

TEST REPORT

Product Name : Bluetooth voice remote control

Brand Mark : N/A

Model No. : AN4806-0KG

Extension Model: RC-27

FCC ID : 2AN9I-AN4806

Report Number : BLA-EMC-202307-A8002

Date of Sample Receipt : 2023/7/24

Date of Test : 2023/7/26 to 2023/8/2

Date of Issue : 2023/8/3

Test Standard: 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Anycon Intelligent Technology Co.,Ltd No12, Limin Road, Jinxiaotang Industrial Park,Fenggang

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by: Review by:

Approved by: Date: 2023/8

Page 2 of 55

REPORT REVISE RECORD

Version No. Date		Description
00	2023/8/3	Original

TABLE OF CONTENTS

1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
3 GENERAL DESCRIPTION OF E.U.T.	6
4 TEST ENVIRONMENT	7
5 TEST MODE	7
6 MEASUREMENT UNCERTAINTY	
7 DESCRIPTION OF SUPPORT UNIT	
8 LABORATORY LOCATION	
9 TEST INSTRUMENTS LIST	
10 ANTENNA REQUIREMENT	11
10.1 CONCLUSION	11
11 CONDUCTED SPURIOUS EMISSIONS	12
11.1 LIMITS	
11.2 BLOCK DIAGRAM OF TEST SETUP	
11.3 TEST DATA	
12 RADIATED SPURIOUS EMISSIONS	
12.1 LIMITS	14
12.2 BLOCK DIAGRAM OF TEST SETUP	15
12.3 PROCEDURE	15
12.4 TEST DATA	17
13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	25
13.1 LIMITS	25
13.2 BLOCK DIAGRAM OF TEST SETUP	26
13.3 PROCEDURE	26
13.4 TEST DATA	28
14 CONDUCTED BAND EDGES MEASUREMENT	32
14.1 LIMITS	32
14.2 BLOCK DIAGRAM OF TEST SETUP	33
14.3 TEST DATA	33

Page 4 of 55

15 MINIMUM 6DB BANDWIDTH		 	34
15.1 BLOCK DIAGRAM OF TEST SETUP		 	34
15.2 TEST DATA		 	32
16 CONDUCTED PEAK OUTPUT POWER		 	35
16.1 LIMITS		 	35
16.2 BLOCK DIAGRAM OF TEST SETUP		 	35
16.3 EST DATA		 	36
17 POWER SPECTRUM DENSITY			37
17.1 LIMITS			37
17.2 BLOCK DIAGRAM OF TEST SETUP			37
17.3 TEST DATA			37
18 APPENDIX			38
18.1 MAXIMUM CONDUCTED OUTPUT POWER			38
18.2 -6dB Bandwidth			
18.3 OCCUPIED CHANNEL BANDWIDTH			
18.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL.			
18.5 CONDUCTED RF SPURIOUS EMISSION			
18.6 BAND EDGE			
APPENDIX A: PHOTOGRAPHS OF TEST	SETUP		54
APPENDIX B: PHOTOGRAPHS OF EUT		 	5

Page 5 of 55

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna	47 CFR Part 15,	N/A	47 CFR Part 15, Subpart C	Pass
Requirement	Subpart C 15.247	IN//A	15.203 & 15.247(c)	1 433
		ANSI C63.10		
Conducted Spurious	47 CFR Part 15,	(2013) Section	47 CFR Part 15, Subpart C	Pass
Emissions	Subpart C 15.247	7.8.6 & Section	15.247(d)	1 033
		11.11		
Radiated Spurious	47 CFR Part 15,	ANSI C63.10	47 CFR Part 15, Subpart C	
Emissions	Subpart C 15.247	(2013) Section	15.209 & 15.247(d)	Pass
LIIII33I0II3	Subpart C 13.247	6.4,6.5,6.6	13.203 & 13.247 (u)	
Radiated Emissions	47 CFR Part 15,	ANSI C63.10	47 CFR Part 15, Subpart C	
which fall in the	Subpart C 15.247	(2013) Section	15.209 & 15.247(d)	Pass
restricted bands	Oubpart 0 10.247	6.10.5	10.203 & 10.241 (u)	
		ANSI C63.10		
Conducted Band	47 CFR Part 15,	(2013) Section	47 CFR Part 15, Subpart C	Pass
Edges Measurement	Subpart C 15.247	7.8.8 & Section	15.247(d)	1 400
		11.13.3.2		
Minimum 6dB	47 CFR Part 15,	ANSI C63.10	47 CFR Part 15, Subpart C	
Bandwidth	Subpart C 15.247	(2013) Section	15.247a(2)	Pass
Danaman	Suspanto 10.2 II	11.8.1	10.2 11 4(2)	
Power Spectrum	47 CFR Part 15,	ANSI C63.10	47 CFR Part 15, Subpart C	
Density	Subpart C 15.247	(2013) Section	15.247(e)	Pass
		11.10.2	(-)	
Conducted Peak	47 CFR Part 15,	ANSI C63.10	47 CFR Part 15, Subpart C	
Output Power	Subpart C 15.247	(2013) Section	15.247(b)(3)	Pass
·		7.8.5	\	
Conducted		ANSI C63.10		
Emissions at AC	47 CFR Part 15,	(2013) Section	47 CFR Part 15, Subpart C	N/A
Power Line	Subpart C 15.247	6.2	15.207	
(150kHz-30MHz)				

Remark:

N/A: Not Applicable

Page 6 of 55

2 GENERAL INFORMATION

Applicant	Dongguan Anycon Intelligent Technology Co.,Ltd		
Address	No12, Limin Road, Jinxiaotang Industrial Park,Fenggang		
Manufacturer	Dongguan Anycon Intelligent Technology Co.,Ltd		
Address	No12, Limin Road, Jinxiaotang Industrial Park,Fenggang		
Factory	Dongguan Anycon Intelligent Technology Co.,Ltd		
Address	No12, Limin Road, Jinxiaotang Industrial Park,Fenggang		
Product Name	Bluetooth voice remote control		
Test Model No.	AN4806-0KG		
Extension Model	RC-27		
Remark	Their circuit design, layout, components and internal wiring are the same, but the appearance and key screen printing are different.		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V0.2
Software Version	V0.0.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	2dBi(Provided by the customer)

Page 7 of 55

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	24°C	3.3Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX	Keep the EUT in transmitting mode with modulation
Remark:Only th	e data of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4,68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

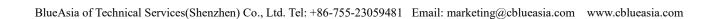
Page 8 of 55

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:


BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 55

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9	
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19	
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14	
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14	
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14	
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12	
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06	
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12	
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/07	2024/07/06	
Filter group	SKET	2.4G/5G Filter group r	N/A	2023/07/07	2024/07/06	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment Manufacturer Model S/N Cal.Date Cal.Du						
Shield room	SKET	833	N/A	2020/11/25	2023/11/24	
Receiver	R&S	ESPI3	101082	2022/09/14	2023/09/13	
LISN	R&S	ENV216	3560.6550.15	2022/09/14	2023/09/13	
LISN	AT	AT166-2	AKK1806000003	2022/09/14	2023/09/13	

Page 10 of 55

ISN	TESEQ	ISNT8-cat6	53580	2022/09/14	2023/09/13
Single-channel					
vehicle artificial	Schwarzbeck	NNBM 8124	01045	2022/08/17	2023/08/16
power network					
Single-channel					
vehicle artificial	Schwarzbeck	NNBM 8124	01075	2022/08/17	2023/08/16
power network					
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A

Test Equipment	Of RF Conducte	d Test			70
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06
Spectrum	KEYSIGHT	N9030A	MY52350152	2023/07/07	2024/07/06
Spectrum	KEYSIGHT	N9010A	MY54330814	2023/07/07	2024/07/06
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06
Signal Generator	Agilent	E8257D	MY44320250	2023/07/07	2024/07/06
Signal Generator	Agilent	N5181A	MY46240904	2022/08/02	2023/08/01
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06
Power probe	DARE	RPR3006W	14I00889SN042	2022/09/07	2023/09/06
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2023/07/07	2024/07/06
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A

Page 11 of 55

10 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

10.1 CONCLUSION

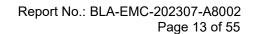
Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

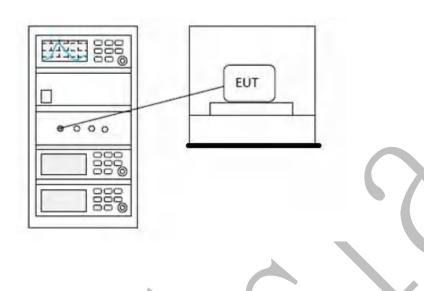
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Page 12 of 55


11 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Aiden
Temperature	24℃
Humidity	50%

11.1 LIMITS


Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

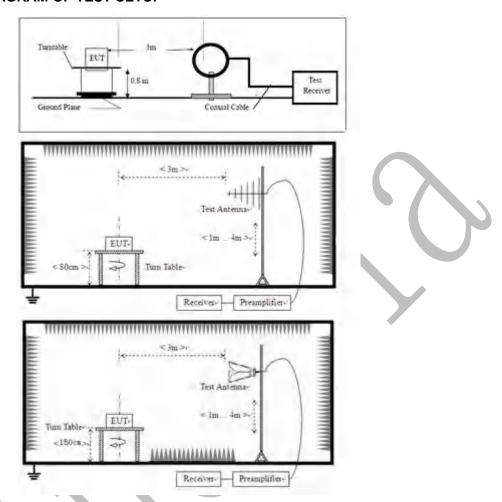
11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 14 of 55

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Aiden
Temperature	24℃
Humidity	50%


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 16 of 55

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

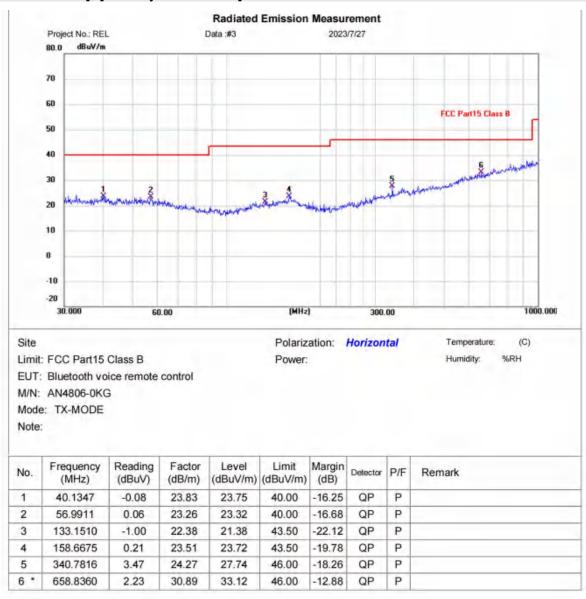
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

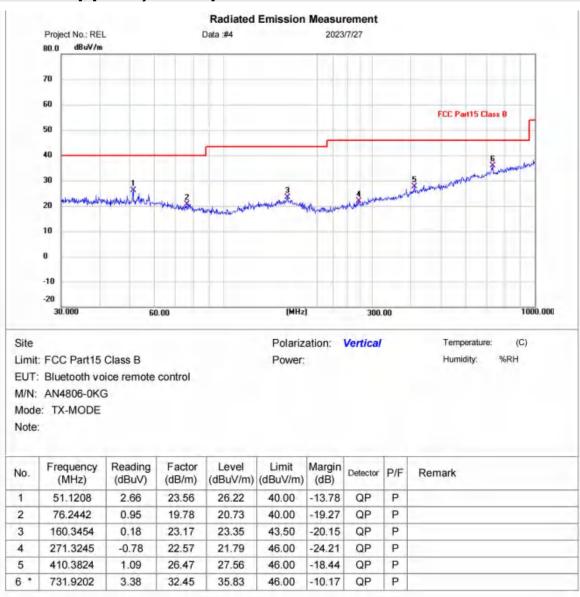
- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

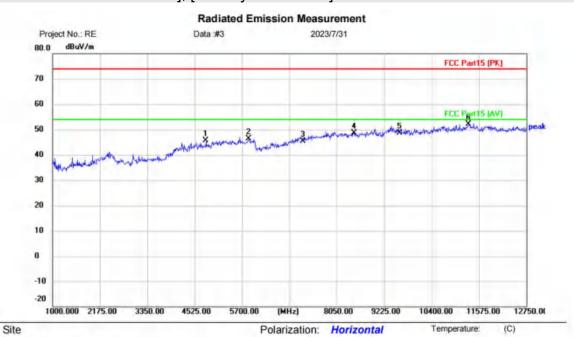


12.4 TEST DATA


Below 1GHz

[TestMode: TX]; [Polarity: Horizontal]

[TestMode: TX]; [Polarity: Vertical]


%RH

Humidity:

Above 1GHz

[TestMode: TX lowest channel]; [Polarity: Horizontal]

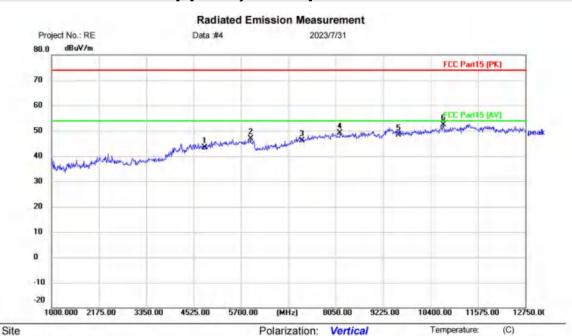
Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG

Mode: TX-L Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	41.08	4.51	45.59	74.00	-28.41	peak	
2		5864.500	39.86	6.62	46.48	74.00	-27.52	peak	
3		7206.000	38.05	7.41	45.46	74.00	-28.54	peak	
4		8484.750	39.37	9.37	48.74	74.00	-25.26	peak	
5		9608.000	37.08	11.59	48.67	74.00	-25.33	peak	
6	*	11316.50	38.80	13.39	52.19	74.00	-21.81	peak	


Power:

Humidity:

%RH

[TestMode: TX lowest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

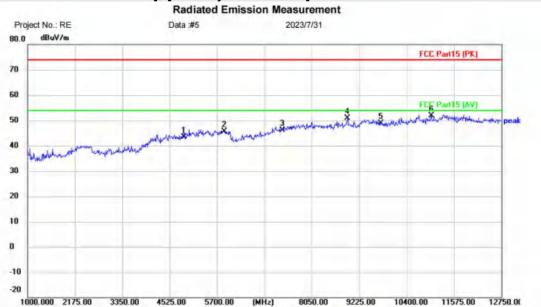
M/N: AN4806-OKG

Mode: TX-L Note:

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	38.84	4.51	43.35	74.00	-30.65	peak	
2		5935.000	40.09	6.74	46.83	74.00	-27.17	peak	
3		7206.000	38.65	7.41	46.06	74.00	-27.94	peak	
4		8155.750	40.53	8.61	49.14	74.00	-24.86	peak	
5		9608.000	36.74	11.59	48.33	74.00	-25.67	peak	
6	*	10717.25	39.06	13.32	52.38	74.00	-21.62	peak	

Power:

Temperature:


Humidity:

(C)

%RH

[TestMode: TX middle channel]; [Polarity: Horizontal]

Polarization: Horizontal

Limit: FCC Part15 (PK)

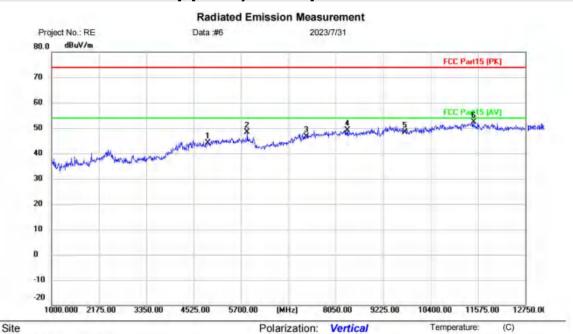
EUT: Bluetooth voice remote control

M/N: AN4806-OKG Mode: TX-M

Note:

Site

Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	n dB Detector Comment	Comment	
	4884.000	38.81	4.62	43.43	74.00	-30.57	peak	
	5876.250	39.03	6.66	45.69	74.00	-28.31	peak	
	7326.000	38.19	7.82	46.01	74.00	-27.99	peak	
	8931.250	40.47	10.44	50.91	74.00	-23.09	peak	
	9768.000	37.00	11.77	48.77	74.00	-25.23	peak	
*	11011.00	38.09	13.75	51.84	74.00	-22.16	peak	
		MHz 4884.000 5876.250 7326.000 8931.250 9768.000	Mk. Freq. Level MHz dBuV 4884.000 38.81 5876.250 39.03 7326.000 38.19 8931.250 40.47 9768.000 37.00	Mk. Freq. Level Factor MHz dBuV dB 4884.000 38.81 4.62 5876.250 39.03 6.66 7326.000 38.19 7.82 8931.250 40.47 10.44 9768.000 37.00 11.77	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4884.000 38.81 4.62 43.43 5876.250 39.03 6.66 45.69 7326.000 38.19 7.82 46.01 8931.250 40.47 10.44 50.91 9768.000 37.00 11.77 48.77	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 4884.000 38.81 4.62 43.43 74.00 5876.250 39.03 6.66 45.69 74.00 7326.000 38.19 7.82 46.01 74.00 8931.250 40.47 10.44 50.91 74.00 9768.000 37.00 11.77 48.77 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 4884.000 38.81 4.62 43.43 74.00 -30.57 5876.250 39.03 6.66 45.69 74.00 -28.31 7326.000 38.19 7.82 46.01 74.00 -27.99 8931.250 40.47 10.44 50.91 74.00 -23.09 9768.000 37.00 11.77 48.77 74.00 -25.23	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 4884.000 38.81 4.62 43.43 74.00 -30.57 peak 5876.250 39.03 6.66 45.69 74.00 -28.31 peak 7326.000 38.19 7.82 46.01 74.00 -27.99 peak 8931.250 40.47 10.44 50.91 74.00 -23.09 peak 9768.000 37.00 11.77 48.77 74.00 -25.23 peak


Power:

Humidity:

%RH

[TestMode: TX middle channel]; [Polarity: Vertical]

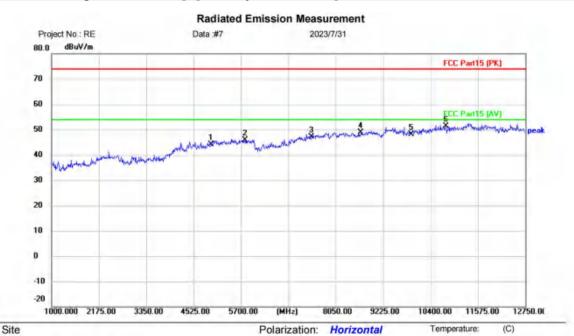
Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG Mode: TX-M

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dΒ	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	39.54	4.62	44.16	74.00	-29.84	peak	
2		5852.750	41.81	6.58	48.39	74.00	-25.61	peak	
3		7326.000	38.87	7.82	46.69	74.00	-27.31	peak	
4		8343.750	40.45	8.77	49.22	74.00	-24.78	peak	
5		9768.000	36.66	11.77	48.43	74.00	-25.57	peak	
6	*	11469.25	39.00	13.49	52.49	74.00	-21.51	peak	


Power:

Humidity:

%RH

[TestMode: TX highest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

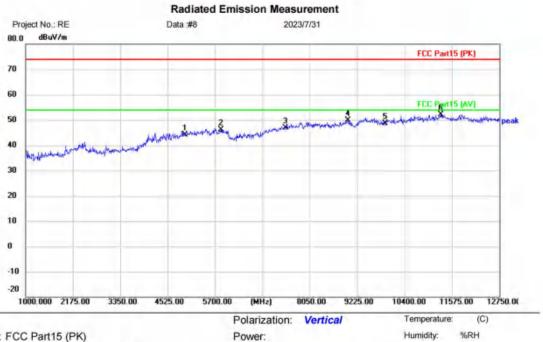
EUT: Bluetooth voice remote control

M/N: AN4806-OKG

Mode: TX-H

 No. Mk.
 Freq.
 Level Level Level Factor Measure— Factor Measure— Limit Over

 MHz
 dBuV
 dB
 dBuV/m
 dBuV/m
 dB
 Detector Comme


 1
 4960,000
 38.72
 5.47
 44.19
 74.00
 -29.81
 peak

No.	Mk	. Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	38.72	5.47	44.19	74.00	-29.81	peak		
2		5805.750	39.78	6.22	46.00	74.00	-28.00	peak		
3		7440.000	38.88	8.24	47.12	74.00	-26.88	peak		
4		8672.750	39.16	9.81	48.97	74.00	-25.03	peak		
5		9920.000	36.18	11.96	48.14	74.00	-25.86	peak		
6	*	10787.75	38.33	13.12	51.45	74.00	-22.55	peak		

Power:

[TestMode: TX highest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG Mode: TX-H

Site

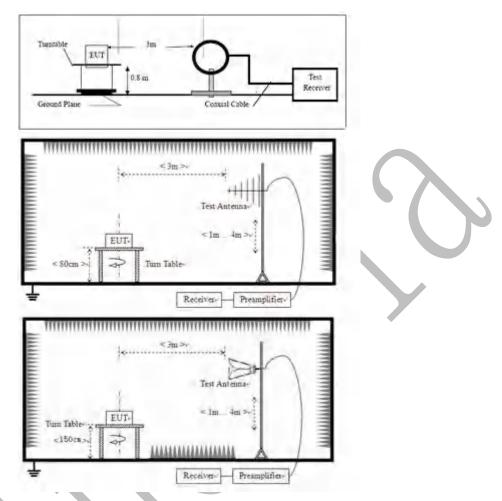
Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	uV/m dBuV/m dB Detector Comment	dBuV/m dBuV/m dB Detector Comment	dBuV/m	uV/m dB	Comment
1		4960.000	38.66	5.47	44.13	74.00	-29.87	peak		
2		5841.000	39.63	6.49	46.12	74.00	-27.88	peak		
3		7440.000	38.60	8.24	46.84	74.00	-27.16	peak		
4		8990.000	39.14	10.63	49.77	74.00	-24.23	peak		
5	- 11	9920.000	36.70	11.96	48.66	74.00	-25.34	peak		
6	*	11293.00	38.66	13.37	52.03	74.00	-21.97	peak		

Page 25 of 55

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Aiden
Temperature	24 ℃
Humidity	50%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 27 of 55

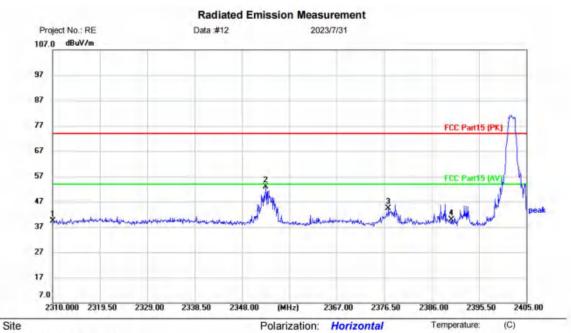
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


%RH

Humidity:

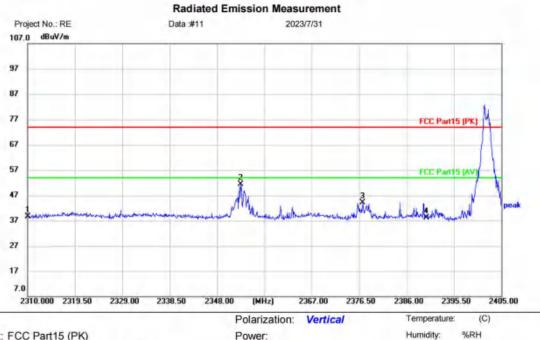
13.4 TEST DATA

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG


Mode: TX-L Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	43.67	-4.40	39.27	74.00	-34.73	peak	
2	*	2352.750	57.15	-4.35	52.80	74.00	-21.20	peak	
3		2377.355	48.70	-4.31	44.39	74.00	-29.61	peak	
4		2390.000	44.07	-4.31	39.76	74.00	-34.24	peak	

Power:

[TestMode: TX lowest channel]; [Polarity: Vertical]

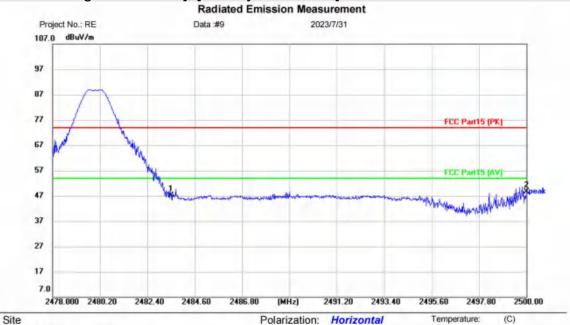
Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG

Mode: TX-L Note:

Site


Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	2310.000	42.93	-4.40	38.53	74.00	-35.47	peak	
*	2352.750	55.85	-4.35	51.50	74.00	-22.50	peak	
	2377.165	48.36	-4.31	44.05	74.00	-29.95	peak	
	2390.000	42.46	-4.31	38.15	74.00	-35.85	peak	
		MHz 2310.000	Mk. Freq. Level MHz dBuV 2310.000 42.93 * 2352.750 55.85 2377.165 48.36	Mk. Freq. Level Factor MHz dBuV dB 2310.000 42.93 -4.40 * 2352.750 55.85 -4.35 2377.165 48.36 -4.31	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 2310.000 42.93 -4.40 38.53 * 2352.750 55.85 -4.35 51.50 2377.165 48.36 -4.31 44.05	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 2310.000 42.93 -4.40 38.53 74.00 * 2352.750 55.85 -4.35 51.50 74.00 2377.165 48.36 -4.31 44.05 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB dBuV/m dB dB -4.35 74.00 -35.47 -35.47 -4.35 51.50 74.00 -22.50 -22.50 -4.31 44.05 74.00 -29.95	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 2310.000 42.93 -4.40 38.53 74.00 -35.47 peak * 2352.750 55.85 -4.35 51.50 74.00 -22.50 peak 2377.165 48.36 -4.31 44.05 74.00 -29.95 peak

Humidity:

%RH

[TestMode: TX highest channel]; [Polarity: Horizontal]

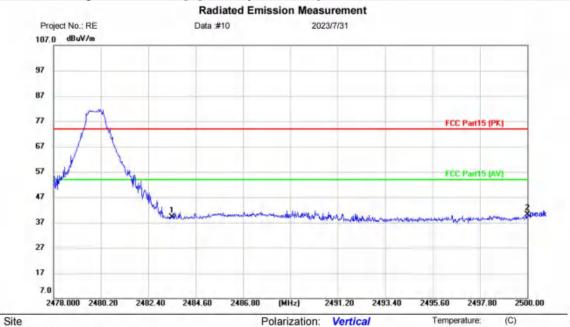
Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG Mode: TX-H

Note:

No.	M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	51.89	-4.64	47.25	74.00	-26.75	peak		
2	*	2500.000	53.48	-4.75	48.73	74.00	-25.27	peak		


Power:

Humidity:

%RH

[TestMode: TX highest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Bluetooth voice remote control

M/N: AN4806-OKG Mode: TX-H

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	43.85	-4.64	39.21	74.00	-34.79	peak		
2	*	2500.000	44.81	-4.75	40.06	74.00	-33.94	peak		

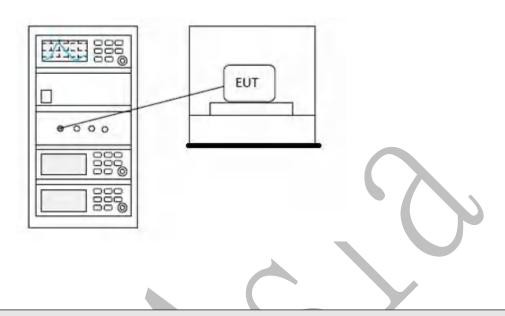
Power:

Page 32 of 55

14 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Aiden			
Temperature	24°C			
Humidity	50%			

14.1 LIMITS

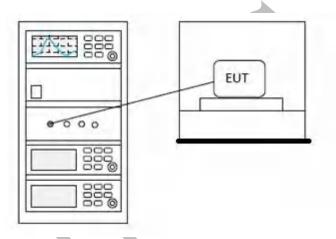

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



Page 34 of 55

15 MINIMUM 6DB BANDWIDTH

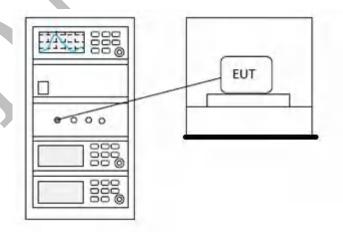
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.7				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Aiden				
Temperature	24℃				
Humidity	50%				

15.1 BLOCK DIAGRAM OF TEST SETUP

15.2 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 35 of 55


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Aiden
Temperature	24℃
Humidity	50%

16.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5505 5050	1 for frequency hopping systems and digital
5725-5850	modulation

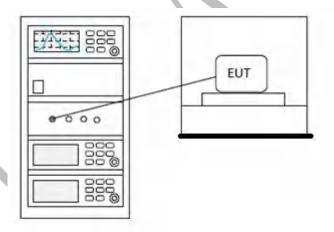

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 EST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

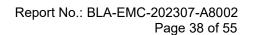
Report No.: BLA-EMC-202307-A8002

Page 37 of 55


17 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Aiden
Temperature	24℃
Humidity	50%

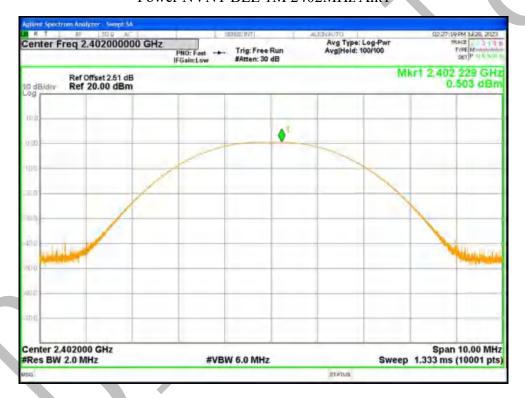
17.1 LIMITS


Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


18 APPENDIX

Appendix1

18.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict
		(MHz)		Power (dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	0.503	30	Pass
NVNT	BLE 1M	2442	Ant1	0.765	30	Pass
NVNT	BLE 1M	2480	Ant1	0.996	30	Pass

Power NVNT BLE 1M 2402MHz Antl

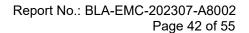
Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

18.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.6558	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.6453	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.6451	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1



-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

18.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0566
NVNT	BLE 1M	2442	Ant1	1.0460
NVNT	BLE 1M	2480	Ant1	1.0464

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

18.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

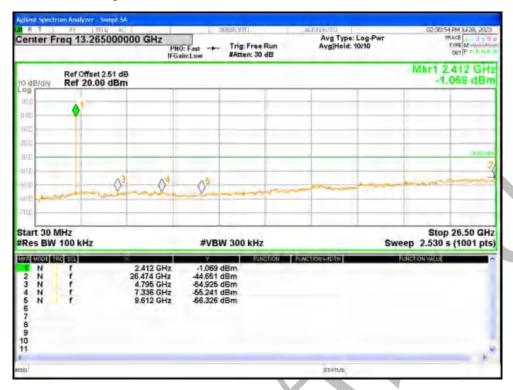
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-13.448	8	Pass
NVNT	BLE 1M	2442	Ant1	-13.791	8	Pass
NVNT	BLE 1M	2480	Ant1	-14.072	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

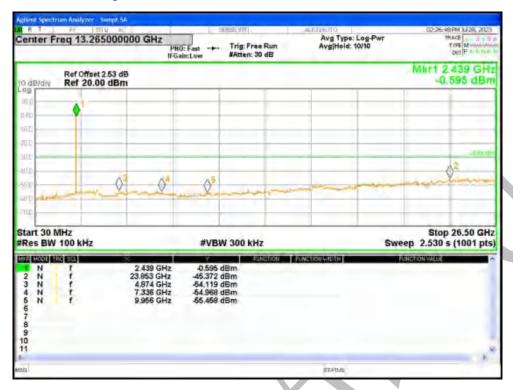
PSD NVNT BLE 1M 2480MHz Ant1

18.5 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency	Antenna	Max Value	Limit	Verdict
		(MHz)		(dBc)	(dBc)	
NVNT	BLE 1M	2402	Ant1	-44.83	-30	Pass
NVNT	BLE 1M	2442	Ant1	-45.73	-30	Pass
NVNT	BLE 1M	2480	Ant1	-45.95	-30	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission



Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

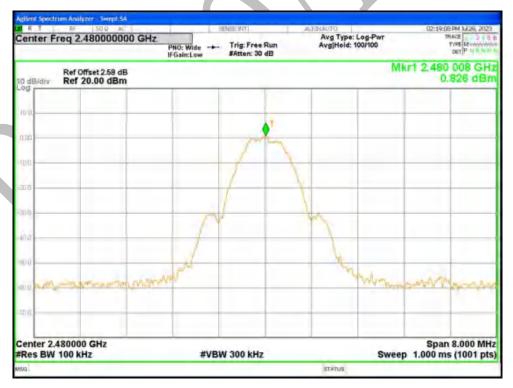
Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

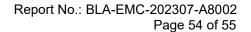
18.6 BAND EDGE

Condition	Mode	Frequency	Antenna	Max Value	Limit	Verdict
		(MHz)		(dBc)	(dBc)	
NVNT	BLE 1M	2402	Ant1	-56.11	-30	Pass
NVNT	BLE 1M	2480	Ant1	-56.51	-30	Pass

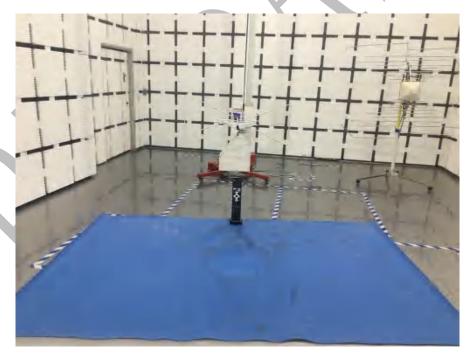
Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



Band Edge NVNT BLE 1M 2402MHz Ant1 Emission


Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Report No.: BLA-EMC-202307-A8002

Page 55 of 55

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202307-A8001

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.