	BUREAU VERITAS
	FCC Test Report (BT-LE)
Report No.:	RF171031D16C-3
FCC ID:	2AN9V-DVTRF001
Test Model:	DVTRF001
Received Date:	June 21, 2019
Test Date:	July 17 to 29, 2019
Issued Date:	Aug. 13, 2019
Applicant:	Devialet
Address:	10 Place Vendome 75001 Paris France
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022
	ANHU.
	TAF
	Iac-MRA
	Testing Laboratory 2022
	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted
report are not indicative or representativ unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writ	is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time
mention, the uncertainty of measurement	the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	ease	e Control Record	3
1	C	Certificate of Conformity	4
2	S	Summary of Test Results	5
	1 2	Measurement Uncertainty Modification Record	
3	G	General Information	6
3333	5.1 5.2 5.3 5.4 5.4.1 5.5	General Description of EUT (BT-LE) Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards	8 9 .11 12 13
4	Т	est Types and Results	16
4 4 4 4 4 4 4 4 4	.1.2 .1.3 .1.4 .1.5 .1.6 .1.7 .2 .2.1 .2.2	Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement	 16 17 18 19 20 21 26 26 26 26
		Test Procedures Deviation from Test Standard	
4 4 4 4 4 4	.2.5 .2.6 .2.7 .3 .3.1 .3.2 .3.3	Test Setup EUT Operating Conditions Test Results Conducted Output Power Measurement Limits of Conducted Output Power Measurement Test Setup Test Instruments Test Procedures.	27 27 28 30 30 30 30
4	.3.5	Deviation from Test Standard	30
		EUT Operating Conditions	
4 5		Test Results	
		lix – Information of the Testing Laboratories	
ΑP	pene		55

	Re	elease Control R	ecord	
Issue No.	Description			Date Issued
RF171031D16C-3	Original release.			Aug. 13, 2019
		Daga Na. 2 / 22		

1Certificate of ConformityProduct:WCBN3507A-D6Brand:DevialetTest Model:DVTRF001Sample Status:R&D SAMPLEApplicant:DevialetTest Date:July 17 to 29, 2019Standards:47 CFR FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Phoenix Huang / Specialist	, Date:	Aug. 13, 2019	
Approved by :	May Chen / Manager	_, Date:	Aug. 13, 2019	

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks						
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -20.25dB at 0.16171MHz.						
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3dB at 896.26MHz.						
15.247(b)	Conducted power	PASS	Meet the requirement of limit.						

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.8 dB
	1GHz ~ 6GHz	5.0 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	WCBN3507A-D6
Brand	Devialet
Test Model	DVTRF001
Status of EUT	R&D SAMPLE
Power Supply Rating	3.3Vdc from host equipment
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1Mbps
Operating Frequency	2.402 ~ 2.480 GHz
Number of Channel	40
Output Power	1.303 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. This report is prepared for FCC class II change. The difference compared with the Report No.: RF140808E04X-3 as the following:

• Add one antenna set.

Original									
original				Antenna se	et 1				
Transmitter Circuit	Brand	Model	Antenna Type	2.4GHz Gain <with cable<br="">loss> (dBi)</with>	5GHz Gain <with cable="" loss=""> (dBi)</with>	2.4GHz Cable Loss (dB)	5G Cable Loss (dB)	Connector Type	Cable Length (mm)
Chain (0)	WNC	81-EBJ15.0 05	PIFA	3.62	Band 1&2: 3.08 Band 3: 4.76 Band 4: 4.76	1.15	Band 1&2:1.70 Band 3: 1.74 Band 4: 1.79	IPEX	300
Chain (1)	WNC	81-EBJ15.0 05	PIFA	3.62	Band 1&2: 3.08 Band 3: 4.76 Band 4: 4.76	1.15	Band 1&2:1.70 Band 3: 1.74 Band 4: 1.79	IPEX	300
				Antenna se	et 2				
Transmitter Circuit	Brand	Model	Antenna Type	2.4GHz Gain <with cable<br="">loss> (dBi)</with>	5GHz Gain <with cable="" loss=""> (dBi)</with>	Cable Los (dB)	Connector Ty	/nei	Length m)
Chain (0)	Tongda	T-543-82010 44-A (Ant 1)	PIFA	3.572	Band 1&2: 3.002 Band 3: 4.546 Band 4: 4.416	NA	IPEX	7	7
Chain (1)	Tongda	T-543-82010 44-A (Ant 2)	PIFA	3.325	Band 1&2: 2.942 Band 3: 4.622 Band 4: 4.586	NA	IPEX	6	1
				Antenna se	et 3				
Transmitter Circuit	Brand	Model	Antenna Type	2.4GHz Gain <with cable<br="">loss> (dBi)</with>	5GHz Gain <with cable="" loss<br="">(dBi)</with>	s> (Cable Loss (dB) Connector T		r Type
Chain (0)	ethertronics	M830520	chip	1.1	3.2		NA	IPE	x
Chain (1)	ethertronics	M830520	chip	1.1	3.2		NA	IPE	x
				Antenna se					
Transmitter Circuit	Brand	Model	Antenna Type	2.4GHz Gain <with cable<br="">loss> (dBi)</with>	5GHz Gain <with cable="" loss<br="">(dBi)</with>	s> (Cable Loss (dB)	Connecto	r Type
Chain (0)	ethertronics	1002298	PIFA	3.6	5.1		NA	IPE	x
Chain (1)	ethertronics	1002298	PIFA	3.6	5.1		NA	IPE	x

Newly	Newly Antenna set 5									
Transmitter Circuit	Brand	Model	Antenna Type	2.4GHz Gain <with cable<br="">loss> (dBi)</with>	5GHz Gain <with cable="" loss=""> (dBi)</with>	2.4GHz Cable Loss (dB)	5G Cable Loss (dB)	Connector Type	Cable Length (mm)	
Chain (0)	Devialet	DVT-BA-M-1 311-P	Monopole G	3.4	5.8	0.8	1.5	IPEX	150	
Chain (1)	Devialet	DVT-BA-PF- 1408-P	IFA	5.2	3.3	0.8	1.5	IPEX	150	

Note:

1. All of antenna can be application for WLAN and Bluetooth.

- 2. The Bluetooth technology will fix transmission on Chain (0)
- 2. According to above condition, only AC Power Conducted Emission, Radiated Emissions and Conducted power test items need to be performed. And all data were verified to meet the requirements.
- 3. There are Bluetooth technology and WLAN technology used for the EUT.
- 4. WLAN <5GHz> and Bluetooth technology can transmit at same time.
- 5. The EUT support multiple function, therefore the WLAN OFDM will be cover BT OFDM (low power) scenario.
- 6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 Test Mode Applicability and Tested Channel Detail

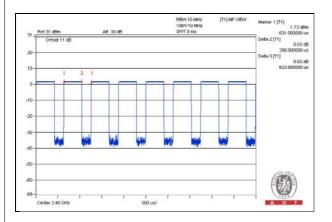
Band	RE≥1G					DESCRIPTION
Band		RE<1G	PLC	APCM		DESCRIPTION
Band	\checkmark	\checkmark	\checkmark	\checkmark		-
te: The EUT's	ledge Measure Power Line C antenna had	Conducted Emission been pre-tested on the p	APCM: Antenn	a Port Cond	ucted Measureme	ent when positioned on Y-pl a
	5⊓2) & 2-pian	e (above 1GHz).				
adiated Er	<u>nission Te</u>	<u>st (Above 1GHz):</u>				
between architect	available n ure).	conducted to deterr nodulations, data ra s) was (were) selecto	tes and antenna p	orts (if El	JT with antenr	
AVAILABL	E CHANNEL	TESTED CHANNEL	MODULATION TYP	E DATA	RATE (Mbps)	
0 t	to 39	0, 19, 39	GFSK		1	
Pre-Scar	n has been available n	st (Below 1GHz): conducted to deterr nodulations, data ra			•	
 Pre-Scar between architect Following 	n has been available n ure). g channel(s	conducted to deterr nodulations, data ra s) was (were) selecte	tes and antenna p ed for the final tes	orts (if El	JT with antenr	
 Pre-Scar between architect Following 	n has been available n ure).	conducted to deterr nodulations, data ra	tes and antenna p	orts (if El	JT with antenr	
 Pre-Scar between architect Following AVAILABL 	n has been available n ure). g channel(s	conducted to deterr nodulations, data ra s) was (were) selecte	tes and antenna p ed for the final tes	orts (if El	JT with antenr	
 Pre-Scar between architect Following AVAILABL 0 t Power Line Pre-Scar between architect 	n has been available n g channel(s E CHANNEL to 39 Conducted n has been available n cure).	conducted to deterr nodulations, data ra s) was (were) selecto TESTED CHANNEL	tes and antenna p ed for the final tes MODULATION TYP GFSK nine the worst-cas tes and antenna p	eorts (if EL t as listed E DATA Se mode f Ports (if EL	JT with antenr below. RATE (Mbps) 1 from all possib JT with antenr	na diversity le combinations
 Pre-Scar between architect Following AVAILABL 0 t Power Line Pre-Scar between architect Following 	n has been available n g channel(s E CHANNEL to 39 Conducted n has been available n cure).	conducted to deterr nodulations, data ra s) was (were) selecto TESTED CHANNEL 39 d Emission Test: conducted to deterr nodulations, data ra	tes and antenna p ed for the final tes MODULATION TYP GFSK nine the worst-cas tes and antenna p	eorts (if EL t as listed DATA se mode f orts (if EL t as listed	JT with antenr below. RATE (Mbps) 1 from all possib JT with antenr	na diversity le combinations

Antenna Port Conducted Measurement:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
0 to 39	0, 19, 39	GFSK	1


Test Condition:

APPLICABLE TO	PPLICABLE TO ENVIRONMENTAL CONDITIONS		TESTED BY
RE≥1G	RE≥1G 21deg. C, 62%RH		Ryan Du
RE<1G	RE<1G 25deg. C, 65%RH		Nelson Teng
PLC	PLC 23deg. C, 76%RH		Andy Ho
APCM 25deg. C, 60%RH		120Vac, 60Hz	Jyunchun Lin

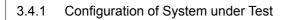
3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered. Duty cycle = 0.389 ms/0.623 ms = 0.639, Duty factor = 10 * log(1/Duty cycle) = 1.9

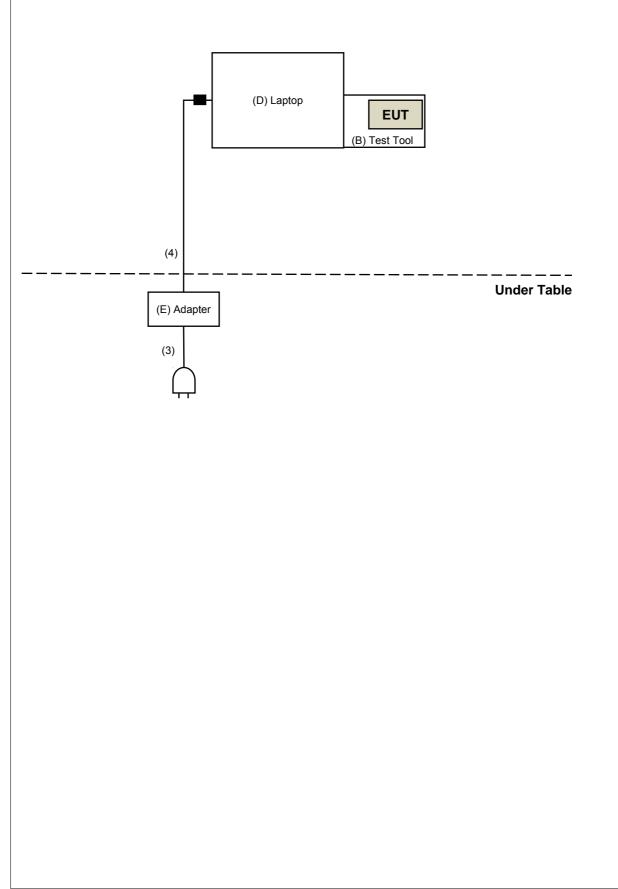
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

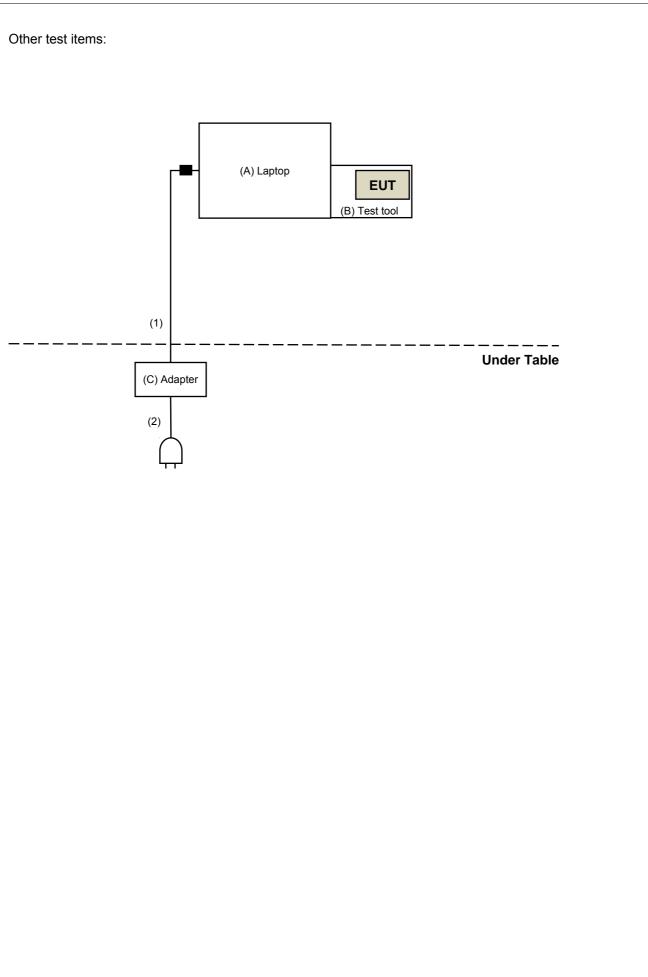
ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	lenovo	3000 N200	NA	NA	Provided by Lab (for other test)
В.	Test Tool	Lite-ON	NA	NA	NA	Supplied by client
C.	Adapter	lenovo	P2P1160	NA	NA	Provided by Lab
D.	Laptop	DELL	E5430	DM1SKV1	FCC DoC	Provided by Lab (for conduction emission test)
E.	Adapter	DELL	LA65NS2-01	NS2-01 NA N		Provided by Lab


Note:

1. All power cords of the above support units are non-shielded (1.8m).


ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.9	No	1	Provided by Lab
2.	AC Cable	1	1.9	No	0	Provided by Lab
3.	AC Cable	1	0.8	No	0	Provided by Lab
4.	DC Cable	1	1.6	No	1	Provided by Lab

Note: The core(s) is(are) originally attached to the cable(s).



Power Line Conducted Emission test:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver ESR7 R&S	ESR7	102026	Apr. 24, 2019	Apr. 23, 2020
Spectrum Analyzer Keysight	N9030B	MY57141948	May 25, 2019	May 24, 2020
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier EMCI	EMC330N	980538	Apr. 30, 2019	Apr. 29, 2020
Trilog Broadband Antenna SCHWARZBECK	VULB9168	9168-0842	Nov. 21, 2018	Nov. 20, 2019
RF Cable	8D	966-5-1	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-2	May 03, 2019	May 02, 2020
RF Cable	8D	966-5-3	May 03, 2019	May 02, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-02	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-1819	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier EMCI	EMC12630SE	980509	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-1500	180503	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-2000	180501	May 03, 2019	May 02, 2020
RF Cable EMCI	EMC104-SM-SM-6000	180505	May 03, 2019	May 02, 2020
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 28, 2019	Jan. 27, 2020
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160924	Jan. 28, 2019	Jan. 27, 2020
RF Cable	EMC102-KM-KM-1200	160925	Jan. 28, 2019	Jan. 27, 2020
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
Power meter Anritsu	ML2495A	1014008	May 13, 2019	May 12, 2020
Power sensor Anritsu	MA2411B	0917122	May 13, 2019	May 12, 2020
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 15, 2019	Apr. 14, 2020

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in 966 Chamber No. 5.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: July 17 to 23, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

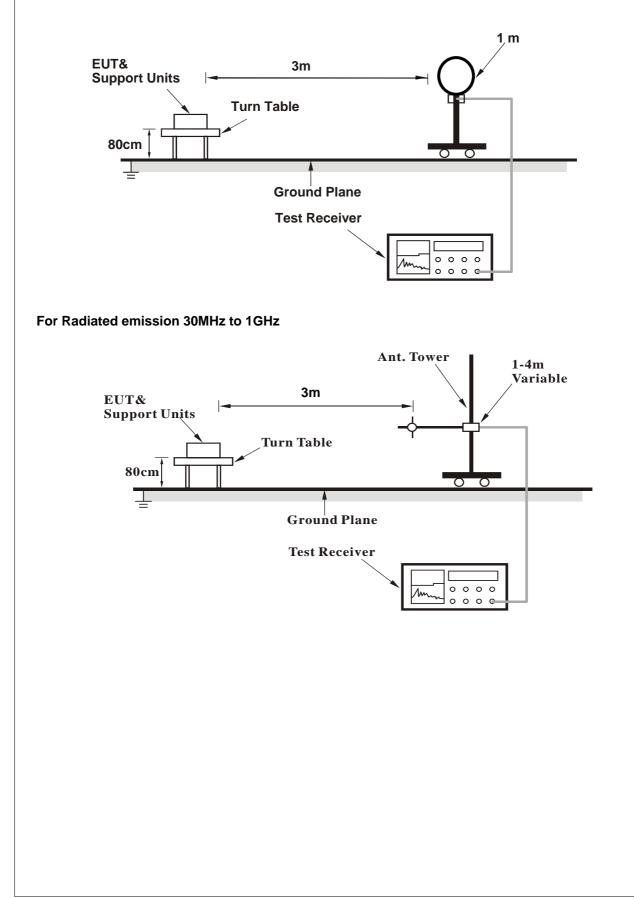
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

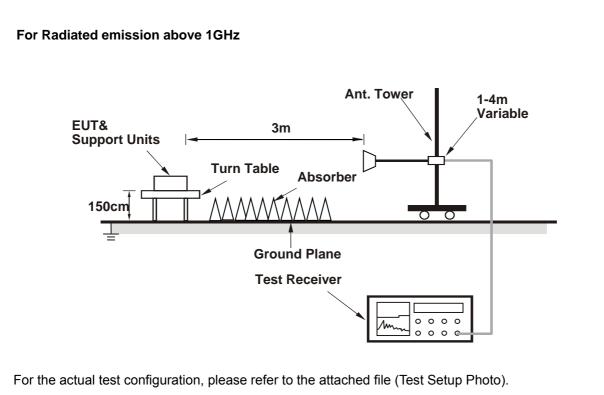
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on the testing table.
- b. Controlling software (QRCT_CONNECTIVITY 3.0.33) has been activated to set the EUT under transmission condition continuously.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
2390.00	56.5 PK	74.0	-17.5	2.88 H	133	59.6	-3.1	
2390.00	42.9 AV	54.0	-11.1	2.88 H	133	46.0	-3.1	
*2402.00	100.7 PK			2.83 H	152	103.8	-3.1	
*2402.00	99.9 AV			2.83 H	152	103.0	-3.1	
4804.00	42.1 PK	74.0	-31.9	1.45 H	67	40.9	1.2	
4804.00	35.6 AV	54.0	-18.4	1.45 H	67	34.4	1.2	
	ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
2390.00	55.6 PK	74.0	-18.4	2.99 V	88	58.7	-3.1	
2390.00	42.8 AV	54.0	-11.2	2.99 V	88	45.9	-3.1	
*2402.00	100.4 PK			3.00 V	93	103.5	-3.1	
*2402.00	99.7 AV			3.00 V	93	102.8	-3.1	
4804.00	42.8 PK	74.0	-31.2	1.78 V	15	41.6	1.2	
4804.00	36.7 AV	54.0	-17.3	1.78 V	15	35.5	1.2	
	(MHz) 2390.00 2390.00 *2402.00 *2402.00 4804.00 4804.00 FREQ. (MHz) 2390.00 2390.00 2390.00 *2402.00 *2402.00	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 2390.00 56.5 PK 2390.00 42.9 AV *2402.00 100.7 PK *2402.00 99.9 AV *2402.00 99.9 AV 4804.00 42.1 PK 4804.00 35.6 AV FREQ. (MHz) EMISSION LEVEL (dBuV/m) 2390.00 55.6 PK 2390.00 55.6 PK 2390.00 42.8 AV *2402.00 100.4 PK *2402.00 99.7 AV 4804.00 42.8 PK	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 2390.00 56.5 PK 74.0 2390.00 42.9 AV 54.0 *2402.00 100.7 PK * *2402.00 99.9 AV * 4804.00 42.1 PK 74.0 4804.00 35.6 AV 54.0 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 55.6 PK 74.0 2390.00 42.8 AV 54.0 *2402.00 100.4 PK * *2402.00 99.7 AV 4804.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 56.5 PK 74.0 -17.5 2390.00 42.9 AV 54.0 -11.1 *2402.00 100.7 PK - - *2402.00 99.9 AV - - 4804.00 42.1 PK 74.0 -31.9 4804.00 35.6 AV 54.0 -18.4 MARGIN (BUV/m) FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 2390.00 55.6 PK 74.0 -18.4 2390.00 55.6 PK 74.0 -11.2 *2402.00 100.4 PK - -11.2 *2402.00 99.7 AV - - 4804.00 42.8 PK 74.0 -31.2	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 2390.00 56.5 PK 74.0 -17.5 2.88 H 2390.00 42.9 AV 54.0 -11.1 2.88 H *2402.00 100.7 PK 2.83 H 2.83 H *2402.00 99.9 AV 2.83 H 2.83 H *2402.00 99.9 AV 2.83 H 1.45 H 4804.00 42.1 PK 74.0 -31.9 1.45 H 4804.00 35.6 AV 54.0 -18.4 1.45 H ANTENNA POLARITY & TEST DISTANCE: V R MARGIN (dBuV/m) ANTENNA HEIGHT (dBuV/m) 2390.00 55.6 PK 74.0 -18.4 2.99 V 2390.00 55.6 PK 74.0 -18.4 2.99 V 2390.00 42.8 AV 54.0 -11.2 2.99 V *2402.00 100.4 PK 3.00 V 3.00 V 3.00 V *2402.00 99.7 AV 3.00 V 3.00 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 56.5 PK 74.0 -17.5 2.88 H 133 2390.00 42.9 AV 54.0 -11.1 2.88 H 133 *2402.00 100.7 PK - 2.83 H 152 *2402.00 99.9 AV - 2.83 H 152 *2402.00 99.9 AV - 2.83 H 152 *2402.00 99.9 AV - 2.83 H 152 *4804.00 42.1 PK 74.0 -31.9 1.45 H 67 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 2390.00 55.6 PK 74.0 -18.4 2.99 V 88 2390.00 55.6 PK 74.0 -18.4 2.99 V 88 2390.00 42.8 AV 54.0 -11.2 2.99 V 88 2390.00 42.8 AV	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 56.5 PK 74.0 -17.5 2.88 H 133 59.6 2390.00 42.9 AV 54.0 -11.1 2.88 H 133 46.0 *2402.00 100.7 PK 2.83 H 152 103.8 *2402.00 99.9 AV 2.83 H 152 103.0 4804.00 42.1 PK 74.0 -31.9 1.45 H 67 40.9 4804.00 35.6 AV 54.0 -18.4 1.45 H 67 34.4 FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) RAW VALUE (dBuV) 2390.00 55.6 PK 74.0 -18.4 2.99 V 88 58.7 2390.00 55.6 PK 74.0 -18.4 2.99 V 88 45.9 *2402.00 100.4 PK 54.0 -11.2 2.99 V 88 45.9 <t< td=""></t<>	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2440.00	101.5 PK			2.82 H	148	104.7	-3.2		
2	*2440.00	100.4 AV			2.82 H	148	103.6	-3.2		
3	4880.00	42.5 PK	74.0	-31.5	1.40 H	59	41.3	1.2		
4	4880.00	35.8 AV	54.0	-18.2	1.40 H	59	34.6	1.2		
5	7320.00	43.7 PK	74.0	-30.3	1.67 H	336	36.5	7.2		
6	7320.00	31.0 AV	54.0	-23.0	1.67 H	336	23.8	7.2		
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		

NO.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	*2440.00	100.1 PK			3.04 V	75	103.3	-3.2
2	*2440.00	99.4 AV			3.04 V	75	102.6	-3.2
3	4880.00	42.9 PK	74.0	-31.1	1.71 V	11	41.7	1.2
4	4880.00	36.6 AV	54.0	-17.4	1.71 V	11	35.4	1.2
5	7320.00	45.5 PK	74.0	-28.5	2.02 V	206	38.3	7.2
6	7320.00	31.3 AV	54.0	-22.7	2.02 V	206	24.1	7.2

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	101.2 PK			2.81 H	129	104.3	-3.1
2	*2480.00	100.4 AV			2.81 H	129	103.5	-3.1
3	2483.50	57.0 PK	74.0	-17.0	2.84 H	136	60.1	-3.1
4	2483.50	43.3 AV	54.0	-10.7	2.84 H	136	46.4	-3.1
5	4960.00	42.2 PK	74.0	-31.8	1.42 H	50	40.8	1.4
6	4960.00	35.5 AV	54.0	-18.5	1.42 H	50	34.1	1.4
7	7440.00	44.0 PK	74.0	-30.0	1.73 H	327	36.7	7.3
8	7440.00	31.6 AV	54.0	-22.4	1.73 H	327	24.3	7.3
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	100.7 PK			2.95 V	94	103.8	-3.1
2	*2480.00	99.7 AV			2.95 V	94	102.8	-3.1
3	2483.50	55.4 PK	74.0	-18.6	2.98 V	83	58.5	-3.1
4	2483.50	42.7 AV	54.0	-11.3	2.98 V	83	45.8	-3.1
5	4960.00	42.8 PK	74.0	-31.2	1.72 V	4	41.4	1.4
6	4960.00	36.6 AV	54.0	-17.4	1.72 V	4	35.2	1.4
7	7440.00	46.0 PK	74.0	-28.0	1.98 V	203	38.7	7.3
8	7440.00	31.7 AV	54.0	-22.3	1.98 V	203	24.4	7.3

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	99.62	36.5 QP	43.5	-7.0	3.00 H	1	53.8	-17.3		
2	151.25	40.4 QP	43.5	-3.1	1.50 H	277	53.2	-12.8		
3	173.18	37.8 QP	43.5	-5.7	1.50 H	38	51.5	-13.7		
4	399.67	36.0 QP	46.0	-10.0	1.00 H	325	46.0	-10.0		
5	497.98	35.1 QP	46.0	-10.9	1.50 H	252	42.9	-7.8		
6	799.31	39.2 QP	46.0	-6.8	1.00 H	261	41.7	-2.5		

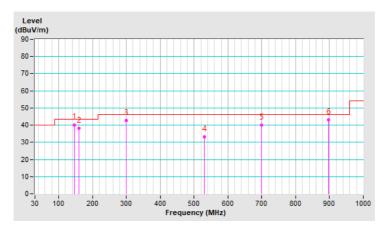
REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)


	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	146.91	40.2 QP	43.5	-3.3	1.00 V	360	53.0	-12.8	
2	159.52	38.0 QP	43.5	-5.5	1.00 V	360	50.9	-12.9	
3	299.76	42.5 QP	46.0	-3.5	1.50 V	286	54.8	-12.3	
4	531.47	33.0 QP	46.0	-13.0	1.00 V	278	40.1	-7.1	
5	699.45	39.9 QP	46.0	-6.1	1.50 V	312	43.9	-4.0	
6	896.26	43.0 QP	46.0	-3.0	1.50 V	281	44.5	-1.5	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

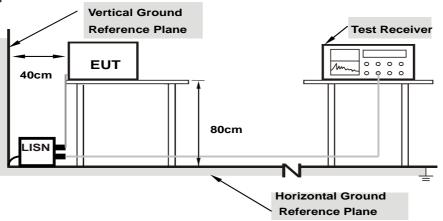
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: July 29, 2019



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

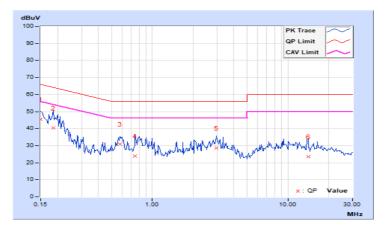
4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L)				Det	Detector Function Quasi-Peak (QP) / Average (AV)			1		
	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		on Level uV)		nit uV)		rgin B)
_	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	ÁV.
1	0.15000	9.94	35.56	24.23	45.50	34.17	66.00	56.00	-20.50	-21.83
2	0.18515	9.95	30.42	16.72	40.37	26.67	64.25	54.25	-23.88	-27.58
3	0.57970	9.97	21.02	12.58	30.99	22.55	56.00	46.00	-25.01	-23.45
4	0.74765	9.98	13.89	5.36	23.87	15.34	56.00	46.00	-32.13	-30.66
5	2.97658	10.11	18.59	12.02	28.70	22.13	56.00	46.00	-27.30	-23.87
6	14.08983	10.70	13.02	6.25	23.72	16.95	60.00	50.00	-36.28	-33.05

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

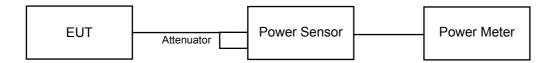
4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phas	Phase Neutral (I		utral (N)	utral (N)		Detector Function		Quasi-Peak (QP) / Average (AV)		/
	Phase Of Power : Neutral (N)									
No	Frequency	Correctior Factor	Readin	g Value BuV)	Emissi	on Level BuV)		mit uV)		rgin B)
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.
1	0.15000	9.92	35.46	22.32	45.38	32.24	66.00	56.00	-20.62	-23.76
2	0.16171	9.93	35.20	23.23	45.13	33.16	65.38	55.38	-20.25	-22.22
3	0.18905	9.93	28.78	19.26	38.71	29.19	64.08	54.08	-25.37	-24.89
4	0.76329	9.96	16.26	5.75	26.22	15.71	56.00	46.00	-29.78	-30.29
5	2.58200	10.05	17.25	10.65	27.30	20.70	56.00	46.00	-28.70	-25.30
6	10.78905	10.39	15.56	9.89	25.95	20.28	60.00	50.00	-34.05	-29.72

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Output Power Measurement

4.3.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	1.146	0.59	30	Pass
19	2440	1.213	0.84	30	Pass
39	2480	1.303	1.15	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	0.6761	-1.70
19	2440	0.7603	-1.19
39	2480	0.8091	-0.92

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----