

Global United Technology Services Co., Ltd.

Report No.: GTS201812000044F02

FCC REPORT

Applicant: Netronix Group.INC

3401 Grevs Ferry Avenue Philadelphia, PA 19146 **Address of Applicant:**

Shenzhen Hampoo Science & Technology Co., Ltd. Manufacturer/Factory:

21F, Block A, Building 11, the interchangce between Keji Address of

South Road and Gaoxin South 9th Road, Shenzhen Bay Eco-Manufacturer/Factory:

Technology Park, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: **Thiamis**

Model No.: 1000 N/A Trade mark:

FCC ID: 2AN9Q-1000

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: October 28, 2018

Date of Test: October 28- December 07, 2018

Date of report issued: December 07, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	December 07, 2018	Original

Prepared By:	Joseph Du	Date:	December 07, 2018	
	Project Engineer	_		
Check By:	Reviewer	Date:	December 07, 2018	_

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
-	4.1	MEASUREMENT UNCERTAINTY	
5	GEN	IERAL INFORMATION	5
	5.1 5.2 5.3	GENERAL DESCRIPTION OF EUT TEST MODE DESCRIPTION OF SUPPORT UNITS	7
	5.4 5.5	TEST FACILITY TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	-
	7.6.1		
	7.6.2 7.7	2 Radiated Emission Method	
	7.7.		
	7.7.2 7.7.2		
8	TES	T SETUP PHOTO	39
9	FUT	CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013

N/A means not applicable.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes						
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)						
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)						
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)						
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)						
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	Thiamis
Model No.:	1000
Serial No.:	1018453
Test sample(s) ID:	GTS201812000044-1
Sample(s) Status	Engineer sample
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	Integral Antenna
Antenna gain:	0dBi(declare by Applicant)
Power supply:	DC12V

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2405MHz	5	2425MHz	9	2445MHz	13	2465MHz	
2	2410MHz	6	2430MHz	10	2450MHz	14	2470MHz	
3	2415MHz	7	2435MHz	11	2455MHz	15	2475MHz	
4	2420MHz	8	2440MHz	12	2460MHz	16	2480 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Keep the EUT in continuously transmitting mode. Transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 **Description of Support Units**

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019

Conc	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019		

RF C	RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019	
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019	

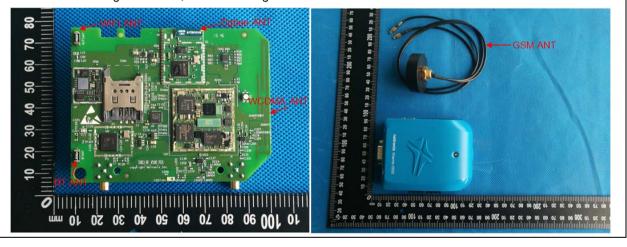
General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

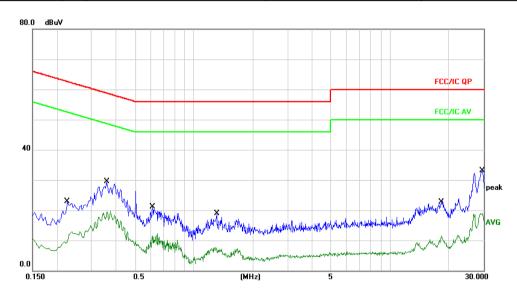

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

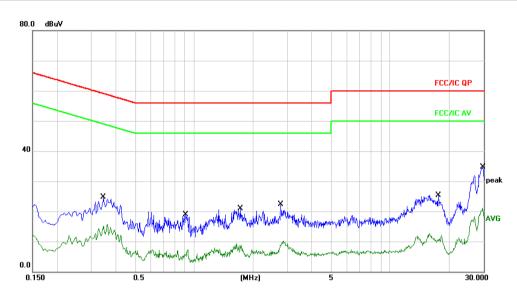
EUT Antenna:

The antenna is integral Antenna, the best case gain of the antenna is 0dBi


7.2 Conducted Emissions

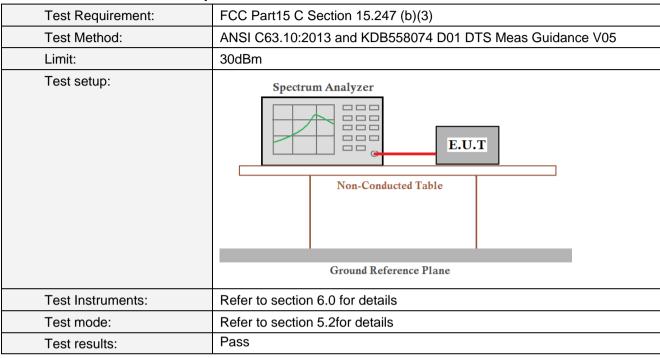
	1				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit (c	lBuV)		
		Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 5-30	<u>56</u> 60	46 50		
	* Decreases with the logarithm		30		
Test setup:	Reference Plane				
Test procedure:	AUX Equipment Test table/Insulation plane Remark: E.U.T EMI Receiver EUT: Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				
	•				

Measurement data


EUT:	Thiamis	Model Name. :	1000
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
LIAST VIOITANA	Input: AC120V/60Hz Output: DC 12V	Test Mode:	Worst mode-GFSK

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.2260	13.23	9.65	22.88	62.59	-39.71	QP	
2		0.2260	3.28	9.65	12.93	52.59	-39.66	AVG	
3		0.3580	19.87	9.67	29.54	58.77	-29.23	QP	
4		0.3580	10.01	9.67	19.68	48.77	-29.09	AVG	
5		0.6140	11.33	9.68	21.01	56.00	-34.99	QP	
6		0.6140	2.57	9.68	12.25	46.00	-33.75	AVG	
7		1.3060	9.25	9.70	18.95	56.00	-37.05	QP	
8		1.3060	-1.99	9.70	7.71	46.00	-38.29	AVG	
9		18.2420	13.17	9.87	23.04	60.00	-36.96	QP	
10		18.2420	1.63	9.87	11.50	50.00	-38.50	AVG	
11	*	29.3940	23.27	9.87	33.14	60.00	-26.86	QP	
12		29.3940	9.13	9.87	19.00	50.00	-31.00	AVG	

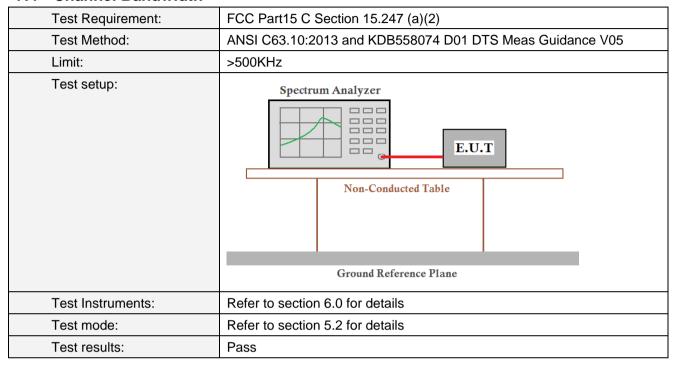
EUT:	Thiamis	Model Name. :	1000
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	N
TIAST VAITANA	Input: AC120V/60Hz Output: DC 12V	Test Mode:	Worst mode-GFSK


No. Mi	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3460	14.98	9.66	24.64	59.06	-34.42	QP	
2	0.3460	6.01	9.66	15.67	49.06	-33.39	AVG	
3	0.9060	9.12	9.69	18.81	56.00	-37.19	QP	
4	0.9060	-2.43	9.69	7.26	46.00	-38.74	AVG	
5	1.7340	11.16	9.70	20.86	56.00	-35.14	QP	
6	1.7340	-1.01	9.70	8.69	46.00	-37.31	AVG	
7	2.7740	12.64	9.72	22.36	56.00	-33.64	QP	
8	2.7740	0.38	9.72	10.10	46.00	-35.90	AVG	
9	17.6540	15.47	9.87	25.34	60.00	-34.66	QP	
10	17.6540	2.23	9.87	12.10	50.00	-37.90	AVG	
11 *	29.6940	24.84	9.86	34.70	60.00	-25.30	QP	
12	29.6940	11.16	9.86	21.02	50.00	-28.98	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

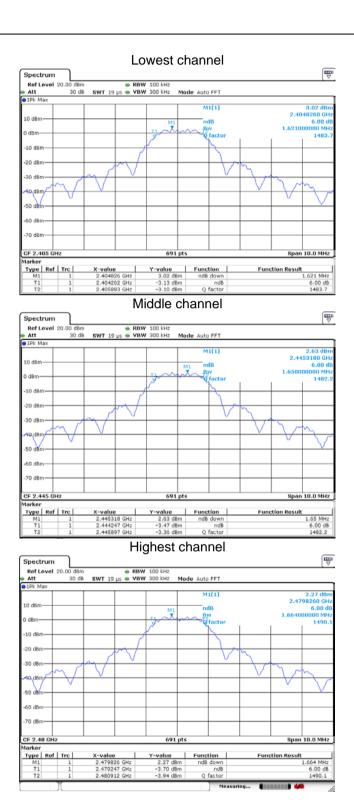
7.3 Conducted Peak Output Power



Measurement Data

Frequency (MHz)	Peak Output Power (dBm)	Limit(dBm)	Result
2405	6.14		
2440	6.28	30	PASS
2480	5.83		

7.4 Channel Bandwidth


Measurement Data

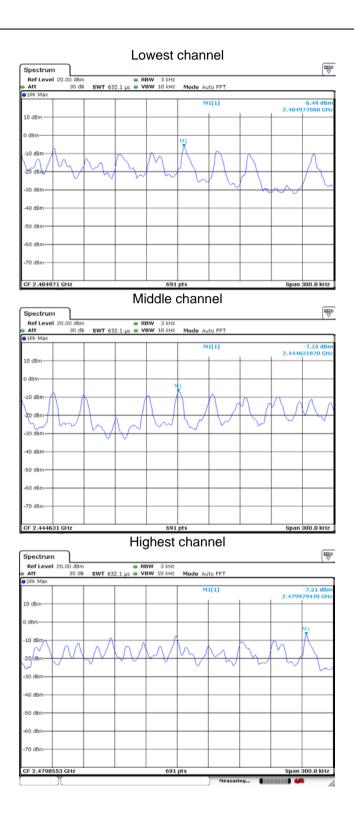
Frequency (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
2405	1.621		
2440	1.650	>500	Pass
2480	1.664		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 40

Test plot as follows:

7.5 Power Spectral Density

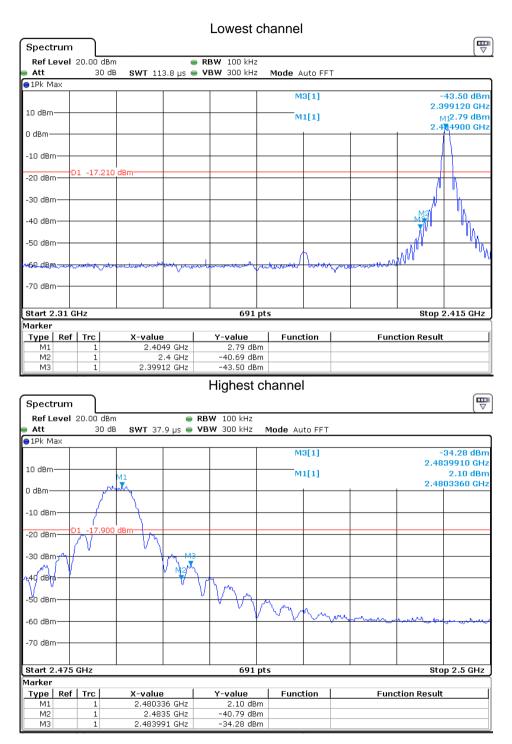
Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data

Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm/3kHz)	Result
2405	-6.49		
2440	-7.15	8.00	Pass
2480	-7.21		

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Test plot as follows:


7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:		ANSI C63.10:2013					
Test Frequency Range:			tested, only	the worst ba	ind's (2310MHz to		
, , ,	2500MHz) data	was showed.			,		
Test site:	Measurement D	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Al 4 CI I-	Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque	ency	Limit (dBuV/	/m @3m)	Value		
	Above 1	CH-	54.0	0	Average		
	Above	IGHZ	74.0	0	Peak		
	Test Antenna. Turn Table. Tur						
Test Procedure:	the ground a determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to deshorizontal armeasuremer. 4. For each sus and then the and the rota the maximum. 5. The test-recesspecified Base. 6. If the emission the limit specified Base of the EUT whave 10dB in peak or aversheet. 7. The radiation And found the sure of the sure sheet.	t a 3 meter can e position of the s set 3 meters ch was mounte height is varied termine the mand vertical polar and vertical polar ant. spected emission antenna was to table was turned anten	nber. The tale highest race highest race away from the don the top of the top	ble was rotated ble was rotated ble was rotated ble interference of a variable neter to four error of the field he antenna at was arrange hts from 1 mgrees to 360 kg. Detect Fund Mode, mode was 10 stopped and er the emissione by one using then report med in X, Y, it is worse care	meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find anction and OdB lower than If the peak values ons that did not sing peak, quasi-		
Test Instruments:	Refer to section	node is recorde	u iii iiie rept	л เ.			
Test mode:	Refer to section						
Test mode. Test results:	Pass	J.Z IUI UCIAIIS					
า ธอเ าธอนห้อ.	Pass						

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's was showed.

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	37.95	27.91	5.30	24.64	46.52	74.00	-27.48	Vertical
2390.00	38.45	27.59	5.38	24.71	46.71	74.00	-27.29	Vertical
2400.00	38.68	27.58	5.39	24.72	46.93	74.00	-27.07	Vertical
2310.00	36.27	27.91	5.30	24.64	44.84	74.00	-29.16	Horizontal
2390.00	36.71	27.59	5.38	24.71	44.97	74.00	-29.03	Horizontal
2400.00	38.05	27.58	5.39	24.72	46.30	74.00	-27.70	Horizontal

Average value:

- tronage ran								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	29.13	27.91	5.30	24.64	37.70	54.00	-16.30	Vertical
2390.00	29.54	27.59	5.38	24.71	37.80	54.00	-16.20	Vertical
2400.00	30.07	27.58	5.39	24.72	38.32	54.00	-15.68	Vertical
2310.00	26.96	27.91	5.30	24.64	35.53	54.00	-18.47	Horizontal
2390.00	28.25	27.59	5.38	24.71	36.51	54.00	-17.49	Horizontal
2400.00	28.69	27.58	5.39	24.72	36.94	54.00	-17.06	Horizontal

Test channel:

Report No.: GTS201812000044F02

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.65	27.53	5.47	24.80	49.85	74.00	-24.15	Vertical
2500.00	32.46	27.55	5.49	24.86	40.64	74.00	-33.36	Vertical
2483.50	34.87	27.53	5.47	24.80	43.07	74.00	-30.93	Horizontal
2500.00	25.90	27.55	5.49	24.86	34.08	74.00	-39.92	Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.41	27.53	5.47	24.80	42.61	54.00	-11.39	Vertical

24.86

24.80

24.86

Highest channel

32.65

33.28

26.59

54.00

54.00

54.00

-21.35

-20.72

-27.41

Vertical

Horizontal

Horizontal

2500.00 Remark:

2500.00

2483.50

24.47

25.08

18.41

27.55

27.53

27.55

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5.49

5.47

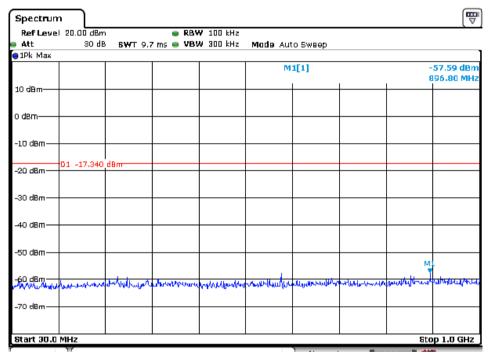
5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

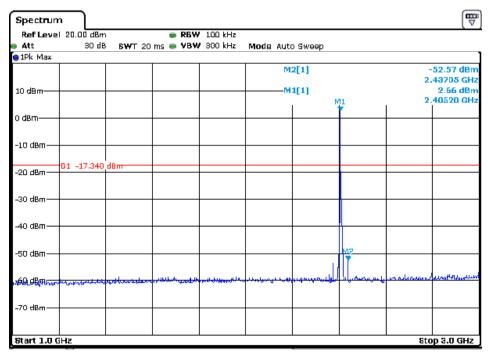
7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

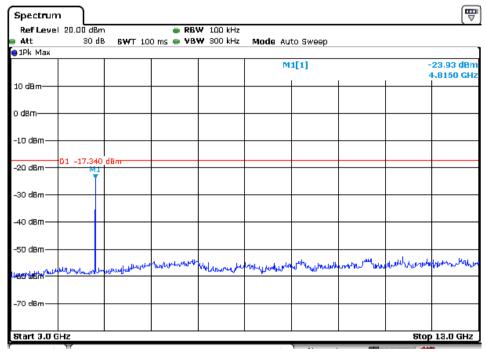


Test plot as follows:

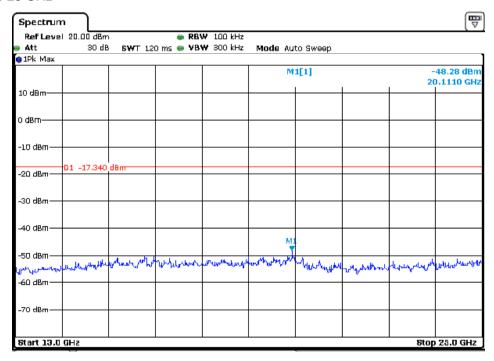

Result plot as follows:

Channel 1: 2.405GHz:

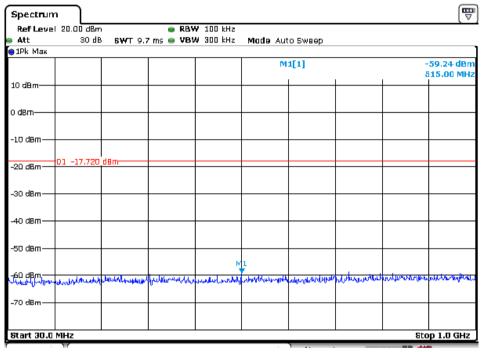
30 MHz to 1 GHz

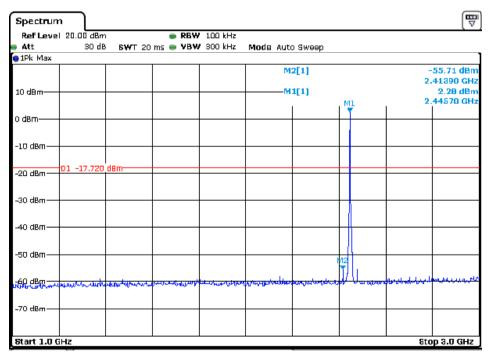


1 G to 3 GHz



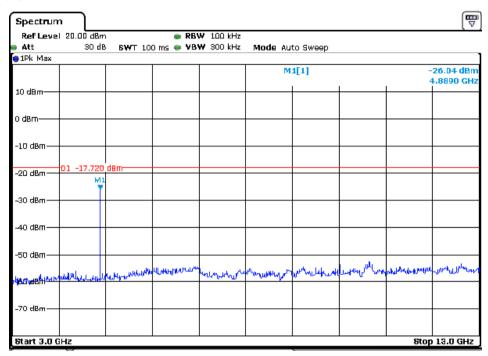
3 G to 13 GHz


13 G to 25 GHz

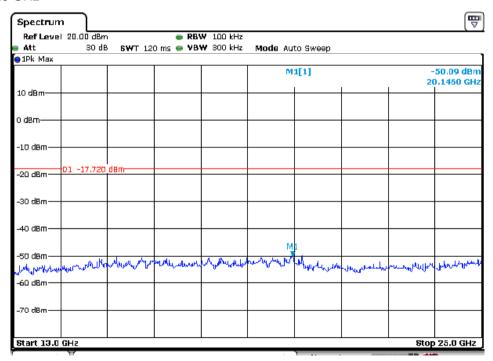


Channel 9: 2.445GHz:

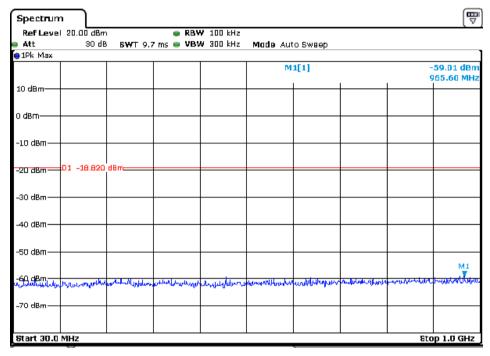
30 MHz to 1 GHz

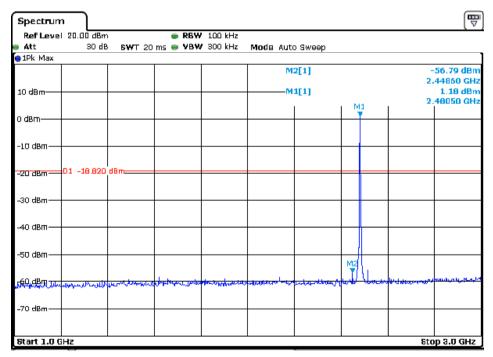


1 G to 3 GHz



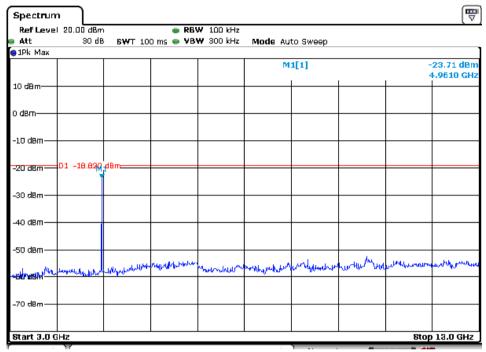
3 G to 13 GHz


13 G to 25 GHz

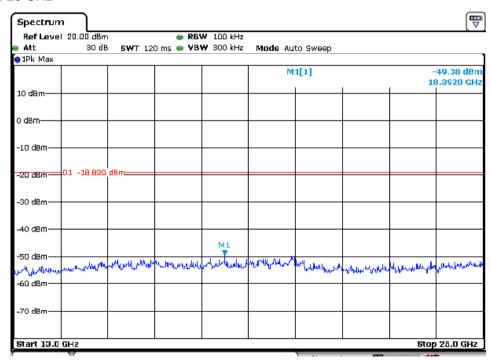


Channel 16:2.480 GHz

30 MHz to 1 GHz

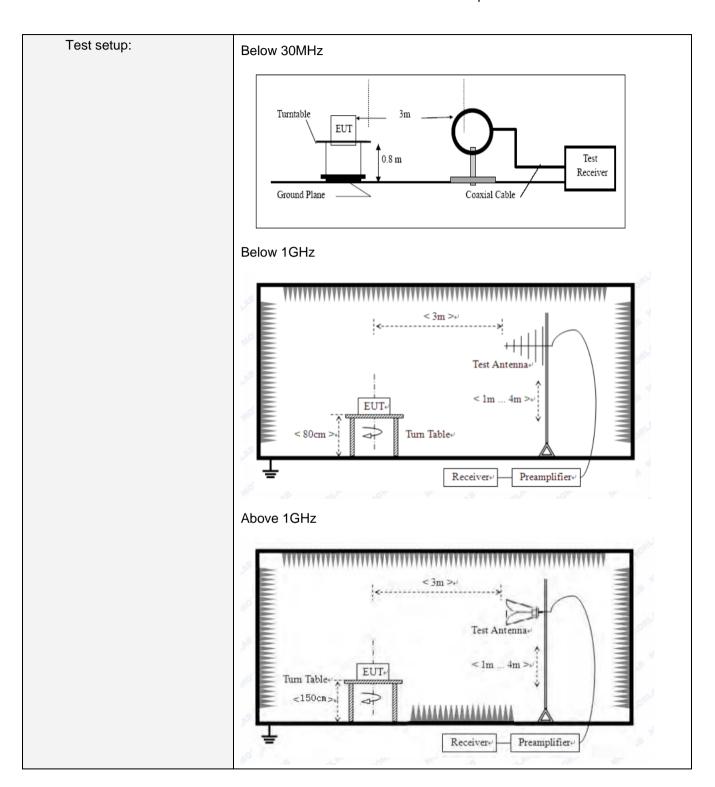


1 G to 3 GHz



3 G to 13 GHz

13 G to 25 GHz



7.7.2 Radiated Emission Method

	The Radiator Emission Mounta							
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz				_			
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB	W	VBW	Value	
	9KHz-150KHz	Qι	uasi-peak	200	Hz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qι	uasi-peak	9KI	Hz	30KHz	z Quasi-peak	
	30MHz-1GHz	Qι	uasi-peak	100k	〈Hz	300KH	z Quasi-peak	
	1011		Peak	1MHz		3MHz	Peak	
	Above 1GHz		Peak	1M	Hz	10Hz	Average	
Limit: (Spurious Emissions)	Frequency		Limit (uV/m)		Value		Measurement Distance	
,	0.009MHz-0.490M	Hz	2400/F(KHz)		z) QP		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		lz) QP		300m	
	1.705MHz-30MH	z	30			QP	30m	
	30MHz-88MHz		100			QP		
	88MHz-216MHz	<u>. </u>	150			QP		
	216MHz-960MHz		200		(3m	
	960MHz-1GHz		500		QP		SIII	
	Above 1CHz		500		Average			
	Above 1GHZ	Above 1GHz			F	Peak		

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test voltage:	AC 120V, 60Hz
Test results:	Pass

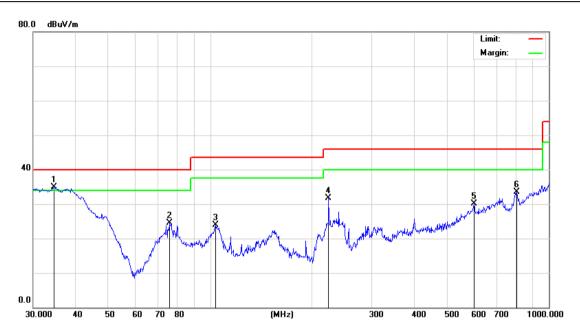
Measurement data:

9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

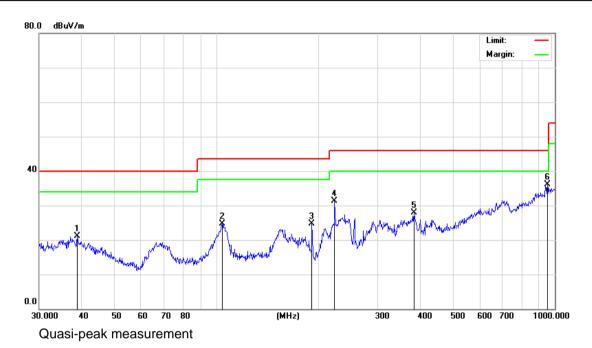


Remark:

All positions of the antenna are tested, only show the worst case: The antenna is perpendicular to the product.

■ Below 1GHz

Mode:	Transmitting mode	Test by:	Jason
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Horizontal



Quasi-peak measurement

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	34.5173	51.82	-16.87	34.95	40.00	-5.05	QP
2		75.7114	43.63	-19.18	24.45	40.00	-15.55	QP
3		103.8055	37.50	-13.65	23.85	43.50	-19.65	QP
4		223.7334	47.71	-15.94	31.77	46.00	-14.23	QP
5		601.4265	31.02	-0.89	30.13	46.00	-15.87	QP
6		804.6028	30.71	2.82	33.53	46.00	-12.47	QP

Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26 ℃/56%RHPolarziation:Vertical

Measure-Reading Correct No. Mk. Limit Over Freq. Factor Level ment dΒ MHz dBuV dBuV/m dBuV/m dB Detector 38.8878 21.09 QΡ 1 35.60 -14.51 40.00 -18.91 2 104.1701 40.41 -15.6324.78 43.50 -18.72QΡ 3 191.7450 39.38 -14.7524.63 43.50 -18.87 QΡ 4 223.7334 47.31 -15.94 31.37 46.00 -14.63 QΡ 5 383.9318 35.40 -7.45 27.95 46.00 -18.05 QΡ 6 952.0937 32.27 3.77 36.04 46.00 -9.96 QΡ

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	49.72	31.17	8.60	37.66	51.83	74.00	-22.17	Vertical
7215.00	38.21	36.09	11.66	35.69	50.27	74.00	-23.73	Vertical
9620.00	29.43	37.84	14.14	34.91	46.50	74.00	-27.50	Vertical
12025.00	26.76	38.61	15.03	36.13	44.27	74.00	-29.73	Vertical
4810.00	48.12	31.17	8.60	37.66	50.23	74.00	-23.77	Horizontal
7215.00	41.54	36.09	11.66	35.69	53.60	74.00	-20.40	Horizontal
9620.00	27.36	37.84	14.14	34.91	44.43	74.00	-29.57	Horizontal
12025.00	26.92	38.61	15.03	36.13	44.43	74.00	-29.57	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	43.87	31.17	8.60	37.66	45.98	54.00	-8.02	Vertical
7215.00	29.70	36.09	11.66	35.69	41.76	54.00	-12.24	Vertical
9620.00	19.44	37.84	14.14	34.91	36.51	54.00	-17.49	Vertical
12025.00	16.65	38.61	15.03	36.13	34.16	54.00	-19.84	Vertical
4810.00	42.78	31.17	8.60	37.66	44.89	54.00	-9.11	Horizontal
7215.00	30.32	36.09	11.66	35.69	42.38	54.00	-11.62	Horizontal
9620.00	17.29	37.84	14.14	34.91	34.36	54.00	-19.64	Horizontal
12025.00	16.46	38.61	15.03	36.13	33.97	54.00	-20.03	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel:	Middle channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4890.00	49.50	31.26	8.66	37.68	51.74	74.00	-22.26	Vertical
7335.00	39.86	36.32	11.72	35.64	52.26	74.00	-21.74	Vertical
9780.00	28.72	38.01	14.25	34.98	46.00	74.00	-28.00	Vertical
12225.00	25.58	38.64	15.14	36.26	43.10	74.00	-30.90	Vertical
4890.00	48.32	31.26	8.66	37.68	50.56	74.00	-23.44	Horizontal
7335.00	39.50	36.32	11.72	35.64	51.90	74.00	-22.10	Horizontal
9780.00	28.19	38.01	14.25	34.98	45.47	74.00	-28.53	Horizontal
12225.00	26.92	38.64	15.14	36.26	44.44	74.00	-29.56	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4890.00	41.75	31.26	8.66	37.68	43.99	54.00	-10.01	Vertical
7335.00	32.13	36.32	11.72	35.64	44.53	54.00	-9.47	Vertical
9780.00	21.75	38.01	14.25	34.98	39.03	54.00	-14.97	Vertical
12225.00	15.15	38.64	15.14	36.26	32.67	54.00	-21.33	Vertical
4890.00	39.47	31.26	8.66	37.68	41.71	54.00	-12.29	Horizontal
7335.00	21.83	36.32	11.72	35.64	34.23	54.00	-19.77	Horizontal
9780.00	20.86	38.01	14.25	34.98	38.14	54.00	-15.86	Horizontal
12225.00	17.28	38.64	15.14	36.26	34.80	54.00	-19.20	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

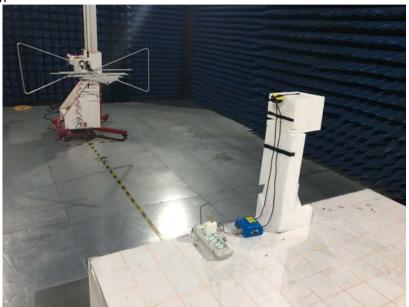
Test channel:	Highest channel
rest charmer.	i lighest chamei

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	49.89	31.36	8.73	37.69	52.29	74.00	-21.71	Vertical
7440.00	39.17	36.59	11.79	35.58	51.97	74.00	-22.03	Vertical
9920.00	28.23	38.22	14.38	35.07	45.76	74.00	-28.24	Vertical
12400.00	26.42	38.68	15.27	36.43	43.94	74.00	-30.06	Vertical
4960.00	48.10	31.36	8.73	37.69	50.50	74.00	-23.50	Horizontal
7440.00	39.24	36.59	11.79	35.58	52.04	74.00	-21.96	Horizontal
9920.00	28.72	38.22	14.38	35.07	46.25	74.00	-27.75	Horizontal
12400.00	27.76	38.68	15.27	36.43	45.28	74.00	-28.72	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	41.78	31.36	8.73	37.69	44.18	54.00	-9.82	Vertical
7440.00	31.01	36.59	11.79	35.58	43.81	54.00	-10.19	Vertical
9920.00	19.48	38.22	14.38	35.07	37.01	54.00	-16.99	Vertical
12400.00	16.47	38.68	15.27	36.43	33.99	54.00	-20.01	Vertical
4960.00	39.78	31.36	8.73	37.69	42.18	54.00	-11.82	Horizontal
7440.00	31.15	36.59	11.79	35.58	43.95	54.00	-10.05	Horizontal
9920.00	19.78	38.22	14.38	35.07	37.31	54.00	-16.69	Horizontal
12400.00	17.83	38.68	15.27	36.43	35.35	54.00	-18.65	Horizontal


Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. "*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201812000044F03

-----End-----