

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM171001110305 Page: 1 of 72

FCC REPORT

Test Result:	PASS *
Date of Issue:	2018-01-04
Date of Test:	2017-12-09 to 2017-12-29
Date of Receipt:	2017-12-08
Test Method	ANSI C63.10 (2013)
Standards:	47 CFR Part 15, Subpart C (2017)
FCC ID:	2ANBZ-F10104216
Trade Mark:	Saygus
Model No.(EUT):	SG02
Product Name:	Saygus smartphone V-Squared
Factory:	Smart Gadgets (Shenzhen), LTD
Manufacturer:	Saygus
Applicant:	Saygus
Application No.:	SZEM1710011103RG

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-an

Report No.: SZEM171001110305 Page: 2 of 72

2 Version

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2018-01-04		Original

Authorized for issue by:		
Tested By	Mike Mu	2017-12-29
	(Mike Hu) /Project Engineer	Date
Checked By	John Hong	2018-01-04
	(Jim Huang) /Reviewer	Date

Report No.: SZEM171001110305 Page: 3 of 72

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS

Original model No. in report SZEM170400351903

According to the declaration from the applicant. Now add LTE band 5,7,13,17,25,38,41, WCDMA band 5 and 2.4Gwifi and NFC by software. New function is full tested. Worse case mode of transmitter Emission above 1GHz and all mode of retested Radiated Spurious Emission on new sample are tested.

Report No.: SZEM171001110305 Page: 4 of 72

4 Contents

1	CC	OVER PAGE	
2	VE	ERSION	2
3		EST SUMMARY	
4		ONTENTS	
5		ENERAL INFORMATION	
	5.1 5.2	CLIENT INFORMATION GENERAL DESCRIPTION OF EUT	
	5.2 5.3	GENERAL DESCRIPTION OF EU I	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	7
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10 5.11	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) Equipment List	
		-	
6	TE	EST RESULTS AND MEASUREMENT DATA	
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME Band-edge for RF Conducted Emissions	
	6.8 6.9	SPURIOUS RF CONDUCTED EMISSIONS	
	6.10	RADIATED SPURIOUS EMISSION	
		10.1 Radiated Emission below 1GHz	
	-	10.2 Transmitter Emission above 1GHz	
	6.11	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
7	Pł	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	72

Report No.: SZEM171001110305 Page: 5 of 72

5 General Information

5.1 Client Information

Applicant:	Saygus
Address of Applicant:	10421 South Jordan Gateway, Suite 500, South Jordan, UT 84095
Manufacturer:	Saygus
Address of Manufacturer: 10421 South Jordan Gateway, Suite 500, South Jordan, UT 84095	
Factory:	Smart Gadgets (Shenzhen), LTD
Address of Factory:	912 Building 1 A, Hezheng-Huiyi Cheng, Xinhu Road, Xixiang Baoan District, Shenzhen, China

5.2 General Description of EUT

Product Name:	Saygus smartphone V-Squared
Model No.:	SG02
Trade Mark:	Saygus
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.0 Dual mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Intergral
Antenna Gain:	-1.0dBi
Power Supply	DC3.85V (1 x 3.85V Rechargeable battery)3100mAh Battery: Charge by DC 5V
	Adaptor: Model:C0043
AC adaptor:	Input: AC100-240V 50/60Hz 0.5A
	Output:DC5.0V 2.4A

Report No.: SZEM171001110305 Page: 6 of 72

Operation F	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM171001110305 Page: 7 of 72

5.3 Test Environment

Operating Environment		
Temperature:	24.0 °C	
Humidity:	55 % RH	
Atmospheric Pressure:	1005 mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM171001110305 Page: 8 of 72

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4 Radiated Spurious emission tes	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1°C
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM171001110305 Page: 9 of 72

5.11 Equipment List

	Conducted Emission								
Item	Test Equipment	Manufacturer Model N		Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)			
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10			
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09			
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14			
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28			
5	4 Line ISN	Fischer Custom Communications Inc.	Communications TLISN-T4- EMC012		2017-09-28	2018-09-28			
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28			
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14			
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09			

	RF connected test								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)			
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09			
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06			
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14			
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09			
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09			

Report No.: SZEM171001110305 Page: 10 of 72

	RE in Chamber									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)				
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10				
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09				
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01				
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17				
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24				
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14				
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A				
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09				
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13				

	RE in Chamber									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)				
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10				
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14				
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29				
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06				
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14				

Report No.: SZEM171001110305 Page: 11 of 72

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No. Inventory No.		Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10			
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19			
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15			
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09			
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14			
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017-11-24	2020-11-24			
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12			
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09			
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A			

Report No.: SZEM171001110305 Page: 12 of 72

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
e la l'équi en	

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or

electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.0dBi.

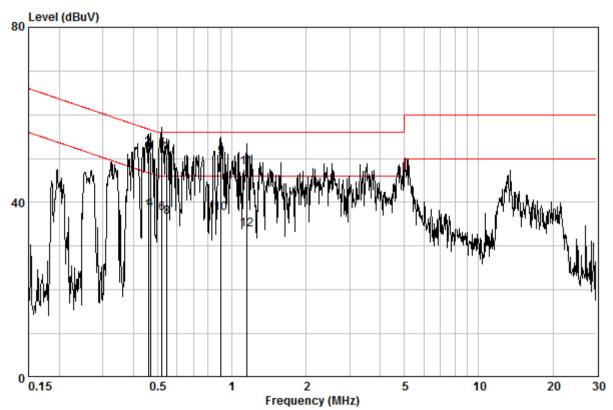
SGS-CSTC Standards Technical Services Co., Ltd. **Shenzhen Branch**

Report No.: SZEM171001110305 13 of 72 Page:

6.2 Conducte	ed Emissions						
Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
	Frequency range (MHz)	Limit (dBuV) Quasi-peak	Average				
	0.15-0.5	66 to 56*	Average 56 to 46*				
Limit:		56					
	0.5-5		46				
		60	50				
	* Decreases with the logarithr						
Test Procedure:	 The mains terminal distur room. The EUT was connected to Impedance Stabilization N impedance. The power can connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single L exceeded. The tabletop EUT was plan ground reference plane. A placed on the horizontal g The test was performed w of the EUT shall be 0.4 m vertical ground reference plane. The LISN unit under test and bonder mounted on top of the gro between the closest points the EUT and associated e In order to find the maximum equipment and all of the in ANSI C63.10: 2013 on con 	o AC power source thr etwork) which provide bles of all other units of SN 2, which was bonde ne way as the LISN 1 f act outlet strip was use ISN provided the rating ced upon a non-metall nd for floor-standing a round reference plane, ith a vertical ground re from the vertical ground re from the vertical ground blane was bonded to the 1 was placed 0.8 m fr d to a ground reference und reference plane. T is of the LISN 1 and the quipment was at least um emission, the relating the face cables must be	rough a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω linear of the EUT were ed to the ground or the unit being d to connect multiple g of the LISN was not ic table 0.8m above the rrangement, the EUT was ference plane. The rear nd reference plane. The rear nd reference plane. The he horizontal ground rom the boundary of the e plane for LISNs This distance was e EUT. All other units of 0.8 m from the LISN 2. ve positions of e changed according to				

Report No.: SZEM171001110305 Page: 14 of 72

Test Setup:	Shielding Room					
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode.					
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

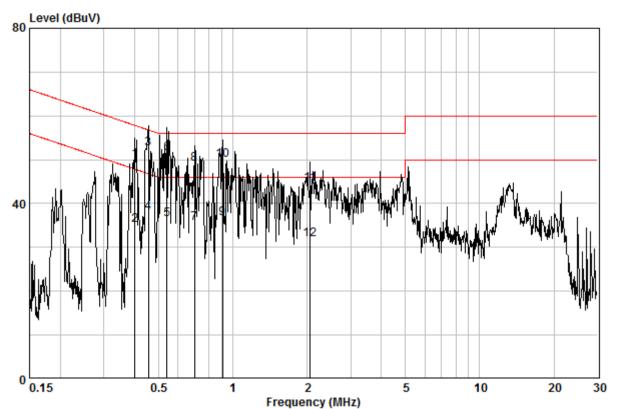

Report No.: SZEM171001110305 Page: 15 of 72

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:


Site : Shielding Room Condition : CE LINE Job No. : 03519RG Test Mode : c

	Freq MHz	Cable Loss dB	LISN Factor dB	Read Level dBuV		Limit Line dBuV	Over Limit dB	Remark
1	0.45878	0.02	9.64	28.59	38.25	46.71	-8.46	AVERAGE
2	0.45878	0.02	9.64	42.70	52.36	56.71	-4.35	QP
3	0.46861	0.02	9.64	41.83	51.49	56.54	-5.05	QP
4	0.46861	0.02	9.64	28.63	38.29	46.54	-8.25	AVERAGE
5	0.52099	0.02	9.64	42.52	52.18	56.00	-3.82	QP
6	0.52099	0.02	9.64	27.74	37.40	46.00	-8.60	AVERAGE
7	0.54644	0.02	9.64	41.35	51.02	56.00	-4.98	QP
8	0.54644	0.02	9.64	26.87	36.54	46.00	-9.46	AVERAGE
9	0.90394	0.03	9.65	40.69	50.37	56.00	-5.63	QP
10	0.90394	0.03	9.65	27.80	37.48	46.00	-8.52	AVERAGE
11	1.147	0.03	9.66	38.35	48.03	56.00	-7.97	QP
12	1.147	0.03	9.66	24.16	33.85	46.00	-12.15	AVERAGE

Report No.: SZEM171001110305 Page: 16 of 72

Neutral line:

Site	: Shielding Room
Condition	: CE NEUTRAL
Job No.	: 03519RG
Test Mode	: c

	Freq	Cable Loss	LISN Factor	Read Level		Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.40187	0.02	9.63	40.16	49.81	57.81	-8.01	QP
2	0.40187	0.02	9.63	25.41	35.06	47.81	-12.75	AVERAGE
3	0.45395	0.02	9.63	42.86	52.51	56.80	-4.30	QP
4	0.45395	0.02	9.63	28.22	37.87	46.80	-8.93	AVERAGE
5	0.54068	0.02	9.63	26.75	36.40	46.00	-9.60	AVERAGE
6	0.54068	0.02	9.63	41.76	51.41	56.00	-4.59	QP
7	0.70096	0.02	9.64	25.85	35.52	46.00	-10.48	AVERAGE
8	0.70096	0.02	9.64	39.33	49.00	56.00	-7.00	QP
9	0.90874	0.03	9.64	26.90	36.57	46.00	-9.43	AVERAGE
10	0.90874	0.03	9.64	40.23	49.90	56.00	-6.10	QP
11	2.055	0.03	9.66	34.80	44.49	56.00	-11.51	QP
12	2.055	0.03	9.66	22.12	31.81	46.00	-14.19	AVERAGE

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

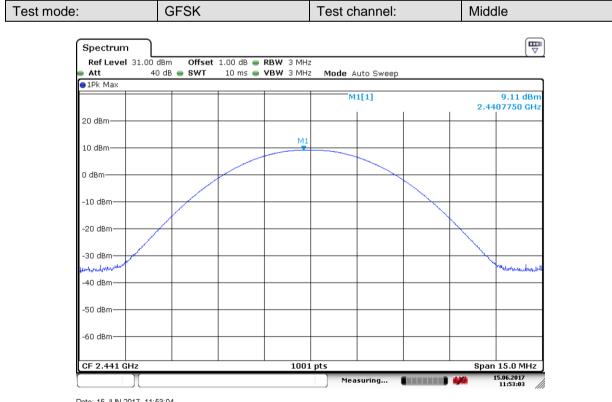
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

Report No.: SZEM171001110305 Page: 17 of 72

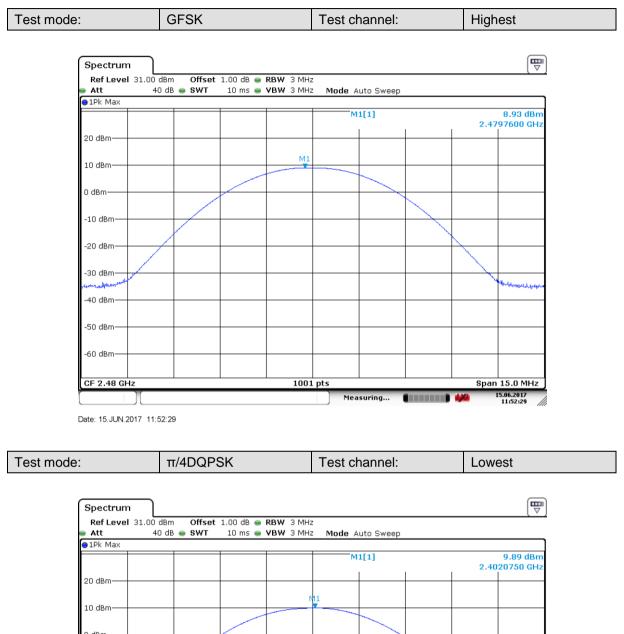
6.3 **Conducted Peak Output Power** Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) Test Method: ANSI C63.10:2013 Section 7.8.5 Spectrum Analyzer E.U.T (Non-Conducted Table Test Setup: **Ground Reference Plane** Remark: Offset the High-Frequency cable loss 1dB in the spectrum analyzer. Limit: 20.97dBm) 125mW Non-hopping transmitting with all kind of modulation and all kind of data Exploratory Test Mode: type. Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ Final Test Mode: modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type. Instruments Used: Refer to section 5.10 for details Test Results: Pass

Report No.: SZEM171001110305 Page: 18 of 72


Measurement Data

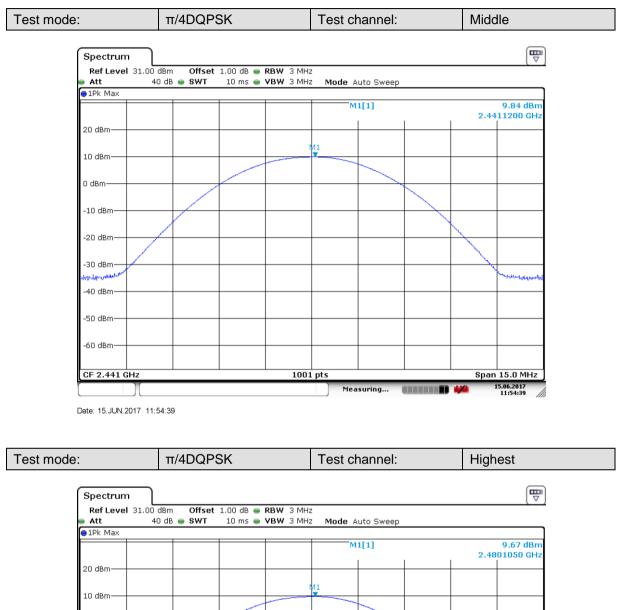
GFSK mode									
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	9.16	20.97	Pass						
Middle	9.11	20.97	Pass						
Highest	8.93	20.97	Pass						
	π/4DQPSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	9.89	20.97	Pass						
Middle	9.84	20.97	Pass						
Highest	9.67	20.97	Pass						
	8DPSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result						
Lowest	10.09	20.97	Pass						
Middle	10.03	20.97	Pass						
Highest	9.87	20.97	Pass						

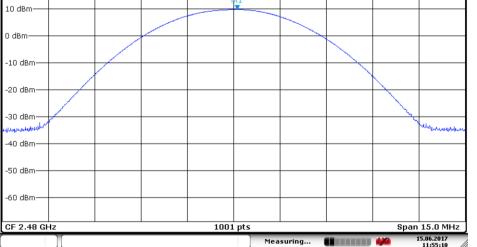
Report No.: SZEM171001110305 Page: 19 of 72


Test plot as follows: Test mode: GFSK Test channel: Lowest The second secon Spectrum Ref Level 31.00 dBm Offset 1.00 dB 👄 RBW 3 MHz Att 40 dB 😑 SWT 10 ms 👄 VBW 3 MHz Mode Auto Sweep 1Pk Max M1[1] 9.16 dBm 2.4017750 GHz 20 dBmм1 10 dBm-0 dBm--10 dBm -20 dBm--30 dBm-Wollwoohto -40 dBm -50 dBm--60 dBm· CF 2.402 GHz 1001 pts Span 15.0 MHz 11:53:36 Measuring... 🚺 🚺 🗰 Date: 15.JUN.2017 11:53:36

Date: 15.JUN.2017 11:53:04

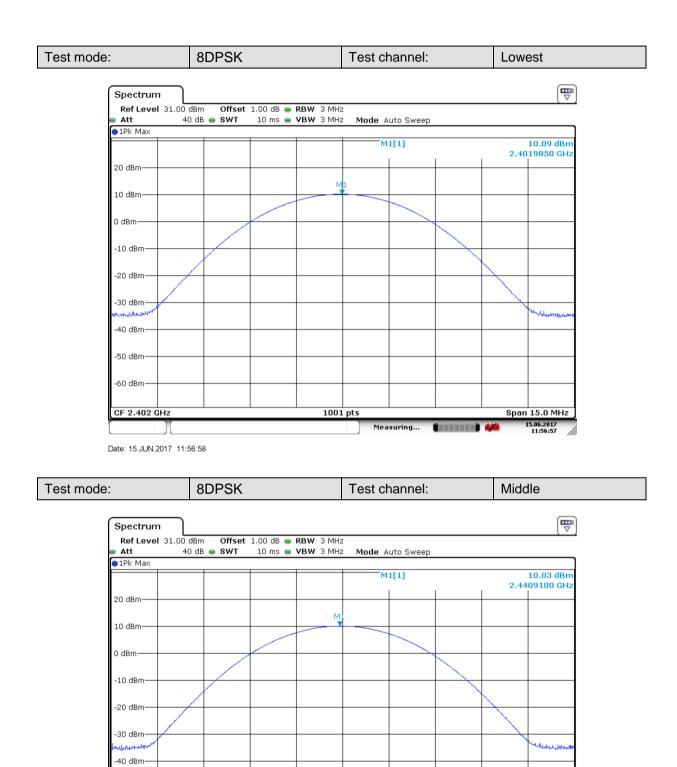
Report No.: SZEM171001110305 Page: 20 of 72




0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -10 d

Date: 15.JUN.2017 11:54:07

Report No.: SZEM171001110305 Page: 21 of 72



Date: 15.JUN.2017 11:55:10

Report No.: SZEM171001110305 Page: 22 of 72

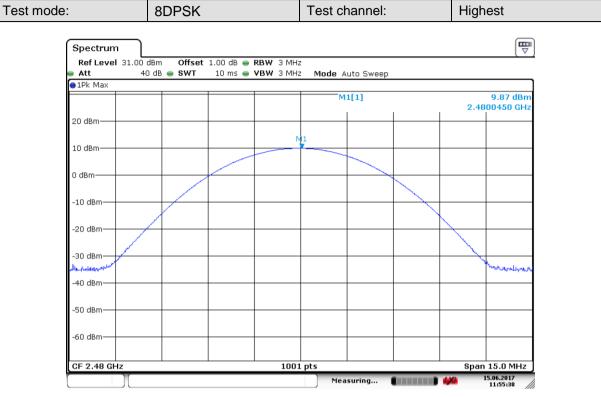
Date: 15.JUN.2017 11:56:10

-50 dBm·

CF 2.441 GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf,-available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

1001 pts


Measuring...

2

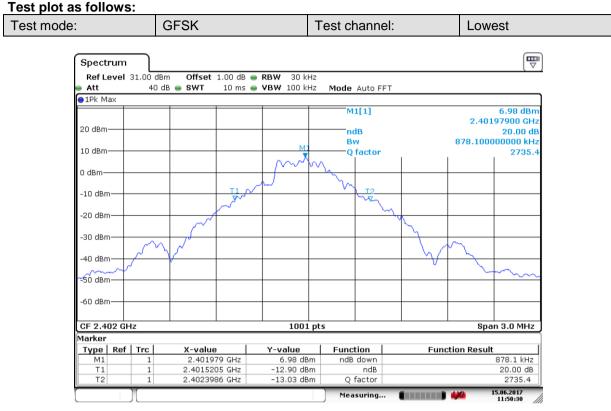
Span 15.0 MHz 15.06.2017 11:56:10

Report No.: SZEM171001110305 Page: 23 of 72

Date: 15.JUN.2017 11:55:39

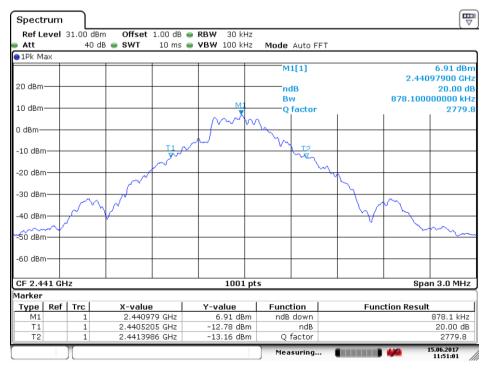
Report No.: SZEM171001110305 Page: 24 of 72

6.4 20dB Occupy Bandwidth


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	NA
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

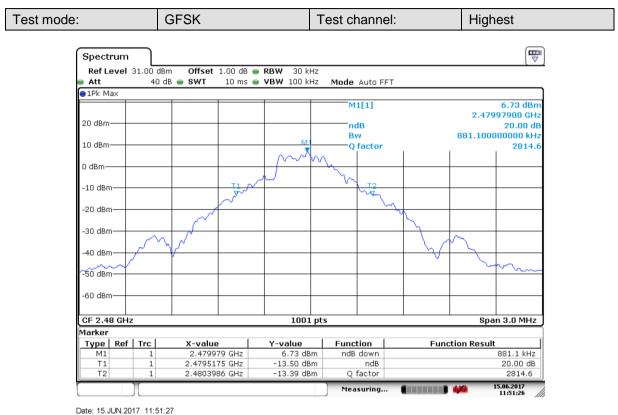
Measurement Data

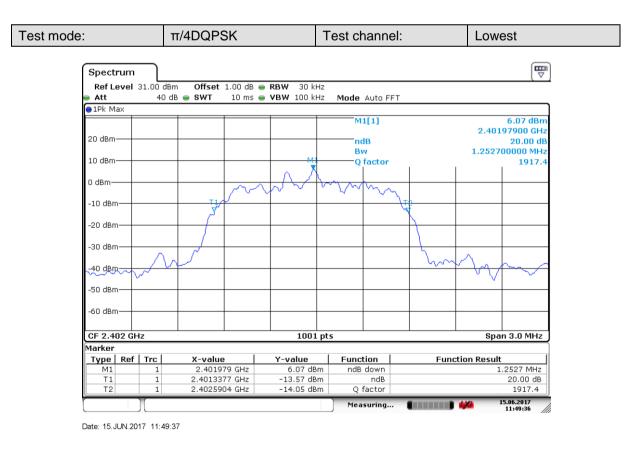
	2	OdB Occupy Bandwidth (kHz	<u>z</u>)
Test channel	GFSK	π/4DQPSK	8DPSK
Lowest	878.1	1252.7	1216.8
Middle	878.1	1252.7	1219.8
Highest	881.1	1252.7	1219.8



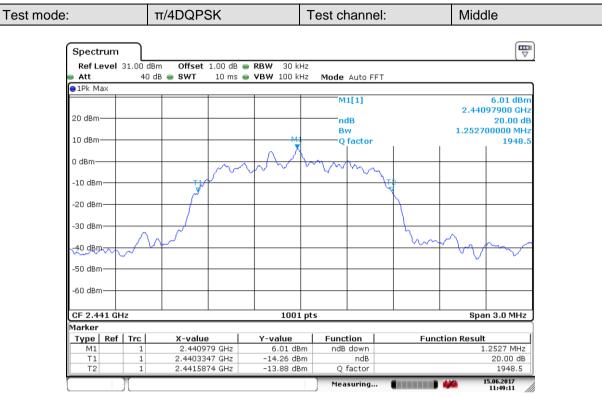
Report No.: SZEM171001110305 Page: 25 of 72

Date: 15.JUN.2017 11:50:31

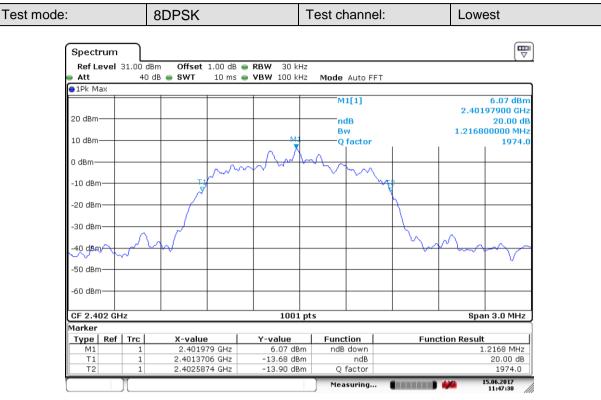




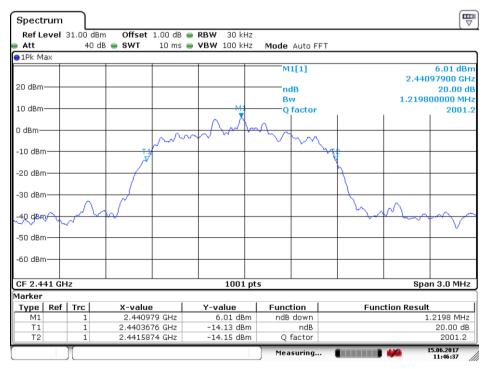
Date: 15.JUN.2017 11:51:01


Report No.: SZEM171001110305 Page: 26 of 72

Report No.: SZEM171001110305 Page: 27 of 72

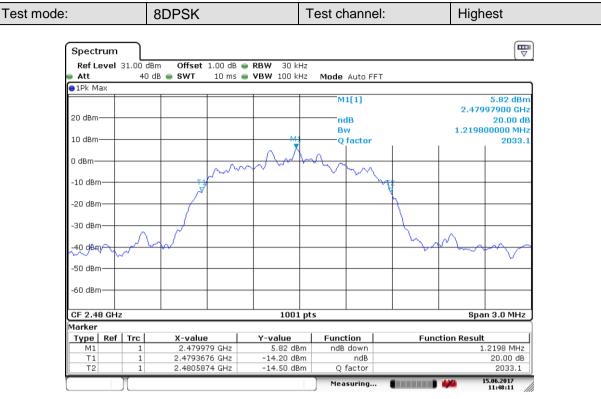

Date: 15.JUN.2017 11:49:12

Date: 15.JUN.2017 11:48:42



Report No.: SZEM171001110305 Page: 28 of 72

Date: 15.JUN.2017 11:47:30



Date: 15.JUN.2017 11:46:38

Report No.: SZEM171001110305 Page: 29 of 72

Date: 15.JUN.2017 11:48:11

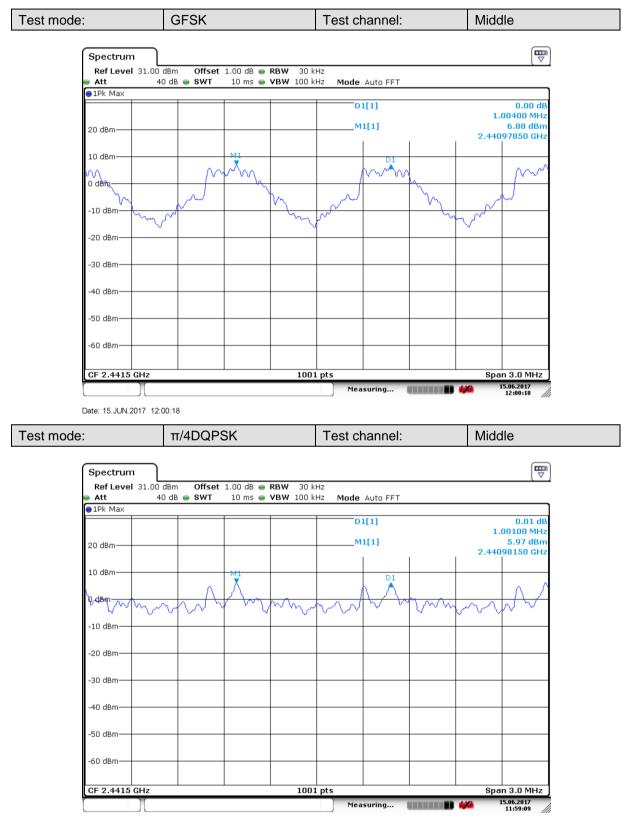
Report No.: SZEM171001110305 Page: 30 of 72

6.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.2
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	2/3 of the 20dB bandwidth
	Remark: the transmission power is less than 0.125W.
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

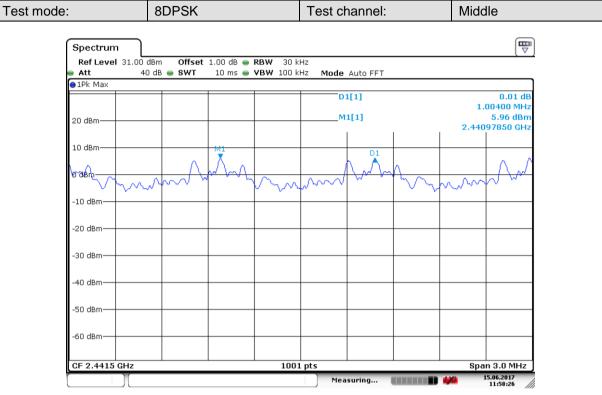
Report No.: SZEM171001110305 Page: 31 of 72

	GFSK mod	le	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	1004	587.4	Pass
	π/4DQPSK m	ode	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	1001	835.1	Pass
	8DPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Middle	1004	813.2	Pass


Note: According to section 6.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)			
GFSK	881.1	587.4			
π/4DQPSK	1252.7	835.1			
8DPSK	1219.8	813.2			

Report No.: SZEM171001110305 Page: 32 of 72


Test plot as follows:

Date: 15.JUN.2017 11:59:09

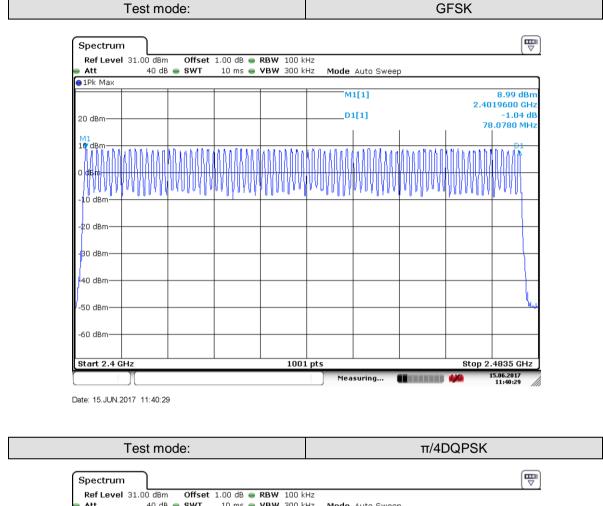
Report No.: SZEM171001110305 Page: 33 of 72

Date: 15.JUN.2017 11:58:26

Report No.: SZEM171001110305 Page: 34 of 72

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) ANSI C63.10:2013 Section 7.8.3 Test Method: Spectrum Analyzer E.U.T 6 Test Setup: Non-Conducted Table **Ground Reference Plane** Limit: At least 15 channels Test Mode: Hopping transmitting with all kind of modulation Instruments Used: Refer to section 5.10 for details Test Results: Pass

6.6 Hopping Channel Number


Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Report No.: SZEM171001110305 Page: 35 of 72

Test plot as follows

⊜1Pk Max		_												
									D	1[1]		75	-0.74 3.1610 M	
20 dBm									M	1[1]			7.92 d	Bn
										1	I.	2.40	17930 (GH
10 ¹ dBm—		_												
MALLAN	ANANAN	ALV.	AMAN	MUA	λıl	AAA	KALAN	MA	MAR	AAAAAAA		NANALAAN	INNA	
D dBm		Juwr	0.000-0.0	V Y V ~ WI	w r		0.046	0.00.001	ruumi	m no kh ana	N V V V V V V V V V V	n a c hai a c c	V W V V V	
-10 dBm														-
														Ļ
-20 dBm		-												-
-30 dBm														۲.
-40 dBm														
-40 abm														
-50 dBm														J,
-60 dBm		_											<u> </u>	

Date: 15.JUN.2017 11:42:32

Report No.: SZEM171001110305 Page: 36 of 72

Te	8DPSK							
Spectrum	ſ							
RefLevel 31. Att	00 dBm Offset 40 dB . SWT	1.00 dB 👄 10 ms 👄	RBW 100 k VBW 300 k		Auto Sweep	0		
⊜1Pk Max								
				D	1[1]		78	-0.27 dB 0.0780 MHz
20 dBm				M	1[1]		2.40	7.92 dBm 17930 GHz
10 ¹ dBm								D1
	MINANA	WWWW	MMM	WWWW	MMM	MMM	WYWW	ΛMM
o abiii								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								<u> </u>
-50 dBm								h.
-60 dBm								
Start 2.4 GHz			100	L pts			Ston 2	.4835 GHz
			100.		suring			11:45:27

Date: 15.JUN.2017 11:45:28

Report No.: SZEM171001110305 Page: 37 of 72

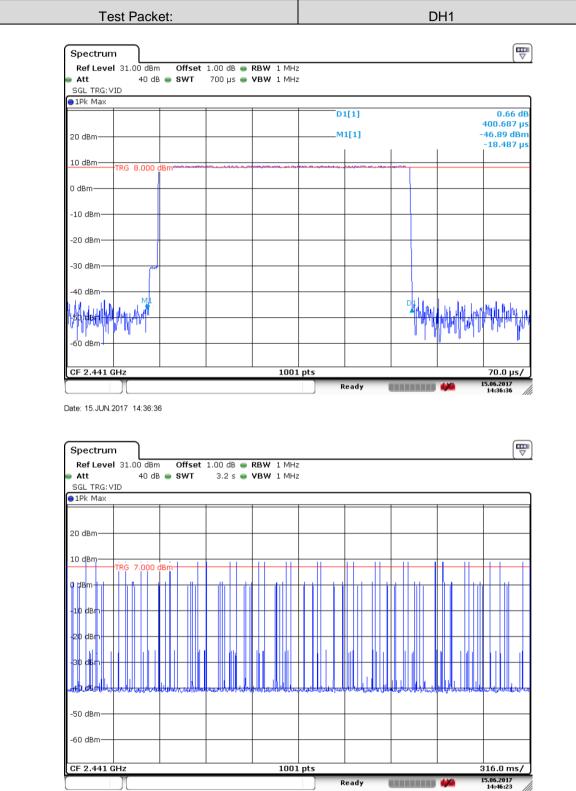
Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) ANSI C63.10:2013 Section 7.8.4 Test Method: Spectrum Analyzer E.U.T Test Setup: Non-Conducted Table **Ground Reference Plane** Instruments Used: Refer to section 5.10 for details Hopping transmitting with all kind of modulation and all kind of data type. Test Mode: 0.4 Second Limit: **Test Results:** Pass

6.7 Dwell Time

Measurement Data

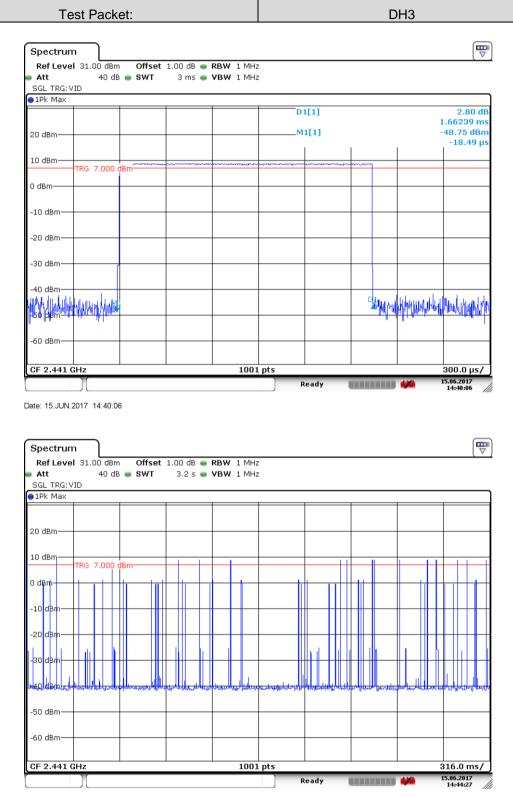
Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.124	≤0.4
GFSK	DH3	0.233	≤0.4
	DH5	0.320	≤0.4
	2-DH1	0.126	≤0.4
π/4DQPSK	2-DH3	0.183	≤0.4
	2-DH5	0.320	≤0.4
	3-DH1	0.122	≤0.4
8DPSK	3-DH3	0.233	≤0.4
	3-DH5	0.379	≤0.4

Report No.: SZEM171001110305 Page: 38 of 72

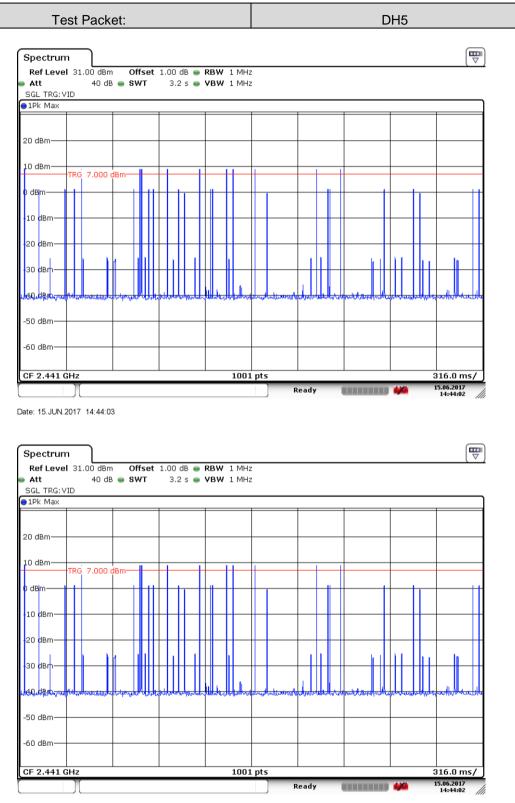

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s On (ms)*total number=dwell time (ms) The middle channel (2441MHz), as below: DH1 time slot=0.401 (ms)*total number=124.31 (ms) DH3 time slot=1.662(ms)* total number = 232.68 (ms) DH5 time slot=2.907 (ms)* total number = 319.77 (ms) 2-DH1 time slot=0.407 (ms)*total number=126.17 (ms) 2-DH3 time slot=1.662 (ms)* total number = 182.82 (ms) 2-DH5 time slot=2.907 (ms)* total number = 319.77 (ms) 3-DH1 time slot=0.408 (ms)*total number = 319.77 (ms) 3-DH1 time slot=0.408 (ms)*total number = 232.68 (ms) 3-DH3 time slot=1.662 (ms)* total number = 232.68 (ms) 3-DH5 time slot=2.912 (ms)* total number = 378.56 (ms)

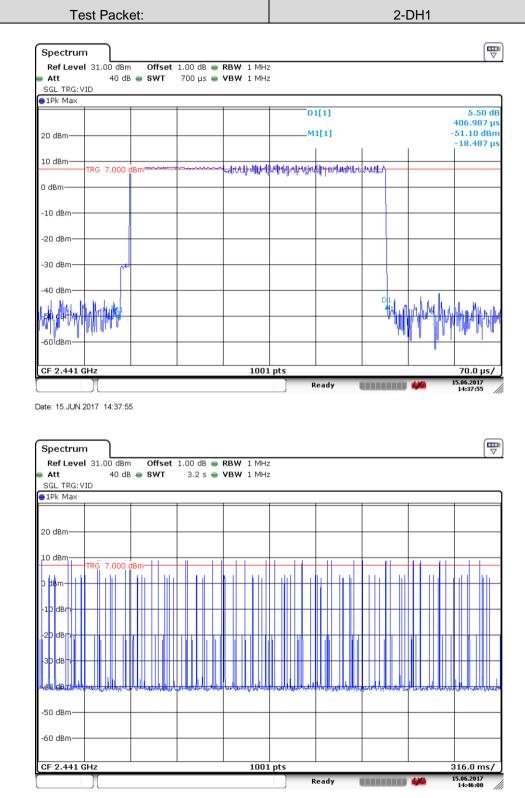
Report No.: SZEM171001110305 Page: 39 of 72


Test plot as follows:

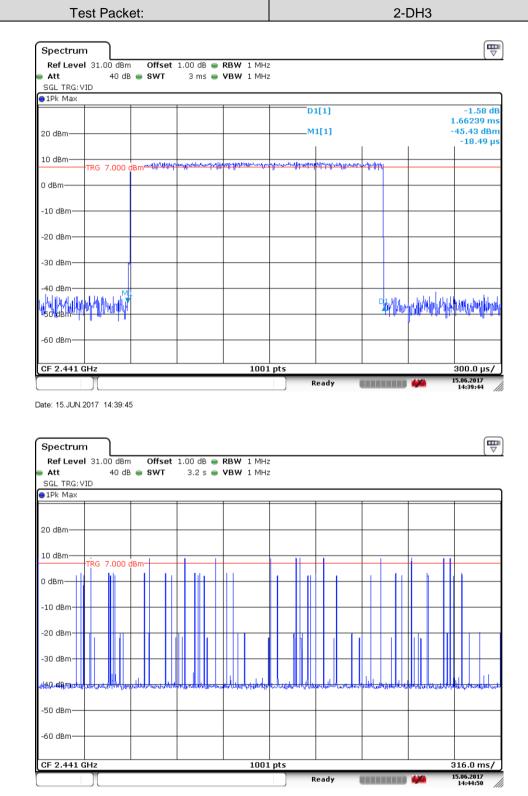
Date: 15.JUN.2017 14:46:23


Report No.: SZEM171001110305 Page: 40 of 72

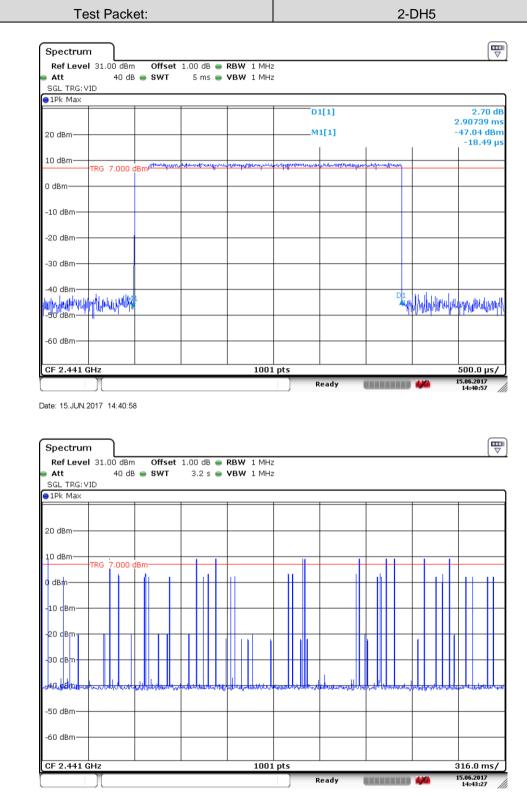
Date: 15.JUN.2017 14:44:27


Report No.: SZEM171001110305 Page: 41 of 72

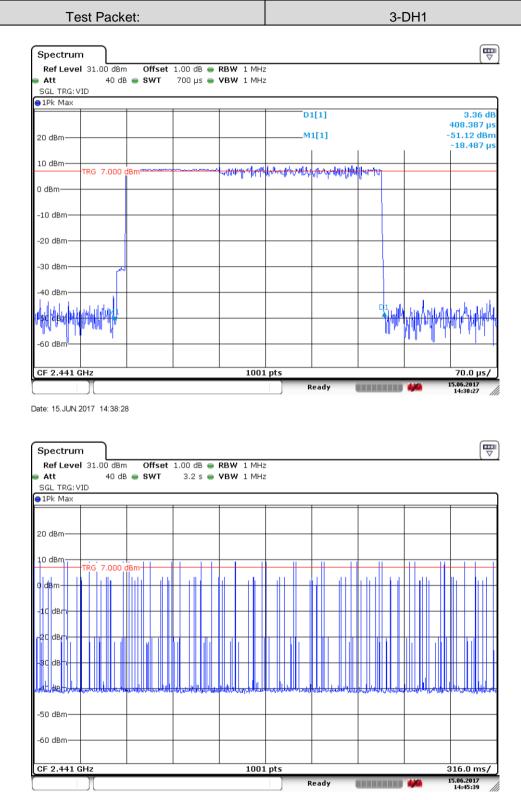
Date: 15.JUN.2017 14:44:03


Report No.: SZEM171001110305 Page: 42 of 72

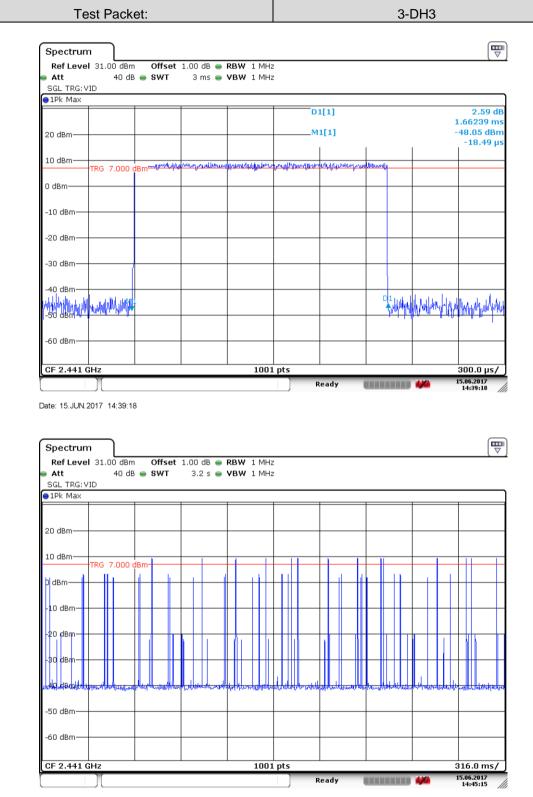
Date: 15.JUN.2017 14:46:00


Report No.: SZEM171001110305 Page: 43 of 72

Date: 15.JUN.2017 14:44:49


Report No.: SZEM171001110305 Page: 44 of 72

Date: 15.JUN.2017 14:43:28


Report No.: SZEM171001110305 Page: 45 of 72

Date: 15.JUN.2017 14:45:39

Report No.: SZEM171001110305 Page: 46 of 72

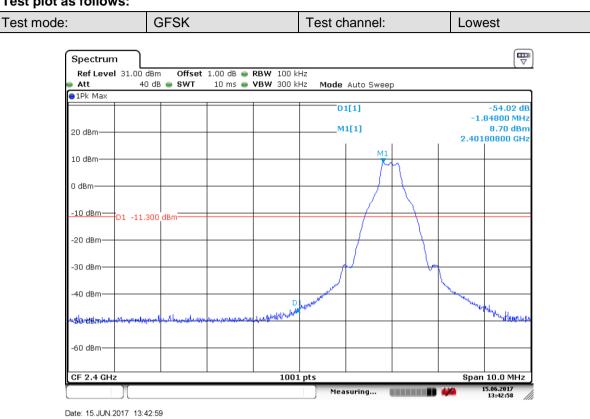
Date: 15.JUN.2017 14:45:15

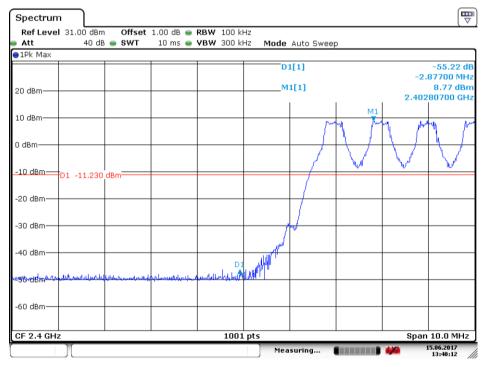
Report No.: SZEM171001110305 Page: 47 of 72

	est Pack	et:					3-	DH5	
	l 31.00 dBn		1.00 dB 👄						
SGL TRG:		3 e swt	s ms 👄	VBW 1 MH	<u> </u>				
●1Pk Max						1[1]			-4.12 di
									2.91239 m
20 dBm—					M	1[1]			-42.34 dBn -18.49 μ
10 dBm									
	-TRG 7.000	dBm c^{lu}uluuruu u	MANGAN AND AND AND AND AND AND AND AND AND A	on water of the	an malle very way a dir		and we will be a second se		
0 dBm									
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm—	M	1							
	Mar Martine	Í					DL	4 Mulumberry	a Mirel Kulon
-50 dBm-	ne ni amina							h h-lea h. Jak	h a we ha
-60 dBm									
00 000									
CF 2.441		1	1	100	l pts		1		500.0 µs/
	GHZ			100.	r pro				
	2017 14:41:2	2		100.		Ready		-	15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve	2017 14:41:2 n el 31.00 dBn	n Offset	1.00 dB •	RBW 1 MH	2	Read y			15.06.2017
Date: 15.JUN.	2017 14:41:2 n el 31.00 dBn 40 dE	n Offset			2	Ready			15.06.2017 14:41:22
Date: 15. JUN. Spectrur Ref Leve Att	2017 14:41:2 n el 31.00 dBn 40 dE	n Offset		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 1Pk Max	2017 14:41:2 n el 31.00 dBn 40 dE	n Offset		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15. JUN. Spectrur Ref Leve Att SGL TRG: \	2017 14:41:2 n el 31.00 dBn 40 dE	n Offset		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 1Pk Max	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm	2017 14:41:2 n el 31.00 dBn 40 dE	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG: PIPk Max 20 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG: 10 dBm C dBm 10 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ DPK Max 20 dBm 10 dBm C dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG: 10 dBm C dBm 10 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm 10 dBm -10 dBm -20 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ PIPk Max 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ 10 dBm	2017 14:41:2 n el 31.00 dBn 40 dE VID	n Offset 3 • SWT		RBW 1 MH	2	Ready			15.06.2017 14:41:22
Date: 15.JUN. Spectrur Ref Leve Att SGL TRG:\ PIPk Max 20 dBm 10 dBm 10 dBm 20 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	2017 14:41:2 n el 31.00 dBn 40 dE /ID -TRG 7.000	n Offset 3 • SWT		RBW 1 MH		Ready			15.06.2017 14:41:22

Date: 15.JUN.2017 14:43:05

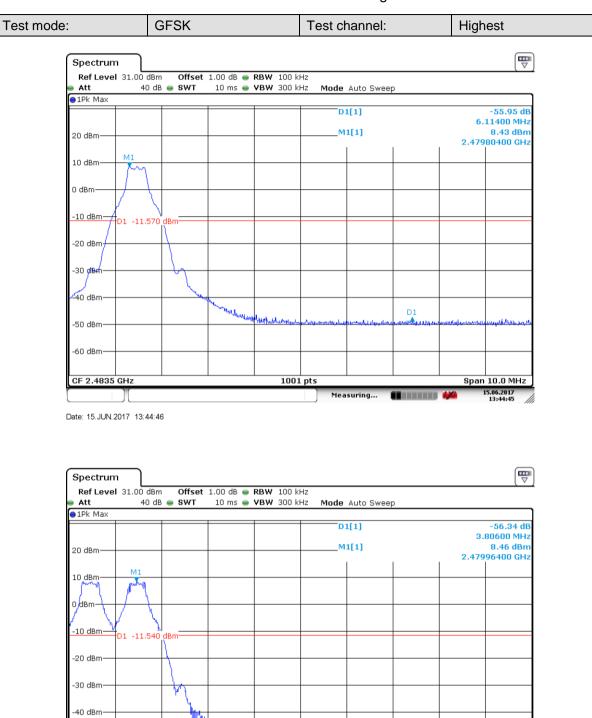
Report No.: SZEM171001110305 Page: 48 of 72


6.8 Band-ed	Ige for RF Conducted Emissions
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


6.8 Band-edge for RF Conducted Emissions

Report No.: SZEM171001110305 49 of 72 Page:

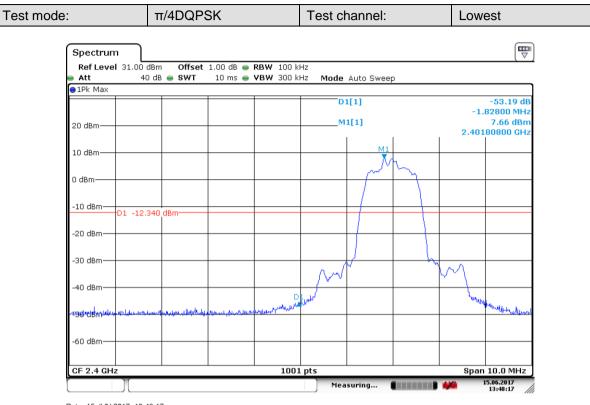
Test plot as follows:



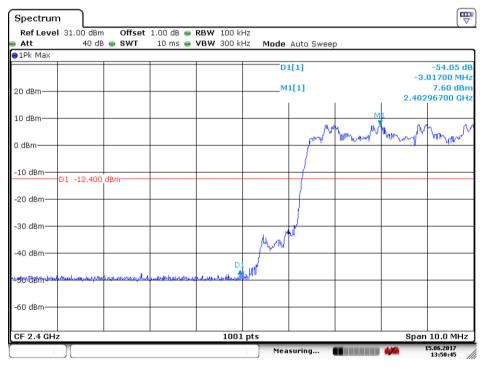
Date: 15.JUN.2017 13:40:13

Report No.: SZEM171001110305 Page: 50 of 72

-60 dBm GF 2.4835 GHz 1001 pts Span 10.0 MHz Measuring... Measuring... 15.66.2017 13:41:53


MAHNA

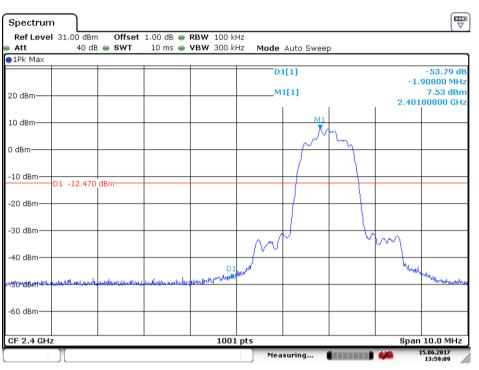
-50 dBm

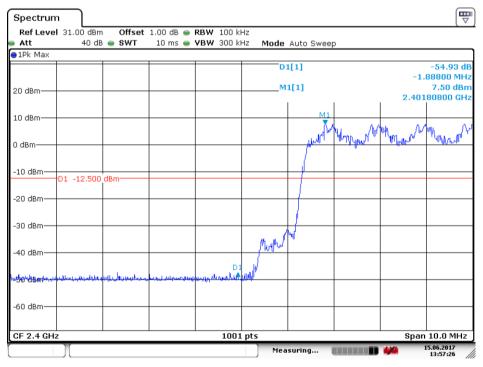

D1

Report No.: SZEM171001110305 Page: 51 of 72

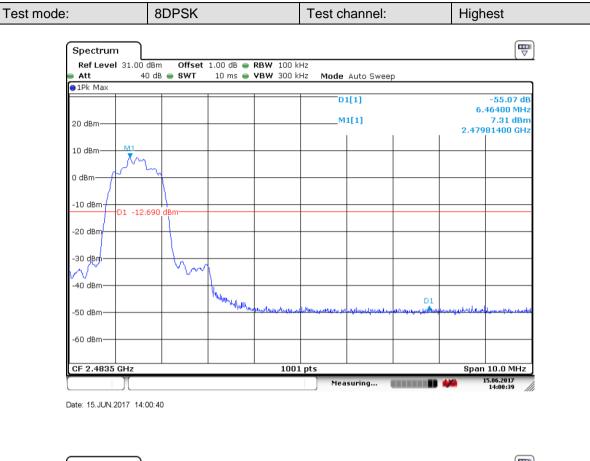

Date: 15.JUN.2017 13:48:17

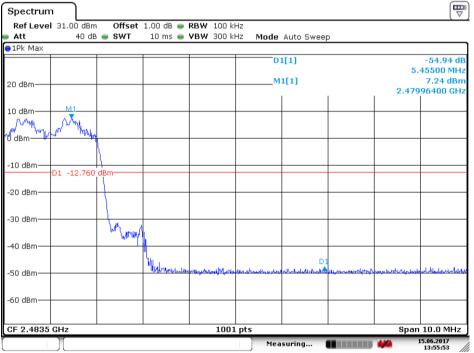
Date: 15.JUN.2017 13:50:45


Report No.: SZEM171001110305 Page: 52 of 72



Report No.: SZEM171001110305 Page: 53 of 72


Date: 15.JUN.2017 13:59:09



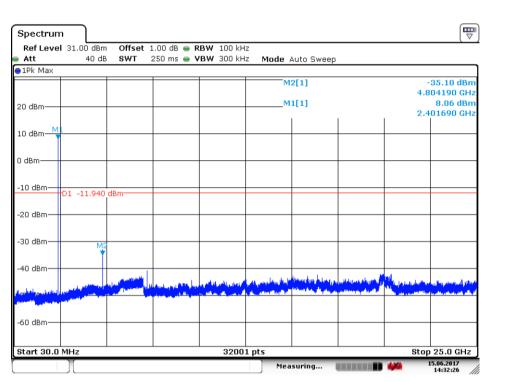
Date: 15.JUN.2017 13:57:27

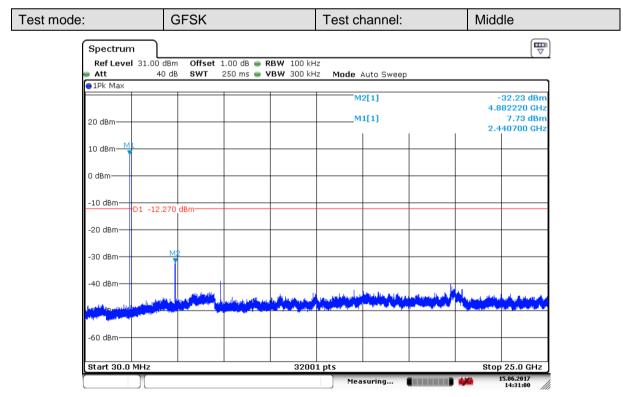
Report No.: SZEM171001110305 Page: 54 of 72

Date: 15.JUN.2017 13:55:54

Report No.: SZEM171001110305 Page: 55 of 72

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 Section 7.8.8					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of π /4DQPSK modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					


6.9 Spurious RF Conducted Emissions


Report No.: SZEM171001110305 Page: 56 of 72

Test plot as follows:

Date: 15.JUN.2017 14:32:27

Date: 15.JUN.2017 14:31:00

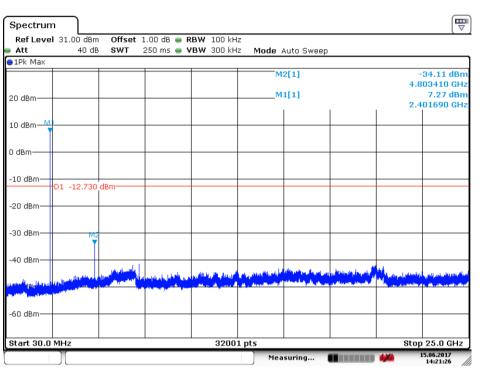
Report No.: SZEM171001110305 Page: 57 of 72

Test mode:	GFSK	Test channel:	Highest			
Spectrum Ref Level 31.00	dBm Offset 1.00 dB	Hz				
	40 dB SWT 250 ms - VBW 300 k					
		M2[1]	-34.81 dBm 4.959470 GHz			
20 dBm		M1[1]	8.07 dBm 2.479710 GHz			
10 dBm						
0 dBm						
-10 dBm	930 dBm					
-20 dBm						
-30 dBm	MP					
-40 dBm						
Western and the second			An and a set the set and a set a set and a set a set a set a			
-60 dBm						
			Stop 35.0 CU			
Start 30.0 MHz	320	01 pts Measuring	Stop 25.0 GHz 15.06.2017 14:29:46			
Date: 15.JUN.2017 14	Date: 15.JUN.2017 14:29:46					
Test mode:	π/4DQPSK	Test channel:	Lowest			
Spectrum Ref Level 31.00	dBm Offset 1.00 dB 👄 RBW 100 k	L17				
	40 dB SWT 250 ms - VBW 300 k]			
		M2[1]	-37.99 dBm 4.803410 GHz			
20 dBm		M1[1]	7.26 dBm 2.401690 GHz			
10 dBm						

0 dBm· -10 dBm-D1 -12.740 dBm--20 dBm -30 dBm-Mi T 40 dBm والمحدوقة والروار والمكافعة والمحال والمحارك والقرو فأعراقه لمالك -60 dBm-Start 30.0 MHz 32001 pts Stop 25.0 GHz 5.06.2017 14:23:59 Measuring...

Date: 15.JUN.2017 14:23:59

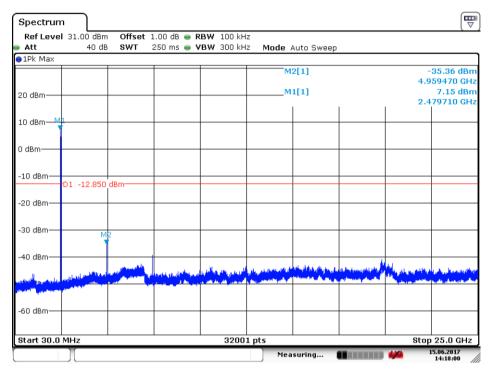
Report No.: SZEM171001110305 Page: 58 of 72


est mode:	π/4DQPSK		Test channel:		Middle			
Spectrum Ref Level 31) dB 😑 RBW 100 kH						
Att 1Pk Max	40 dB SWT 250	ms 🖶 VBW 300 kH		0				
			M2[1]		-34.76 dBm 4.881440 GHz 7.36 dBm			
20 dBm					2.440700 GHz			
10 dBm								
0 dBm								
-10 dBm-01	-12.640 dBm							
-20 dBm								
-30 dBm	M2							
-40 dBm	والمربعة المراجع			A A A A A A A A A A A A A A A A A A A				
and and a second se					an a			
-60 dBm								
Start 30.0 MHz		3200	1 pts		Stop 25.0 GHz			
			Measuring	••••••	15.06.2017 14:25:32			
Date: 15.JUN.2017	14:25:32							
est mode:	π/4DQPSK		Test channel:		Highest			
est mode:	π/4DQPSK		Test channel:		Highest			
Spectrum					Highest			
Spectrum Ref Level 31 Att	.00 dBm Offset 1.00	0 dB - RBW 100 kH ms - VBW 300 kH	Z	2				
Spectrum Ref Level 31	.00 dBm Offset 1.00) dB 👄 RBW 100 kH	Z	2				
Spectrum Ref Level 31 Att	.00 dBm Offset 1.00) dB 👄 RBW 100 kH	z z Mode Auto Sweej		-34.77 dBm			
Spectrum Ref Level 31 Att PIPk Max	.00 dBm Offset 1.00) dB 👄 RBW 100 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 Att PIPk Max 20 dBm	.00 dBm Offset 1.00) dB 👄 RBW 100 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 • Att • 1Pk Max 20 dBm 10 dBm • 0 dBm	.00 dBm Offset 1.00 40 dB SWT 250) dB 👄 RBW 100 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 • Att • 1Pk Max 20 dBm 10 dBm • 0 dBm	.00 dBm Offset 1.00) dB 👄 RBW 100 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 Att PIPK Max 20 dBm 10 dBm -10 dBm -10 dBm D1	.00 dBm Offset 1.00 40 dB SWT 250) dB 👄 RBW 100 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 Att PIPK Max 20 dBm 10 dBm -10 dBm -10 dBm D1 -20 dBm	-12.870 dBm) dB 👄 RBW 100 kH	z Mode Auto Sweey M2[1] M1[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 Att PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm	-12.870 dBm	0 dB RBW 100 kH ms VBW 300 kH	z Mode Auto Sweej M2[1]		-34.77 dBm 4.959470 GHz 7.13 dBm			
Spectrum Ref Level 31 Att PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -30 dBm	-12.870 dBm	0 dB RBW 100 kH ms VBW 300 kH	Z Mode Auto Swee M2[1] M1[1]		-34.77 dBm 4.959470 GHz 7.13 dBm 2.479710 GHz			
Spectrum Ref Level 31 Att 1Pk Max 20 dBm 10 dBm dBm -10 dBm -10 dBm	-12.870 dBm	0 dB RBW 100 kH ms VBW 300 kH	Z Mode Auto Sweep M2[1] M1[1]		-34.77 dBm 4.959470 GHz 7.13 dBm 2.479710 GHz			

Date: 15.JUN.2017 14:28:00

Report No.: SZEM171001110305 Page: 59 of 72

Date: 15.JUN.2017 14:21:27


₽ Spectrum Ref Level 31.00 dBm Offset 1.00 dB 👄 RBW 100 kHz 250 ms 👄 VBW 300 kHz Att 40 dB SWT Mode Auto Sweep 1Pk Max M2[1] -34.19 dBn 4.881440 GHz 7.19 dBm M1[1] 20 dBm-2.440700 GHz 10 dBm-0 dBm -10 dBm-D1 -12.810 dBm--20 dBm -30 dBm 40 dBm-- A.A. -60 dBm Start 30.0 MHz 32001 pts Stop 25.0 GHz 5.06.2017 14:19:48 Measuring... **CONTRACTOR**

Date: 15.JUN.2017 14:19:49

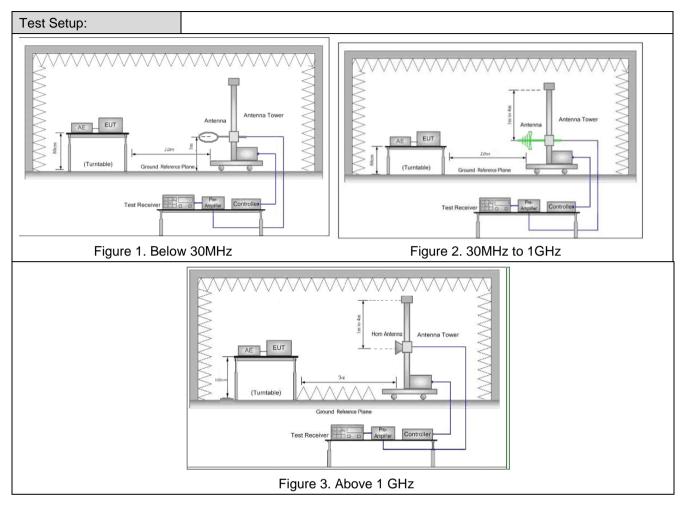
Report No.: SZEM171001110305 Page: 60 of 72

Test mode: 8DPSK Test channel: Highest				
	Test mode:	8DPSK	Test channel:	Highest

Date: 15.JUN.2017 14:18:01

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported

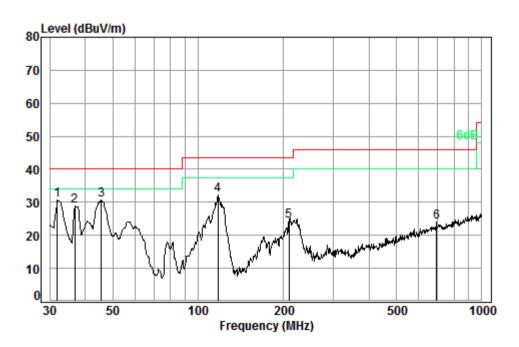


Report No.: SZEM171001110305 Page: 61 of 72

6.10 Radia	ted Spurious Emission							
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)							
	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak		
Dessiver Setup	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak		
Receiver Setup:	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	MHz-1GHz Quasi-peak		100 kHz	300kHz	Quasi-peak		
			Peak	1MHz	3MHz	Peak		
	Above 1GHz		Peak	1MHz	10Hz	Average		
	Frequency	Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measurement distance (m)		
	.009MHz-0.490MHz	240	0/F(kHz)	-	-	300		
	.490MHz-1.705MHz	240	00/F(kHz)	-	-	30		
	.705MHz-30MHz	30		-	-	30		
	30MHz-88MHz	100		40.0	Quasi- peak	3		
	88MHz-216MHz	150)	43.5	Quasi- peak	3		
Limit:	216MHz-960MHz	200)	46.0	Quasi- peak	3		
	960MHz-1GHz	500)	54.0	Quasi- peak	3		
	Above 1GHz	500		54.0	Averag e	3		
	emissions is 200 applicable to the	Note: 15.35(b), Unless otherwise specified, emissions is 20dB above the maximur applicable to the equipment under test peak emission level radiated by the de				emission limit		

Report No.: SZEM171001110305 Page: 62 of 72

Report No.: SZEM171001110305 Page: 63 of 72

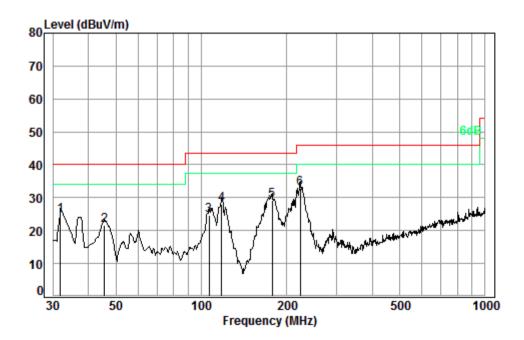

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2402MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass
	1 000

Report No.: SZEM171001110305 Page: 64 of 72

6.10.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 3m VERTICAL Job No. : 03519RG


Test mode: c

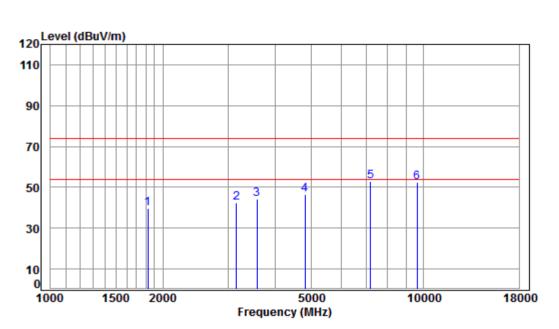
	Freq			Preamp Factor				Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 pp 4 5 6	31.95 36.77 45.53 117.36 209.31 691.99	0.72 1.25	14.91 10.66 8.08 10.68	27.35 27.33 27.30 27.09 26.66 27.42	40.58 46.59 50.11 38.90	28.76 30.67 32.35 24.38	40.00 43.50 43.50	-11.24 -9.33 -11.15 -19.12

Report No.: SZEM171001110305 Page: 65 of 72

Test mode: Charge + Transmitting Horizontal

Condition: 3m HORIZONTAL

Job No.	:	03519RG
Test mode	• :	c


est	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2	31.95 45.53	0.60		27.35 27.30				
3	106.76	1.22	8.76	27.15	41.95	24.78	43.50	-18.72
4 5 6 p	118.19 177.51 p 222.95	1.37	9.80	27.08 26.78 26.62	44.90	29.29	43.50	-14.21
6 p		1.53		26.62				

Report No.: SZEM171001110305 Page: 66 of 72

6.10.2 Transmitter Emission above 1GHz

Test mode: GFSK (DH1) Test channel: Lowest Remark: Peak Horizontal
--

Condition:	3m HORIZONTAL
Job No :	11103RG
Mode :	2402 TX SE
Note :	BT

Freq								Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1824.302	5.09	27.16	41.60	49.18	39.83	74.00	-34.17	Peak
3150.237	6.13	31.59	42.14	47.03	42.61	74.00	-31.39	Peak
3577.463	6.55	32.43	42.24	47.48	44.22	74.00	-29.78	Peak
4804.000	7.89	34.16	42.47	46.92	46.50	74.00	-27.50	peak
7206.000	10.08	36.42	40.71	47.20	52.99	74.00	-21.01	peak
9608.000	10.75	37.52	37.74	42.11	52.64	74.00	-21.36	peak
	MHz 1824.302 3150.237 3577.463 4804.000 7206.000	Freq Loss MHz dB 1824.302 5.09 3150.237 6.13 3577.463 6.55 4804.000 7.89 7206.000 10.08	Freq Loss Factor MHz dB dB/m 1824.302 5.09 27.16 3150.237 6.13 31.59 3577.463 6.55 32.43 4804.000 7.89 34.16 7206.000 10.08 36.42	Freq Loss Factor Factor MHz dB dB/m dB 1824.302 5.09 27.16 41.60 3150.237 6.13 31.59 42.14 3577.463 6.55 32.43 42.24 4804.000 7.89 34.16 42.47 7206.000 10.08 36.42 40.71	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1824.302 5.09 27.16 41.60 49.18 3150.237 6.13 31.59 42.14 47.03 3577.463 6.55 32.43 42.24 47.48 4804.000 7.89 34.16 42.47 46.92 7206.000 10.08 36.42 40.71 47.20	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1824.302 5.09 27.16 41.60 49.18 39.83 3150.237 6.13 31.59 42.14 47.03 42.61 3577.463 6.55 32.43 42.24 47.48 44.22 4804.000 7.89 34.16 42.47 46.92 46.50 7206.000 10.08 36.42 40.71 47.20 52.99	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1824.302 5.09 27.16 41.60 49.18 39.83 74.00 3150.237 6.13 31.59 42.14 47.03 42.61 74.00 3577.463 6.55 32.43 42.24 47.48 44.22 74.00 4804.000 7.89 34.16 42.47 46.92 46.50 74.00 7206.000 10.08 36.42 40.71 47.20 52.99 74.00	CableAntPreampReadLimitOverFreqLossFactorFactorLevelLevelLimitLimitMHzdBdB/mdBdBuVdBuV/mdBuV/mdBuV/mdB1824.3025.0927.1641.6049.1839.8374.00-34.173150.2376.1331.5942.1447.0342.6174.00-31.393577.4636.5532.4342.2447.4844.2274.00-29.784804.0007.8934.1642.4746.9246.5074.00-27.507206.00010.0836.4240.7147.2052.9974.00-21.019608.00010.7537.5237.7442.1152.6474.00-21.36

Report No.: SZEM171001110305 Page: 67 of 72

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

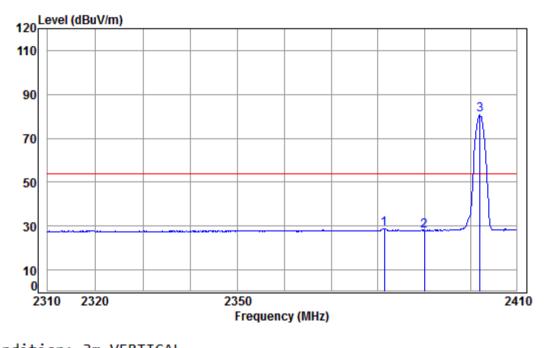
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM171001110305 68 of 72 Page:

6.11 Restricted bands around fundamental frequency						
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic C	Chamber)			
	Frequency	Limit (dBuV/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
Limit:	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
		54.0	Average Value			
	Above 1GHz	74.0	Peak Value			
Test Setup:						
Test Setup:						
Figure 1. 30MH	Iz to 1GHz	Figure 2. Above 1 GHz				

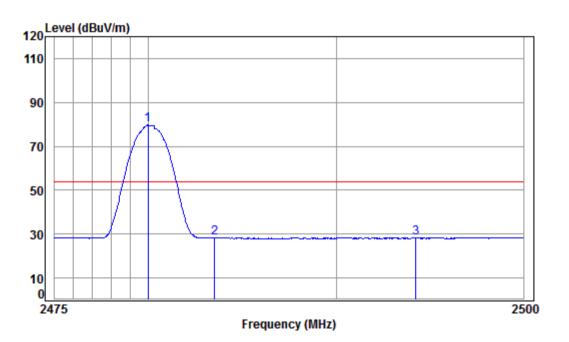

Report No.: SZEM171001110305 Page: 69 of 72

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference- receiving antenna, which was mounted on the top of a variable- height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 				
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.				
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Report No.: SZEM171001110305 Page: 70 of 72

Test plot as follows	s:					
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Average	Vertical

Condition:	3m VERTICAL
Job No :	11103RG
Mada I	2402 Band ad


Mode	- :	2402	Band	edge
Note	:	BT		
			Cable	Ant

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 pp	2381.370 2390.000 2402.047	5.47	29.08	41.87	35.37	28.05	54.00	-25.95	-

Report No.: SZEM171001110305 Page: 71 of 72

Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Average	Vertical
------------------	------------	---------------	---------	---------	---------	----------

Condition:	3m VERTICAL				
Job No :	11103RG				
Mada .	2490 Band ad				

Mode	:	2480	Band	edge
Note	:	BT		

	Freq			Preamp Factor					
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2479.955 2483.500 2494.253	5.60	29.35	41.91	35.20	28.24	54.00	-25.76	Average

Report No.: SZEM171001110305 Page: 72 of 72

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1710011103RG