


oce	. 2.4	Q MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	41.90	90.70	83.66	74.00	9.66	Peak
2	2483.500	5.60	29.35	41.91	45.96	39.00	74.00	-35.00	Peak
3	2496.518	5.62	29.39	41.92	48.37	41.46	74.00	-32.54	Peak

Report No.: SZEM171001110302

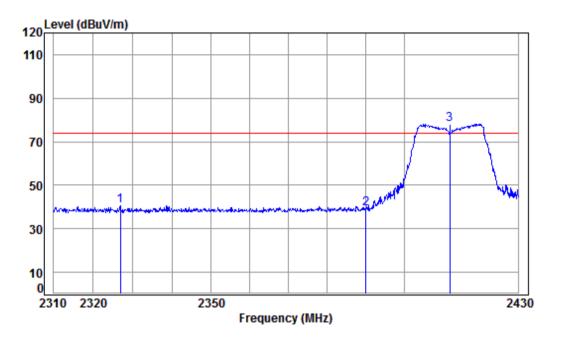
Page: 88 of 97

Worse case mode: 802.11g Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2462 Band edge Note : 2.4G WiFi 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2	2462.000	5.57	29.29	41.90	89.17	82.13	74.00	8.13	peak
2	2483.500	5.60	29.35	41.91	46.06	39.10	74.00	-34.90	peak
3 2	2494.602	5.61	29.38	41.92	48.14	41.21	74.00	-32.79	peak

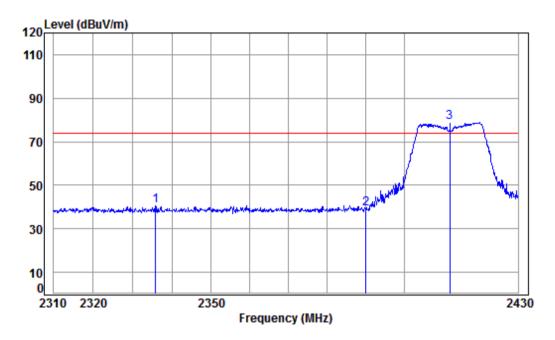
Report No.: SZEM171001110302

Page: 89 of 97

Worse case mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Vertical
	` ,					

Condition: 3m VERTICAL Job No : 11103RG

Mode : 2412 Band edge Note : 2.4G WiFi 11N20


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2326.908	5.39	28.89	41.85	48.23	40.66	74.00	-33.34	Peak
2	2390.000	5.47	29.08	41.87	46.37	39.05	74.00	-34.95	Peak
3 p	p 2412.000	5.50	29.14	41.88	85.45	78.21	74.00	4.21	Peak

Report No.: SZEM171001110302

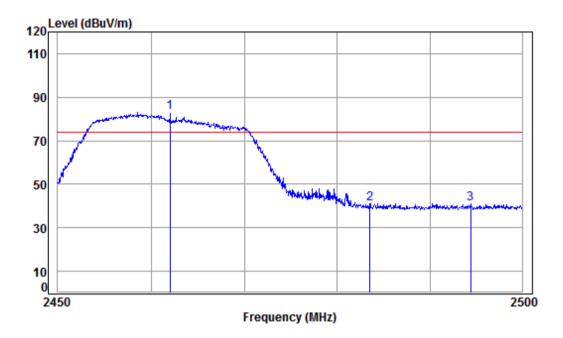
90 of 97 Page:

Worse case mode: 802.11n(HT20) Test channel:	Lowest	Remark:	Peak	Horizontal
--	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2412 Band edge : 2.4G WiFi 11N20 Note


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 pp	2335.881 2390.000 2412.000	5.47	29.08	41.87	46.56	39.24	74.00	-34.76	peak

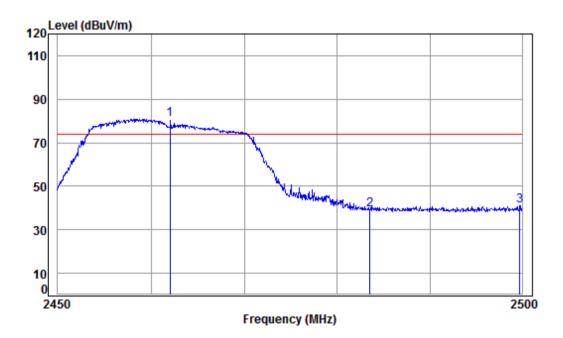
Report No.: SZEM171001110302

Page: 91 of 97

802.11n(HT20) Test channel: Remark: Worse case mode: Highest Peak Vertical

Condition: 3m VERTICAL Job No : 11103RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N20


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2462.000 2483.500 2494.400	5.60	29.35	41.91	48.06	41.10	74.00	-32.90	Peak

Report No.: SZEM171001110302

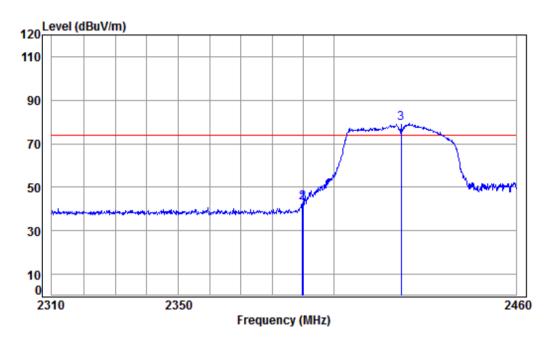
Page: 92 of 97

Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m HORIZONTAL

Job No : 11103RG

Mode : 2462 Band edge Note : 2.4G WiFi 11N20


		Frea			Preamp Factor					Remark	
		11 64	2033	, ac coi	, accor	LCVCI	LCVCI	Line	LIMIL	remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	рр	2462.000	5.57	29.29	41.90	87.92	80.88	74.00	6.88	peak	
2		2483.500	5.60	29.35	41.91	46.20	39.24	74.00	-34.76	peak	
3		2499.748	5.62	29.40	41.92	48.02	41.12	74.00	-32.88	peak	

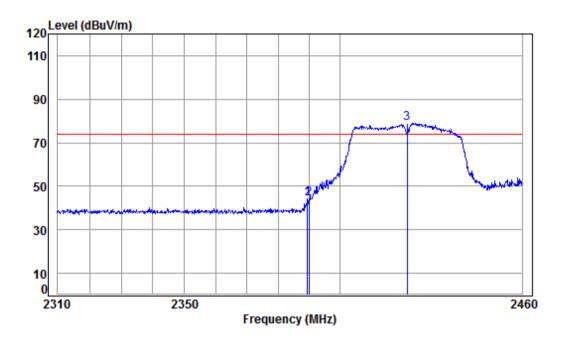
Report No.: SZEM171001110302

Page: 93 of 97

Worse case mode: 802.11n(HT40) Test channel: Lowest Remark: Peak Vertical

Condition: 3m VERTICAL

Job No : 11103RG


Mode : 2422 Band edge Note : 2.4G WiFi 11N40

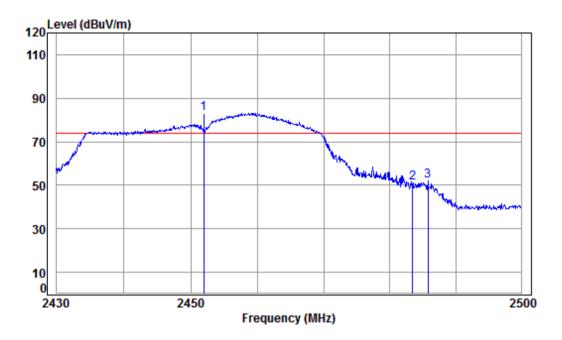
	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2389.827 2390.000 2422.000	5.47	29.08	41.87	50.08	42.76	74.00	-31.24	Peak

Report No.: SZEM171001110302

Page: 94 of 97

Condition: 3m HORIZONTAL

Job No : 11103RG


Mode : 2422 Band edge : 2.4G WiFi 11N40 Note

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
						•			
1	2389.526	5.47	29.08	41.87	51.35	44.03	74.00	-29.97	peak
2	2390.000	5.47	29.08	41.87	51.45	44.13	74.00	-29.87	peak
3 рр	2422.000	5.52	29.17	41.89	86.11	78.91	74.00	4.91	peak
									-

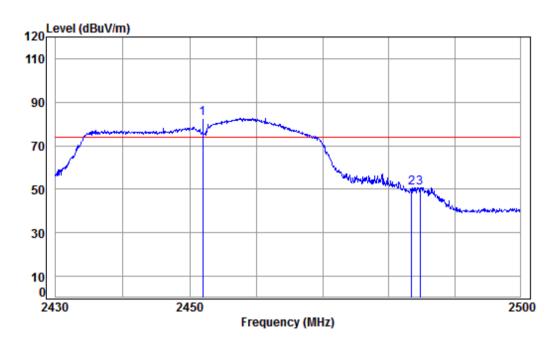
Report No.: SZEM171001110302

Page: 95 of 97

Condition: 3m VERTICAL

Job No : 11103RG

1 2 3


Mode : 2452 Band edge Note : 2.4G WiFi 11N40

е	. 2.4d WIFI 11N40								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
pp	2452.000	5.56	29.26	41.90	90.15	83.07	74.00	9.07	Peak
	2483.500	5.60	29.35	41.91	57.89	50.93	74.00	-23.07	Peak
	2485.770	5.60	29.36	41.91	58.79	51.84	74.00	-22.16	Peak

Report No.: SZEM171001110302

Page: 96 of 97

Condition: 3m HORIZONTAL

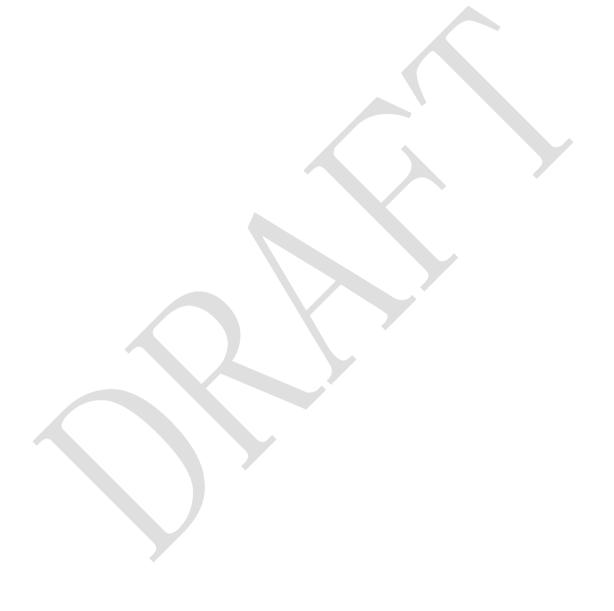
Job No : 11103RG

Mode : 2452 Band edge Note : 2.4G WiFi 11N40

		Freq			Preamp Factor					Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	рр	2452.000	5.56	29.26	41.90	89.89	82.81	74.00	8.81	peak	
2		2483.500	5.60	29.35	41.91	57.42	50.46	74.00	-23.54	peak	
3		2484.782	5.60	29.36	41.91	57.71	50.76	74.00	-23.24	peak	

Report No.: SZEM171001110302

Page: 97 of 97


Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1710011103RG

