

TEST REPORT

Product Name : Bluetooth voice remote control

Brand Mark : N/A

Model No.: AN2301B-0KG-003Extension model: AN2301B-0KG-001FCC ID: 2AN9IU6-AN2301B

Report Number : BLA-EMC-202206-A7402

Date of Sample Receipt : 2022/6/20

Date of Test : 2022/6/20 to 2022/6/30

Date of Issue : 2022/6/30

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Josu Blue Thong

Prepared for:

Dongguan Anycon Intelligent Technology Co.,Ltd No12, LiminRoad, jinxiaotangIndustrialPark, Fenggang, Dongguan, Guangdong China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Review by:

Date:

Page 2 of 55

REPORT REVISE RECORD

Version No.	Date	Description
00	2022/6/30	Original

TABLE OF CONTENTS

1	Т	EST SUMMARY	5
2	G	SENERAL INFORMATION	6
3	G	SENERAL DESCRIPTION OF E.U.T	6
4		EST ENVIRONMENT	
5		EST MODE	
		MEASUREMENT UNCERTAINTY	
6	IV	DESCRIPTION OF SUPPORT UNIT	7
7			
8	L	ABORATORY LOCATION	8
9	Т	EST INSTRUMENTS LIST	9
10	С	CONDUCTED BAND EDGES MEASUREMENT	12
1,	0.1		
	0.1		
	0.2		
		NTENNA REQUIREMENT	
1:	1.1		
12	V	MINIMUM 6DB BANDWIDTH	
1	2.1	LIMITS	15
1	2.2		
1	2.3	TEST DATA	15
13	R	RADIATED SPURIOUS EMISSIONS	16
1	3.1	LIMITS	16
1	3.2	BLOCK DIAGRAM OF TEST SETUP	17
1	3.3	PROCEDURE	17
1	3.4	TEST DATA	19
14	R	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	27
1	4.1	LIMITS	27
1	4.2	BLOCK DIAGRAM OF TEST SETUP	28
1	4.3	PROCEDURE	28
1	4.4	TEST Data	30

Page 4 of 55

15 CO	ONDUCTED SPURIOUS EMISSIONS	34
15.1	LIMITS	34
15.2	BLOCK DIAGRAM OF TEST SETUP	34
15.3	TEST DATA	35
16 PO	WER SPECTRUM DENSITY	36
16.1	LIMITS	36
16.2	BLOCK DIAGRAM OF TEST SETUP	36
16.3	TEST DATA	36
17 CO	ONDUCTED PEAK OUTPUT POWER	37
17.1	LIMITS	37
17.2	BLOCK DIAGRAM OF TEST SETUP	37
17.3	TEST DATA	38
18 AP	PENDIX	39
APPENI	DIX A: PHOTOGRAPHS OF TEST SETUP	54
ADDENI	DIX B. PHOTOGRAPHS OF FUT	5.6

Page 5 of 55

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass

Page 6 of 55

2 GENERAL INFORMATION

Applicant	Dongguan Anycon Intelligent Technology Co.,Ltd
Address	No12, LiminRoad, jinxiaotangIndustrialPark, Fenggang, Dongguan, Guangdong China
Manufacturer	Dongguan Anycon Intelligent Technology Co.,Ltd
Address No12, LiminRoad, jinxiaotangIndustrialPark, Fenggang, Dongguan, Guangdong China	
Factory Dongguan Anycon Intelligent Technology Co.,Ltd	
Address No12, LiminRoad, jinxiaotangIndustrialPark, Fenggang, Dongguai Guangdong China	
Product Name	Bluetooth voice remote control
Test Model No. AN2301B-0KG-003	
Extension model AN2301B-0KG-001	
Note All above models are identical in the same PCB layout, interior structure electrical circuits. The differences are model name for commercial p	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V01
Software Version	V0.0.9
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	1dBi (Provided by the applicant)

Page 7 of 55

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.0V

5 TEST MODE

TEST MODE		TEST MODE DESCRIPTION				
TX	K	Keep the EUT in transmitting mode				
Remark: new ba	attery is used during all test.					

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Page 8 of 55

DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
N/A	N/A	N/A	N/A	N/A

LABORATORY LOCATION 8

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 55

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022

Page 10 of 55

EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Conducted Spurious Emissions					
Equipment Manufacturer Model		S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022

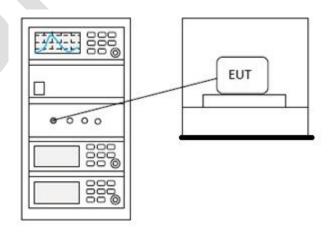
Page 11 of 55

Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Page 12 of 55

10 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	60%		

10.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

10.2 BLOCK DIAGRAM OF TEST SETUP

Page 13 of 55

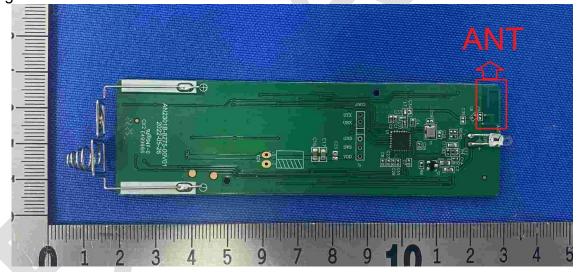
10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 14 of 55

11 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


11.1 CONCLUSION

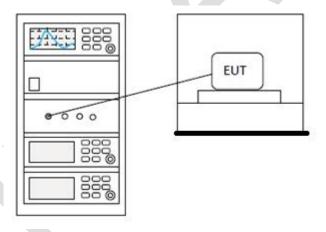
Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Page 15 of 55


12 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 11.8.1		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	60%		

12.1 LIMITS

Limit:	≥500 kHz			
L'IIIII.	_500 K112			

12.2 BLOCK DIAGRAM OF TEST SETUP

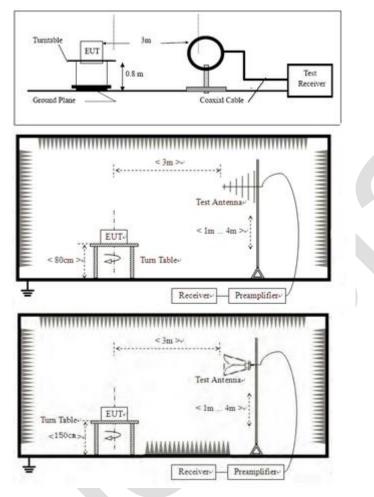
12.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 16 of 55

13 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	60%		


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

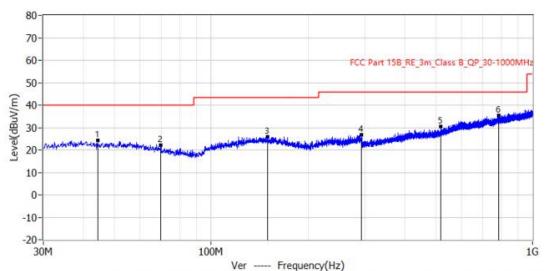
Page 18 of 55

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

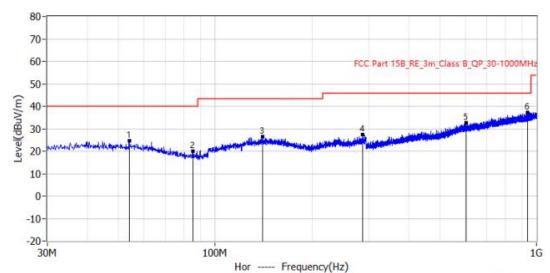
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202206-A74			
EUT: Bluetooth voice remote control	Test Engineer: LEO			
M/N: AN2301B-0KG-001	Temperature:			
S/N:	Humidity:			
Test Mode: BLE TX mode	Test Voltage:			
Note:	Test Data: 2022-06-22 11:06:20			



					, , , ,	,				
No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	44.308MHz	40.0	24.3	-15.7	0.3	24.0	QP	Ver	100.0	42.0
2*	69.528MHz	40.0	22.2	-17.8	0.7	21.5	QP	Ver	100.0	0.0
3*	149.674MHz	43.5	25.9	-17.6	2.4	23.5	QP	Ver	100.0	0.0
4*	293.598MHz	46.0	26.7	-19.3	2.8	23.9	QP	Ver	100.0	36.0
5*	518.031MHz	46.0	30.4	-15.6	1.5	28.9	QP	Ver	100.0	42.0
6*	786.721MHz	46.0	35.4	-10.6	1.5	33.9	QP	Ver	100.0	0.0

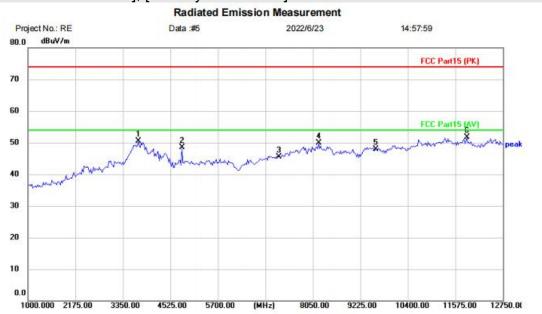
[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202206-A74			
EUT: Bluetooth voice remote control	Test Engineer: LEO			
M/N: AN2301B-0KG-001	Temperature:			
S/N:	Humidity:			
Test Mode: BLE TX mode	Test Voltage:			
Note:	Test Data: 2022-06-22 11:09:13			

Delta Reading Limit Level Factor Height Angle No. Frequency Detector Polar dBuV/m dBuV/m dB dBuV dB/m cm deg 54.008MHz QP 1* Hor -15.4 100.0 147.0 40.0 24.6 0.9 23.7 2* 85.048MHz 40.0 19.9 -20.1 0.4 19.5 185.0 Hor 100.0 QP 140.095MHz 43.5 26.5 -17.0 2.8 23.7 QP Hor 100.0 0.0 4* 286.929MHz 46.0 27.3 -18.7 3.5 23.8 QP Hor 100.0 336.0 46.0 31.3 604.361MHz 32.7 -13.31.4 QP Hor 100.0 332.0 46.0 35.4 939.496MHz 37.3 -8.7 1.9 QP 100.0 0.0 Hor

Temperature:

Humidity:


(C)

%RH

Page 21 of 55

Above 1GHz:

[TestMode: TX low channel]; [Polarity: Horizontal]

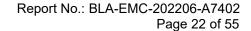
Polarization: Horizontal

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001

Mode: BLE TX-L

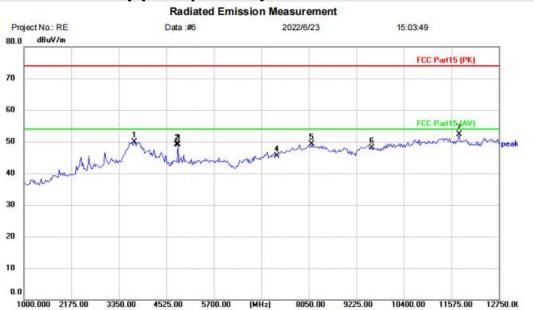

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3726.000	42.80	7.70	50.50	74.00	-23.50	peak		
2		4807.000	44.73	3.71	48.44	74.00	-25.56	peak		
3		7206.000	39.50	5.96	45.46	74.00	-28.54	peak		
4		8191.000	41.62	8.20	49.82	74.00	-24.18	peak		
5		9608.000	38.58	9.29	47.87	74.00	-26.13	peak		
6	*	11857.000	40.25	11.47	51.72	74.00	-22.28	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only


Humidity:

(C)

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

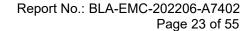
Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001

Mode: BLE TX-L


Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3726.000	42.18	7.70	49.88	74.00	-24.12	peak		
2		4804.000	45.39	3.71	49.10	74.00	-24.90	peak		
3		4807.000	45.39	3.71	49.10	74.00	-24.90	peak		
4		7260.000	39.38	6.17	45.55	74.00	-28.45	peak		
5		8120.500	41.14	8.11	49.25	74.00	-24.75	peak		
6		9608.000	38.80	9.29	48.09	74.00	-25.91	peak		
7	*	11763.000	40.64	11.63	52.27	74.00	-21.73	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

10400.00 11575.00 12750.00

(C)

%RH

Temperature:

Humidity:

[TestMode: TX mid channel]; [Polarity: Horizontal]

8050.00

Polarization: Horizontal

9225.00

Site Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

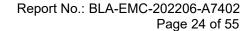
4525.00

5700.00

1000.000 2175.00

M/N: AN2301B-0KG-001

Mode: BLE TX-M


10

Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	3632.000	42.34	7.77	50.11	74.00	-23.89	peak		
	4877.500	47.83	3.37	51.20	74.00	-22.80	peak		
	7326.000	39.59	6.44	46.03	74.00	-27.97	peak		
	8191.000	41.10	8.20	49.30	74.00	-24.70	peak		
	9768.000	37.90	9.63	47.53	74.00	-26.47	peak		
*	11716.000	39.89	11.76	51.65	74.00	-22.35	peak		
		MHz 3632.000 4877.500 7326.000 8191.000	Mk. Freq. Level MHz dBuV 3632.000 42.34 4877.500 47.83 7326.000 39.59 8191.000 41.10 9768.000 37.90	Mk. Freq. Level Factor MHz dBuV dB/m 3632.000 42.34 7.77 4877.500 47.83 3.37 7326.000 39.59 6.44 8191.000 41.10 8.20 9768.000 37.90 9.63	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 3632.000 42.34 7.77 50.11 4877.500 47.83 3.37 51.20 7326.000 39.59 6.44 46.03 8191.000 41.10 8.20 49.30 9768.000 37.90 9.63 47.53	Mk. Freq. Level Factor ment Limit MHz dBuV dB/m dBuV/m dBuV/m 3632.000 42.34 7.77 50.11 74.00 4877.500 47.83 3.37 51.20 74.00 7326.000 39.59 6.44 46.03 74.00 8191.000 41.10 8.20 49.30 74.00 9768.000 37.90 9.63 47.53 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB 3632.000 42.34 7.77 50.11 74.00 -23.89 4877.500 47.83 3.37 51.20 74.00 -22.80 7326.000 39.59 6.44 46.03 74.00 -27.97 8191.000 41.10 8.20 49.30 74.00 -24.70 9768.000 37.90 9.63 47.53 74.00 -26.47	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dBuV/m dB Detector 3632.000 42.34 7.77 50.11 74.00 -23.89 peak 4877.500 47.83 3.37 51.20 74.00 -22.80 peak 7326.000 39.59 6.44 46.03 74.00 -27.97 peak 8191.000 41.10 8.20 49.30 74.00 -24.70 peak 9768.000 37.90 9.63 47.53 74.00 -26.47 peak	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dB Detector Comment 3632.000 42.34 7.77 50.11 74.00 -23.89 peak 4877.500 47.83 3.37 51.20 74.00 -22.80 peak 7326.000 39.59 6.44 46.03 74.00 -27.97 peak 8191.000 41.10 8.20 49.30 74.00 -24.70 peak 9768.000 37.90 9.63 47.53 74.00 -26.47 peak

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Humidity:

(C)

%RH


Project No.: RE

80.0

dBuV/m

[TestMode: TX mid channel]; [Polarity: Vertical]

Radiated Emission Measurement Data:#8 2022/6/23 15:51:36

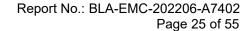
Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001

Mode: BLE TX-M


Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3773.000	42.39	7.67	50.06	74.00	-23.94	peak		
2	*	4877.500	48.82	3.37	52.19	74.00	-21.81	peak		
3		7321.500	43.68	6.42	50.10	74.00	-23.90	peak		
4		8238.000	41.69	8.22	49.91	74.00	-24.09	peak		
5		9768.000	38.17	9.63	47.80	74.00	-26.20	peak		
6		11387.000	39.62	11.78	51.40	74.00	-22.60	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Humidity:

(C)

%RH

[TestMode: TX high channel]; [Polarity: Horizontal]

Radiated Emission Measurement Project No.: RE Data:#9 2022/6/23 15:59:53 dBuV/m 80.0 FCC Part15 (PK) 70 60 50 40 30 20 10 0.0 10400.00 11575.00 12750.00 1000.000 2175.00 4525.00 5700.00 8050.00 9225.00

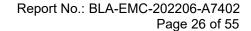
Polarization: Horizontal

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001

Mode: BLE TX-H

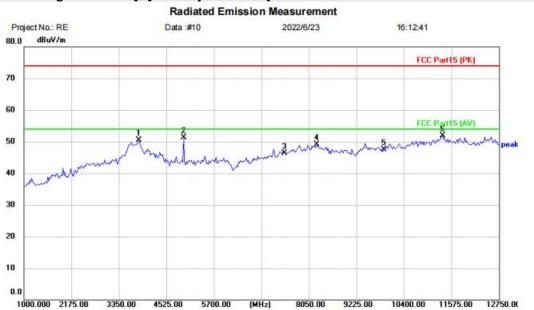

Note:

Site

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	3843.500	42.78	7.12	49.90	74.00	-24.10	peak	
2	4948.000	44.95	3.65	48.60	74.00	-25.40	peak	
3	7440.000	39.30	6.86	46.16	74.00	-27.84	peak	
4	8026.500	41.50	7.98	49.48	74.00	-24.52	peak	
5	9920.000	37.66	10.16	47.82	74.00	-26.18	peak	
6 *	11739.500	39.66	11.70	51.36	74.00	-22.64	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only


Humidity:

(C)

%RH

[TestMode: TX high channel]; [Polarity: Vertical]

Polarization: Vertical

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001

Mode: BLE TX-H

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	43.46	7.12	50.58	74.00	-23.42	peak		
2		4948.000	47.62	3.65	51.27	74.00	-22.73	peak		
3		7440.000	39.47	6.86	46.33	74.00	-27.67	peak		
4		8238.000	40.81	8.22	49.03	74.00	-24.97	peak		
5		9920.000	37.38	10.16	47.54	74.00	-26.46	peak		
6	*	11363.500	40.19	11.81	52.00	74.00	-22.00	peak		

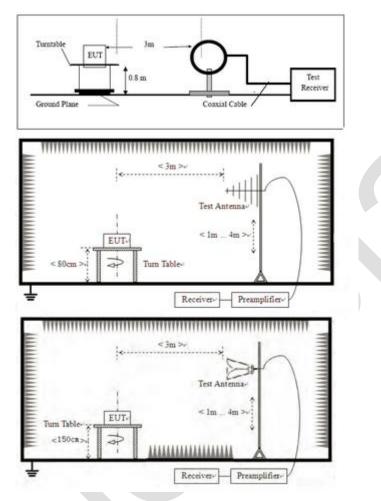
Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Page 27 of 55

14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 29 of 55

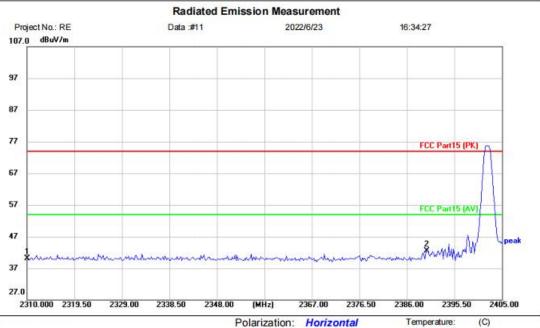
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


Humidity:

%RH

Page 30 of 55

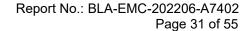
14.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN2301B-0KG-001


Mode: BLE TX-L

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m		Over	Detector		
									Comment	
1		2310.000	43.95	-3.93	40.02	74.00	-33.98	peak		
2	*	2390.000	46.09	-3.58	42.51	74.00	-31.49	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

2405.00

(C)

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Radiated Emission Measurement Project No.: RE Data :#12 2022/6/23 16:36:26 107.0 dBuV/m 97 67 57 FCC Part 15 [PK] peak

Polarization: Vertical

2376.50

Temperature:

Humidity:

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

2329.00

2338.50

2348.00

2310.000 2319.50

M/N: AN2301B-0KG-001

Mode: BLE TX-L

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBuV/m	Over			
		MHz	dBuV	dB/m	dBuV/m		dB	Detector	Comment	
1		2310.000	43.83	-3.93	39.90	74.00	-34.10	peak		
2	*	2390.000	47.86	-3.58	44.28	74.00	-29.72	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

2491.20

Polarization: Vertical

2493.40

Temperature:

Humidity:

(C)

%RH

Site Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

2478.000 2480.20

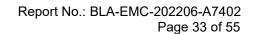
2482.40

2484.60

2486.80

M/N: AN2301B-0KG-001

Mode: BLE TX-H


27.0

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m		Over			
							dB	Detector	Comment	
1		2483.500	43.24	-3.14	40.10	74.00	-33.90	peak		
2	*	2500.000	43.19	-3.08	40.11	74.00	-33.89	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

Radiated Emission Measurement Project No.: RE Data :#14 2022/6/23 16:23:25 107.0 dBuV/m 97 87 77 FCC Part15 (PK) 67 57 FCC Part15 (AV) 47 37 27.0

2491.20 2493.40

Temperature:

Humidity:

(C)

%RH

Polarization: Horizontal

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

2478.000 2480.20

2484.60

2486.80

2482.40

M/N: AN2301B-0KG-001

Mode: BLE TX-H

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m		Over			
								Detector	Comment	
1		2483.500	43.49	-3.14	40.35	74.00	-33.65	peak		
2	*	2500.000	44.13	-3.08	41.05	74.00	-32.95	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

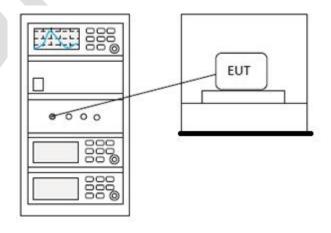
Page 34 of 55

15 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

15.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread

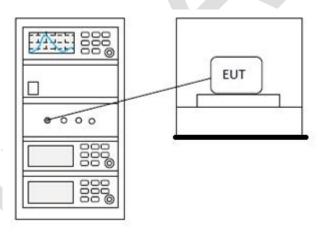
15.2 BLOCK DIAGRAM OF TEST SETUP

Page 35 of 55

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 36 of 55


16 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 11.10.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

16.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

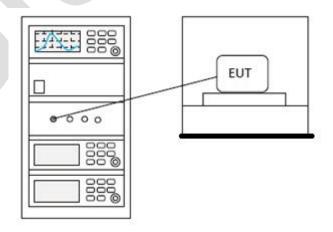
16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Report No.: BLA-EMC-202206-A7402

Page 37 of 55


17 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

17.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)	
	1 for ≥50 hopping channels	
902-928	0.25 for 25≤ hopping channels <50	
	1 for digital modulation	
	1 for ≥75 non-overlapping hopping channels	
2400-2483.5	0.125 for all other frequency hopping systems	
	1 for digital modulation	
	1 for frequency hopping systems and digital	
5725-5850	modulation	

17.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202206-A7402

Page 38 of 55

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

18 APPENDIX

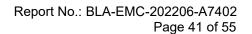

Report No.: BLA-EMC-202206-A7402

Page 39 of 55

Maximum Conducted Output Power

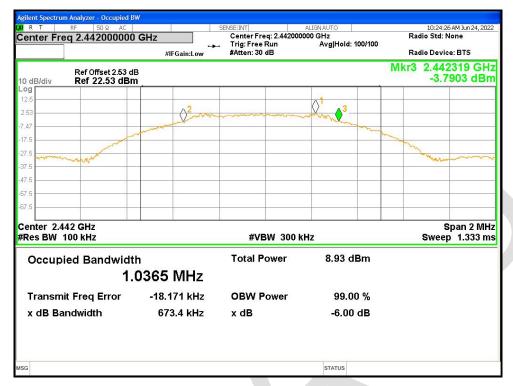
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	3.125	30	Pass
NVNT	BLE	2442	Ant1	2.894	30	Pass
NVNT	BLE	2480	Ant1	3.899	30	Pass

Power NVNT BLE 2402MHz Ant1

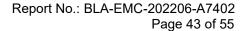

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth


Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.664	0.5	Pass
NVNT	BLE	2442	Ant1	0.673	0.5	Pass
NVNT	BLE	2480	Ant1	0.695	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

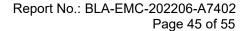

-6dB Bandwidth NVNT BLE 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Antl	1.0255
NVNT	BLE	2442	Ant1	1.0231
NVNT	BLE	2480	Ant1	1.0315

OBW NVNT BLE 2402MHz Ant1

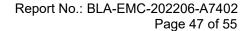

OBW NVNT BLE 2442MHz Ant1

OBW NVNT BLE 2480MHz Ant1

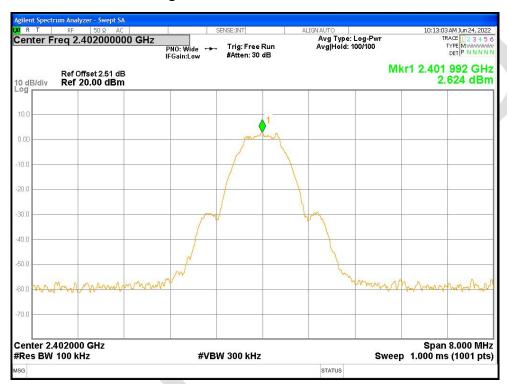
Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	2.317	8	Pass
NVNT	BLE	2442	Ant1	2.027	8	Pass
NVNT	BLE	2480	Ant1	3.449	8	Pass

PSD NVNT BLE 2402MHz Ant1


PSD NVNT BLE 2442MHz Ant1

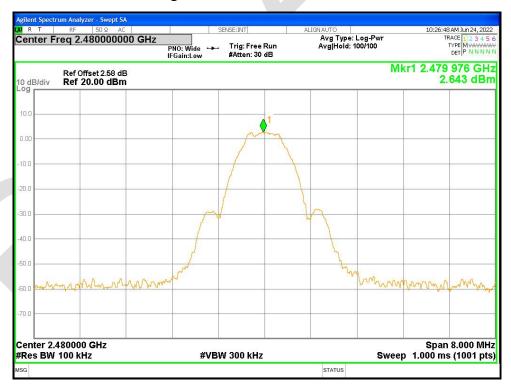
PSD NVNT BLE 2480MHz Ant1



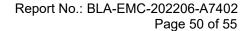
Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-58.24	-30	Pass
NVNT	BLE	2480	Ant1	-58.36	-30	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

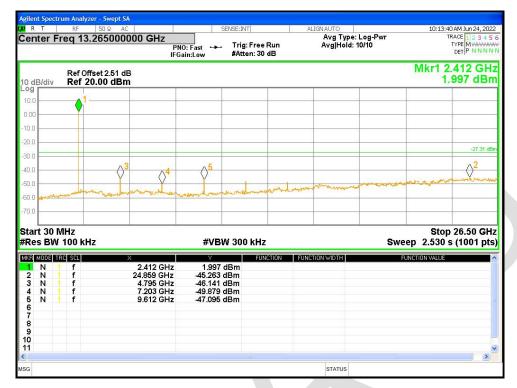


Band Edge NVNT BLE 2402MHz Ant1 Emission


Band Edge NVNT BLE 2480MHz Ant1 Ref

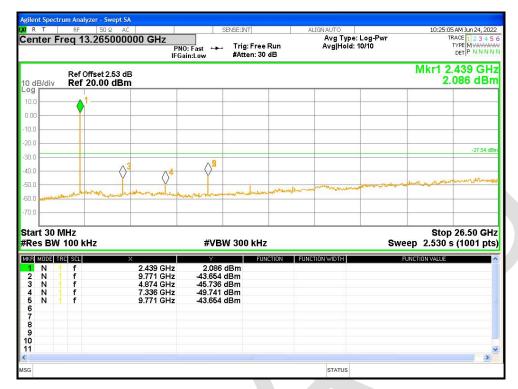
Band Edge NVNT BLE 2480MHz Ant1 Emission

Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-47.95	-30	Pass
NVNT	BLE	2442	Ant1	-46.11	-30	Pass
NVNT	BLE	2480	Ant1	-44.59	-30	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

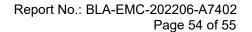
Tx. Spurious NVNT BLE 2402MHz Ant1 Emission



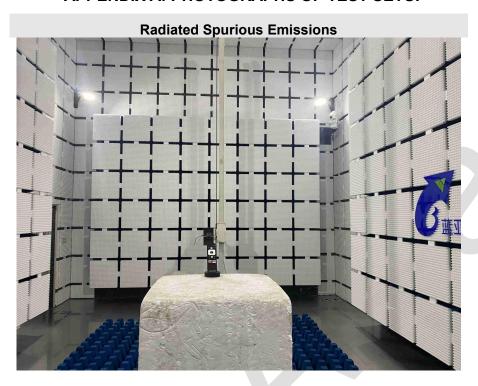
Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

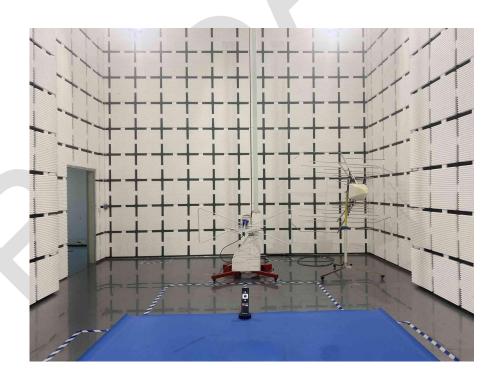
Tx. Spurious NVNT BLE 2442MHz Ant1 Emission




Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission





APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202206-A7402

Page 55 of 55

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202206-A7401

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.