

Global United Technology Services Co., Ltd.

Report No.: GTS201812000044F04

FCC Report (Bluetooth)

Applicant: Netronix Group.INC

Address of Applicant: 3401 Greys Ferry Avenue Philadelphia, PA 19146

Shenzhen Hampoo Science & Technology Co., Ltd. Manufacturer/Factory:

Address of 21F, Block A, Building 11, the interchangce between Keji South Road and Gaoxin South 9th Road, Shenzhen Bay Eco-Manufacturer/Factory:

Technology Park, Nanshan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Thiamis

Model No.: 1000

Trade Mark: N/A

FCC ID: 2AN9Q-1000

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: October 28, 2018

Date of Test: October 28- December 07, 2018

December 07, 2018 Date of report issued:

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	December 07, 2018	Original

Prepared By:	Joseph Du	Date:	December 07, 2018
	Project Engineer		
Check By:	Reviewer	Date:	December 07, 2018

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	
	5.6	ADDITIONAL INSTRUCTIONS	8
6	TES	T INSTRUMENTS LIST	9
7	TES	T RESULTS AND MEASUREMENT DATA	11
	7.1	ANTENNA REQUIREMENT	11
	7.2	CONDUCTED EMISSIONS	12
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1 7.6.2		
	7.0.2 7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2		
8	TES	T SETUP PHOTO	35
9	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

•	· · · · · · · · · · · · · · · · · · ·
Product Name:	Thiamis
Model No.:	1000
Serial No.:	1018453
Test sample(s) ID:	GTS201812000044-1
Sample(s) Status	Engineer sample
Hardware:	HV1.0
Software:	SV1.0
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	Integral antenna
Antenna Gain:	0dBi
Power Supply:	DC12V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
	. !		. !	• !	• !	• !	• !
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

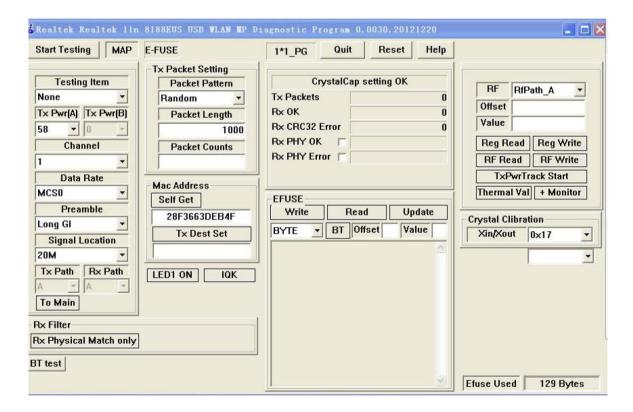
All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


5.6 Additional Instructions

EUT Software Settings:

Mode	Special software is used. The software provided by client to enable the EUT under transmission
	condition continuously at specific channel frequencies individually.

Power level setup in software						
Test Software Name	MTK Engineer					
Mode	Channel Frequency (MHz) Soft Set					
GFSK	CH01 2402					
	CH20	2440	TX level : default			
	CH40	2480				

Run Software

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019	
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019	
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019	
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019	
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019	
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

Conduc	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019			
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019			

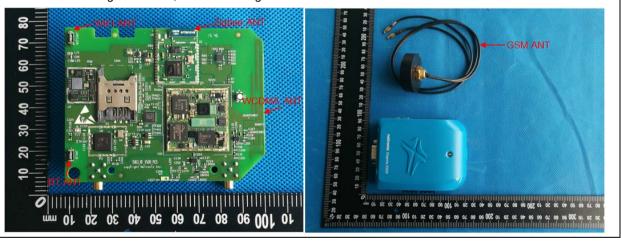
RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019	
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019	
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

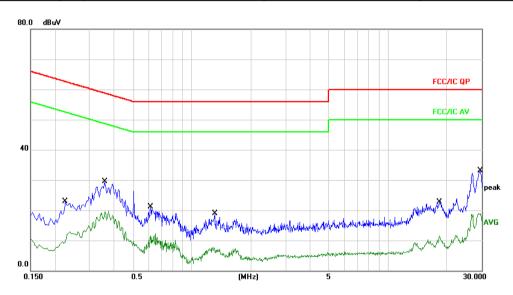
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

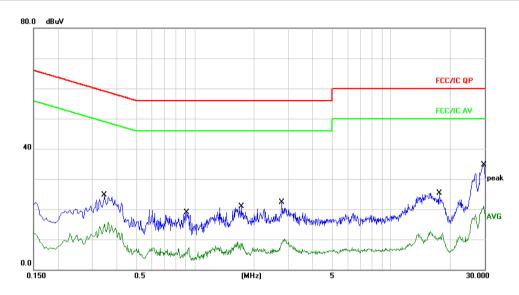
The antenna is integral antenna, the best case gain of the antenna is 0dBi

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102


7.2 Conducted Emissions

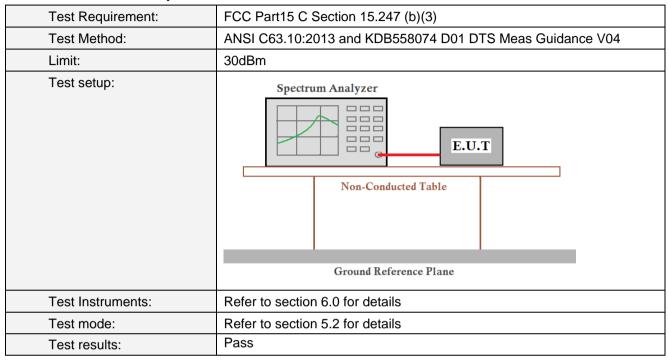
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	RBW=9KHz, VBW=30KHz, Sweep time=auto					
Limit:	Fraguerou ranga (NALIE)	Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Toot ootun.	* Decreases with the logarithm	of the frequency.					
Test setup:	LISN Reference Plane	LISN	-				
Total	ver						
Test procedure:	The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are LISN that provides a 500hm.	n network (L.I.S.N.). The edance for the measuri also connected to the	nis provides a ng equipment. main power through a				
	LISN that provides a 50ohn termination. (Please refer to photographs).	o the block diagram of	the test setup and				
3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be char according to ANSI C63.10:2009 on conducted measurement.							
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement data


EUT:	Thiamis	Model Name. :	1000
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
LIEST VOITAGE .	Input: AC120V/60Hz Output: DC 12V	Test Mode:	Worst mode-GFSK

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.2260	13.23	9.65	22.88	62.59	-39.71	QP	
2		0.2260	3.28	9.65	12.93	52.59	-39.66	AVG	
3		0.3580	19.87	9.67	29.54	58.77	-29.23	QP	
4		0.3580	10.01	9.67	19.68	48.77	-29.09	AVG	
5		0.6140	11.33	9.68	21.01	56.00	-34.99	QP	
6		0.6140	2.57	9.68	12.25	46.00	-33.75	AVG	
7		1.3060	9.25	9.70	18.95	56.00	-37.05	QP	
8		1.3060	-1.99	9.70	7.71	46.00	-38.29	AVG	
9		18.2420	13.17	9.87	23.04	60.00	-36.96	QP	
10		18.2420	1.63	9.87	11.50	50.00	-38.50	AVG	
11	*	29.3940	23.27	9.87	33.14	60.00	-26.86	QP	
12		29.3940	9.13	9.87	19.00	50.00	-31.00	AVG	

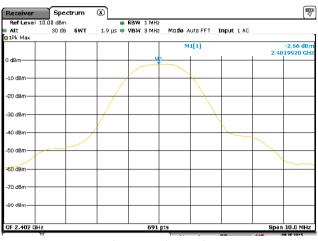
EUT:	Thiamis	Model Name. :	1000
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	Input: AC120V/60Hz Output: DC 12V	Test Mode:	Worst mode-GFSK


No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3460	14.98	9.66	24.64	59.06	-34.42	QP	
2	0.3460	6.01	9.66	15.67	49.06	-33.39	AVG	
3	0.9060	9.12	9.69	18.81	56.00	-37.19	QP	
4	0.9060	-2.43	9.69	7.26	46.00	-38.74	AVG	
5	1.7340	11.16	9.70	20.86	56.00	-35.14	QP	
6	1.7340	-1.01	9.70	8.69	46.00	-37.31	AVG	
7	2.7740	12.64	9.72	22.36	56.00	-33.64	QP	
8	2.7740	0.38	9.72	10.10	46.00	-35.90	AVG	
9	17.6540	15.47	9.87	25.34	60.00	-34.66	QP	
10	17.6540	2.23	9.87	12.10	50.00	-37.90	AVG	
11 *	29.6940	24.84	9.86	34.70	60.00	-25.30	QP	
12	29.6940	11.16	9.86	21.02	50.00	-28.98	AVG	

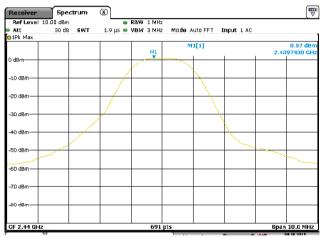
Notes:

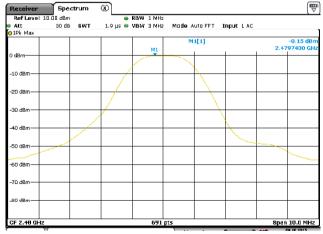
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power



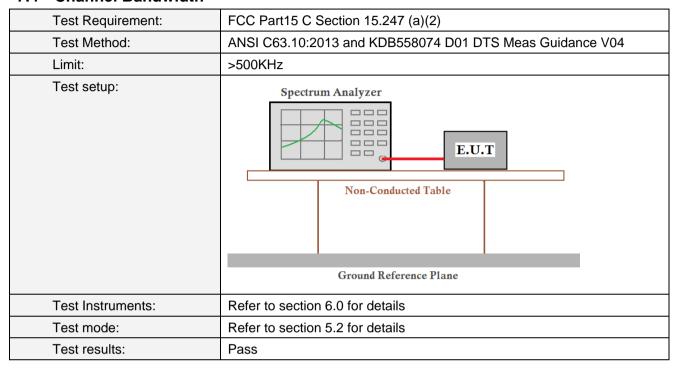
Measurement Data


Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.66		
Middle	0.97	30.00	Pass
Highest	-0.15		


Test plot as follows:

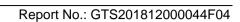
Lowest channel

Middle channel

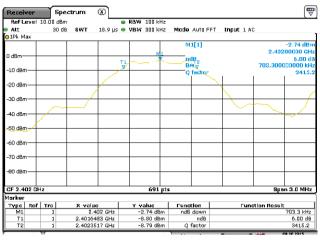


Highest channel

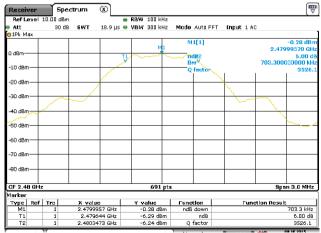
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



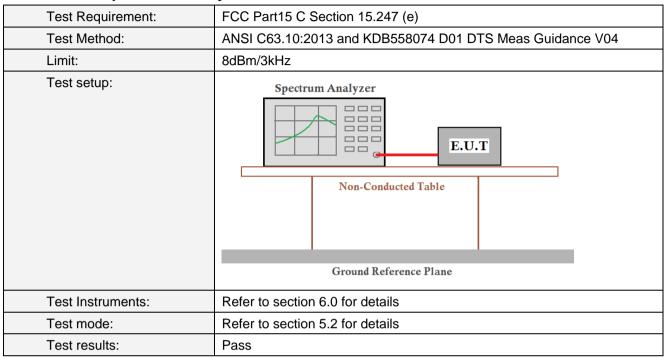
7.4 Channel Bandwidth


Measurement Data

Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.703		
Middle	0.703	>500	Pass
Highest	0.703		

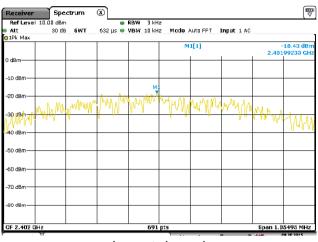

Test plot as follows:

Lowest channel

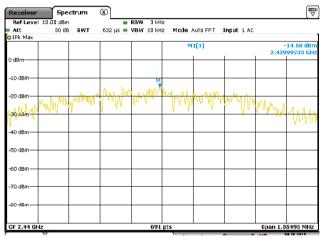

Middle channel

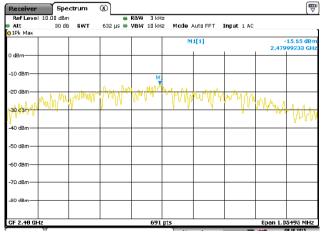
Highest channel

7.5 Power Spectral Density



Measurement Data

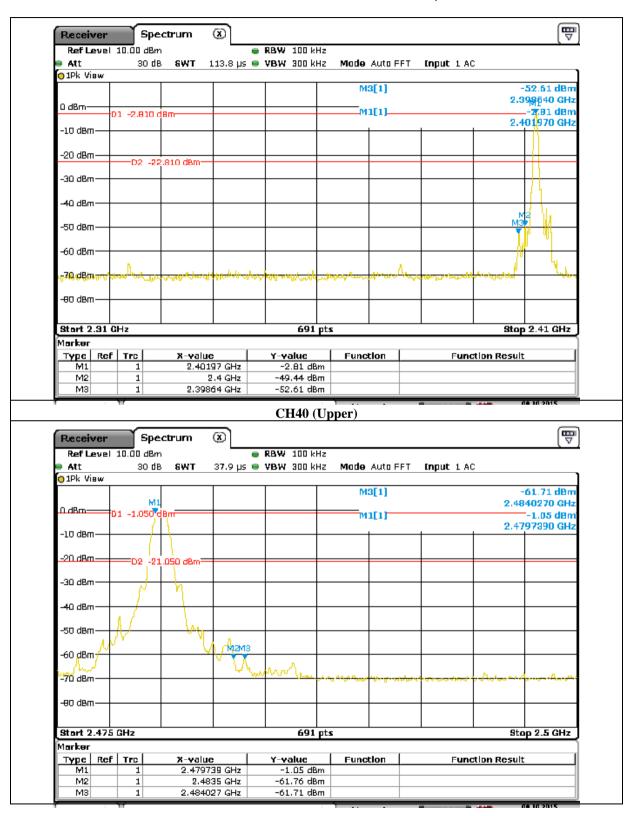

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-18.43		
Middle	-14.68	8.00	Pass
Highest	-15.65		


Test plot as follows:

Middle channel

Highest channel

7.6 Band edges


7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

CH01 (Lower)	

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	All of the restrict 2500MHz) data		•	the worst ba	nd's (2310MHz to			
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
'		Peak	1MHz	3MHz	Peak			
	Above 1GHz	RMS	1MHz	3MHz	Average			
Limit:	Freque		Limit (dBuV/		Value			
	Above 1	CH-	54.0	0	Average			
	Above 1	IGH2	74.0	0	Peak			
Test setup:	Tum Table	EUT+		Antenna-Am >-	re-			
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emission the limit spec of the EUT w have 10dB m peak or aver- sheet. 7. The radiation And found th	t a 3 meter cate position of the set 3 meters chewas mount the management of the set of	mber. The tale he highest race away from the ted on the top ed from one neaximum value arizations of the tion, the EUT tuned to heigh the from 0 decreased as set to Peak aximum Hole EUT in peak ting could be ted. Otherwis he re-tested on a specified ar this are performitioning which is	ole was rotated attion. The interference of a variable of the field state antenna at the antenna at the arranger of the firm of the emission of the emission of the report of the firm of the report of the calculation of the firm of the	ed 360 degrees to be-receiving e-height antenna emeters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find enction and the peak values ons that did not ing peak, quasi-			
Toot Instruments:	worst case mode is recorded in the report. Refer to section 6.0 for details							
Test mode:								
Test mode:	Refer to section	5.2 for details	5					
Test results:	Pass							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:		Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.82	27.59	5.38	30.18	41.61	74.00	-32.39	Horizontal
2400.00	55.13	27.58	5.39	30.18	57.92	74.00	-16.08	Horizontal
2390.00	38.08	27.59	5.38	30.18	40.87	74.00	-33.13	Vertical
2400.00	56.62	27.58	5.39	30.18	59.41	74.00	-14.59	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	30.79	27.59	5.38	30.18	33.58	54.00	-20.42	Horizontal
2400.00	41.71	27.58	5.39	30.18	44.50	54.00	-9.50	Horizontal
2390.00	30.45	27.59	5.38	30.18	33.24	54.00	-20.76	Vertical
2400.00	43.03	27.58	5.39	30.18	45.82	54.00	-8.18	Vertical

Test channel:	Highest
---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	40.74	27.53	5.47	29.93	43.81	74.00	-30.19	Horizontal
2500.00	40.35	27.55	5.49	29.93	43.46	74.00	-30.54	Horizontal
2483.50	40.90	27.53	5.47	29.93	43.97	74.00	-30.03	Vertical
2500.00	41.57	27.55	5.49	29.93	44.68	74.00	-29.32	Vertical

Average value:

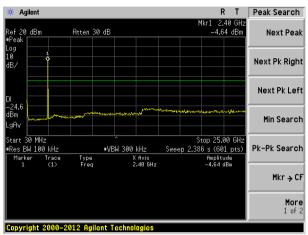
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	32.93	27.53	5.47	29.93	36.00	54.00	-18.00	Horizontal
2500.00	31.56	27.55	5.49	29.93	34.67	54.00	-19.33	Horizontal
2483.50	33.82	27.53	5.47	29.93	36.89	54.00	-17.11	Vertical
2500.00	31.14	27.55	5.49	29.93	34.25	54.00	-19.75	Vertical

Remark:

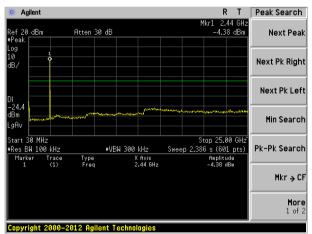
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

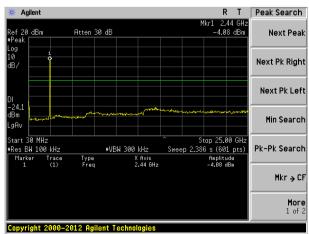
7.7 Spurious Emission


7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V04						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						


Test plot as follows:

Lowest channel

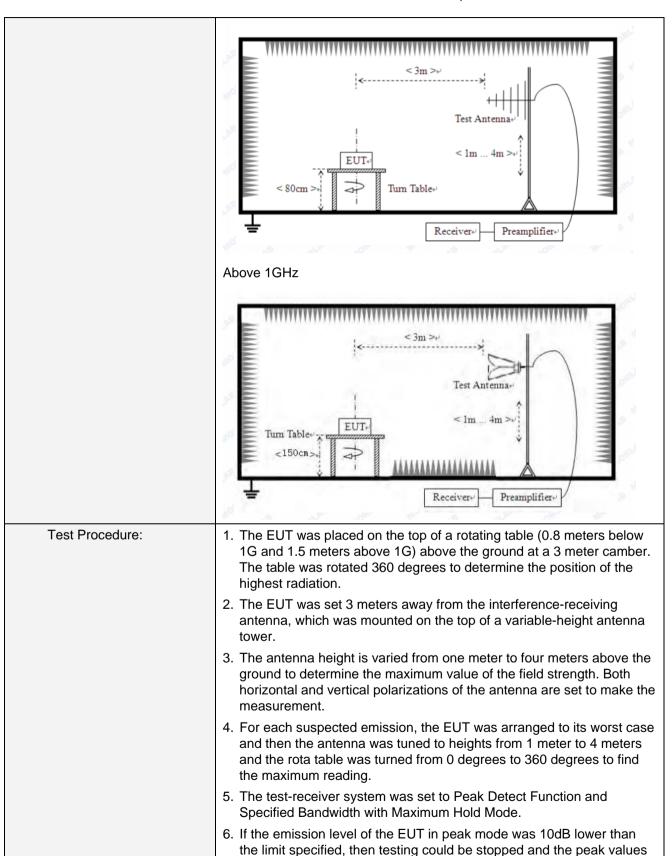

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector	RBV	VBV	٧	Value		
	9KHz-150KHz	Qι	uasi-peak	200H	lz 600H	lz	Quasi-peak		
	150KHz-30MHz	Qι	uasi-peak	9KH:	z 30KF	łz	Quasi-peak		
	30MHz-1GHz	Qι	uasi-peak	100KH	-lz 300Kl	Ηz	Quasi-peak		
	Above 1GHz		Peak	1MH	z 3MH	Z	Peak		
	Above 1G112		Peak	1MH	z 10H:	Z	Average		
Limit:	Frequency		Limit (u\	//m)	Value	N	leasurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	QP		300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		300m		
	1.705MHz-30MH	lz	30		QP		30m		
	30MHz-88MHz				QP				
	88MHz-216MHz	<u> </u>			QP				
	216MHz-960MH	Z			QP QP Average		3m		
	960MHz-1GHz								
	Above 1GHz								
	Above Toriz		5000		Peak				
Test setup:	Above 1GHz 5000 Peak Below 30MHz Turntable Feat Ground Plane Coaxial Cable Test Receiver								
	Below 1GHz								

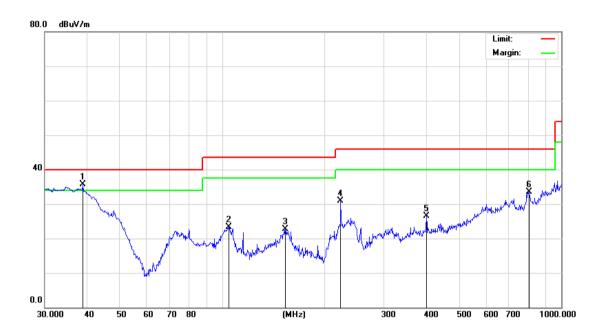
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

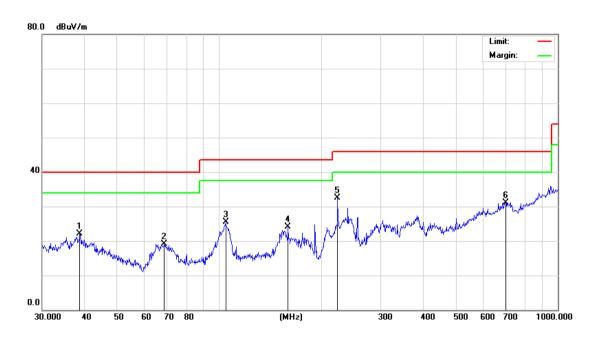
Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data


■ Below 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz


Mode:	Transmitting mode	Test by:	Jason
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBu∀/m	dB	Detector
1	*	38.8878	52.30	-16.64	35.66	40.00	-4.34	QP
2		104.5361	36.83	-13.59	23.24	43.50	-20.26	QP
3		153.7385	38.17	-15.44	22.73	43.50	-20.77	QP
4		223.7334	46.86	-15.94	30.92	46.00	-15.08	QP
5		400.4319	32.39	-5.93	26.46	46.00	-19.54	QP
6		804.6028	30.73	2.82	33.55	46.00	-12.45	QP

Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26℃/56%RHPolarziation:Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		38.7518	36.65	-14.50	22.15	40.00	-17.85	QP
2		68.8721	37.79	-18.63	19.16	40.00	-20.84	QP
3		104.5361	41.07	-15.59	25.48	43.50	-18.02	QP
4		159.7844	39.18	-15.01	24.17	43.50	-19.33	QP
5	*	223.7334	48.39	-15.94	32.45	46.00	-13.55	QP
6		701.7610	30.85	0.32	31.17	46.00	-14.83	QP

■ Above 1GHz

Test channel:				Low	Lowest					
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
4804.00	37.55	31.78	8.60	32.09	45.84	74.00	-28.16	Vertical		
7206.00	32.73	36.15	11.65	32.00	48.53	74.00	-25.47	Vertical		
9608.00	31.28	37.95	14.14	31.62	51.75	74.00	-22.25	Vertical		
12010.00	*					74.00		Vertical		
14412.00	*					74.00		Vertical		
4804.00	41.14	31.78	8.60	32.09	49.43	74.00	-24.57	Horizontal		
7206.00	33.29	36.15	11.65	32.00	49.09	74.00	-24.91	Horizontal		
9608.00	30.56	37.95	14.14	31.62	51.03	74.00	-22.97	Horizontal		
12010.00	*					74.00		Horizontal		
14412.00	*					74.00		Horizontal		

Average value:

Average value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.83	31.78	8.60	32.09	34.12	54.00	-19.88	Vertical
7206.00	20.21	36.15	11.65	32.00	36.01	54.00	-17.99	Vertical
9608.00	19.88	37.95	14.14	31.62	40.35	54.00	-13.65	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.52	31.78	8.60	32.09	38.81	54.00	-15.19	Horizontal
7206.00	22.48	36.15	11.65	32.00	38.28	54.00	-15.72	Horizontal
9608.00	19.62	37.95	14.14	31.62	40.09	54.00	-13.91	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:				1	Middle				
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 1 5/61	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	36.82	31.85	8.67	32.12	45.22	74.00	-28.78	Vertical	
7320.00	31.41	36.37	11.72	31.89	47.61	74.00	-26.39	Vertical	
9760.00	28.15	38.35	14.25	31.62	49.13	74.00	-24.87	Vertical	
12200.00	*					74.00		Vertical	
14640.00	*					74.00		Vertical	
4880.00	41.42	31.85	8.67	32.12	49.82	74.00	-24.18	Horizontal	
7320.00	33.95	36.37	11.72	31.89	50.15	74.00	-23.85	Horizontal	
9760.00	30.74	38.35	14.25	31.62	51.72	74.00	-22.28	Horizontal	
12200.00	*					74.00		Horizontal	
14640.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 6/4	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4880.00	25.84	31.85	8.67	32.12	34.24	54.00	-19.76	Vertical	
7320.00	20.65	36.37	11.72	31.89	36.85	54.00	-17.15	Vertical	
9760.00	19.32	38.35	14.25	31.62	40.30	54.00	-13.70	Vertical	
12200.00	*					54.00		Vertical	
14640.00	*					54.00		Vertical	
4880.00	30.77	31.85	8.67	32.12	39.17	54.00	-14.83	Horizontal	
7320.00	22.53	36.37	11.72	31.89	38.73	54.00	-15.27	Horizontal	
9760.00	19.55	38.35	14.25	31.62	40.53	54.00	-13.47	Horizontal	
12200.00	*					54.00		Horizontal	
14640.00	*					54.00		Horizontal	

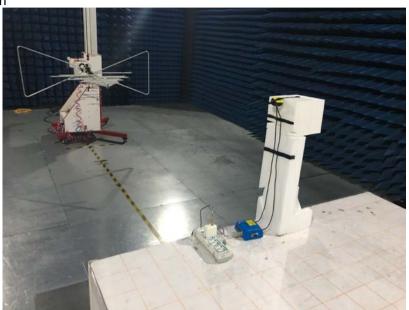
Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:				H	Highest				
Peak value:				•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 1 16//61	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	37.07	31.93	8.73	32.16	45.57	74.00	-28.43	Vertical	
7440.00	31.58	36.59	11.79	31.78	48.18	74.00	-25.82	Vertical	
9920.00	31.23	38.81	14.38	31.88	52.54	74.00	-21.46	Vertical	
12400.00	*					74.00		Vertical	
14880.00	*					74.00		Vertical	
4960.00	41.62	31.93	8.73	32.16	50.12	74.00	-23.88	Horizontal	
7440.00	33.14	36.59	11.79	31.78	49.74	74.00	-24.26	Horizontal	
9920.00	30.58	38.81	14.38	31.88	51.89	74.00	-22.11	Horizontal	
12400.00	*					74.00		Horizontal	
14880.00	*					74.00		Horizontal	
Average val	ue:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. 6//6	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	25.75	31.93	8.73	32.16	34.25	54.00	-19.75	Vertical	
7440.00	20.14	36.59	11.79	31.78	36.74	54.00	-17.26	Vertical	
9920.00	19.22	38.81	14.38	31.88	40.53	54.00	-13.47	Vertical	
12400.00	*					54.00		Vertical	
14880.00	*					54.00		Vertical	
4960.00	30.06	31.93	8.73	32.16	38.56	54.00	-15.44	Horizontal	
7440.00	22.49	36.59	11.79	31.78	39.09	54.00	-14.91	Horizontal	
9920.00	19.35	38.81	14.38	31.88	40.66	54.00	-13.34	Horizontal	
12400.00	*					54.00		Horizontal	
14880.00	*					54.00		Horizontal	

Remark:


^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201812000044F03

-----End-----