

Page 1 of 56

TEST REPORT

Product Name	:	Bluetooth voice remote control
Brand Mark	:	N/A
Model No.	:	AN2704-1IP-003
FCC ID	:	2AN9I-AN2704
Report Number	:	BLA-EMC-202301-A2002
Date of Sample Receipt	:	2023/1/10
Date of Test	:	2023/1/10 to 2023/2/15
Date of Issue	:	2023/2/15
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Dongguan Anycon Intelligent Technology Co.,Ltd No12,Limin Road,Jinxiaotang Industrial Park,Fenggang,Dongguan Prepared by:

BlueAsia Technical Services(Shenzhen) Co.,Ltd. No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-23059481

Compiled by:

Approved by:

Jozu 13 hue. Theng

Review by:

Date:

weels

REPORT REVISE RECORD

Version No.	Date	Description
00	2023/2/15	Original

TABLE OF CONTENTS

TE	ST SUMMARY	5
GE	ENERAL INFORMATION	6
GE	ENERAL DESCRIPTION OF E.U.T.	6
ТЕ	ST ENVIRONMENT	7
ТЕ		7
		8
СС	ONDUCTED BAND EDGES MEASUREMENT	11
.0.1	LIMITS	11
.0.2		
.0.3		
AN		
1.1		
RA	ADIATED SPURIOUS EMISSIONS	14
.2.1	LIMITS	14
2.2		
2.3	PROCEDURE	15
.2.4	TEST DATA	17
RÆ	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	26
.3.1	LIMITS	26
3.2	BLOCK DIAGRAM OF TEST SETUP	27
.3.3	PROCEDURE	27
.3.4	TEST DATA	29
СС	ONDUCTED SPURIOUS EMISSIONS	34
4.1	LIMITS	34
.4.2		
.4.3	TEST DATA	35
	GR GR TE TE MI DE LA TE CC 0.1 0.2 0.3 AN 1.1 2.2 2.3 2.4 RA 3.1 3.2 3.3 3.4 CC 4.1 4.2	0.2 BLOCK DIAGRAM OF TEST SETUP 0.3 TEST DATA ANTENNA REQUIREMENT 1.1 CONCLUSION RADIATED SPURIOUS EMISSIONS 2.1 LIMITS 2.2 BLOCK DIAGRAM OF TEST SETUP 2.3 PROCEDURE 2.4 TEST DATA RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS 3.1 LIMITS 3.2 BLOCK DIAGRAM OF TEST SETUP 3.3 PROCEDURE 3.4 TEST DATA CONDUCTED SPURIOUS EMISSIONS 4.1 LIMITS 4.2 BLOCK DIAGRAM OF TEST SETUP

15	POW	/ER SPECTRUM DENSITY	6
1	5.1	LIMITS	36
1	5.2	BLOCK DIAGRAM OF TEST SETUP	6
1	5.3	TEST DATA	6
16	CON	DUCTED PEAK OUTPUT POWER3	7
1	6.1	LIMITS	\$7
1	6.2	BLOCK DIAGRAM OF TEST SETUP	\$7
1	6.3	TEST DATA	8
17	ΜΙΝΙ	MUM 6DB BANDWIDTH	9
1	7.1	LIMITS	39
1	7.2	BLOCK DIAGRAM OF TEST SETUP	9
1	7.3	TEST DATA	39
18	APP	ENDIX	0
APF	PENDI	X A: PHOTOGRAPHS OF TEST SETUP5	5
APF	PENDI	X B: PHOTOGRAPHS OF EUT5	6

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Anycon Intelligent Technology Co.,Ltd	
Address	No12,Limin Road,Jinxiaotang Industrial Park,Fenggang,Dongguan	
Manufacturer	Dongguan Anycon Intelligent Technology Co.,Ltd.	
Address	No12,LiminRoad,jinxiaotangIndustrialPark,Fenggang,Dongguan	
Factory	Dongguan Anycon Intelligent Technology Co.,Ltd.	
Address	No12,LiminRoad,jinxiaotangIndustrialPark,Fenggang,Dongguan	
Product Name	Bluetooth voice remote control	
Test Model No.	AN2704-1IP-003	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A	
Software Version	N/A	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK	
Channel Spacing:	2MHz	
Number of Channels:	40	
Antenna Type:	PCB Antenna	
Antenna Gain:	-1.95dBi (Provided by the applicant)	

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.0V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION			
ТХ	Keep the EUT in transmitting mode with modulation			
Remark:Only the data of the worst mode would be recorded in this report.				

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at: BlueAsia Technical Services(Shenzhen) Co.,Ltd. No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao'an District, Shenzhen,Guangdong ,China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Г

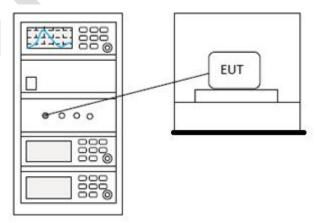
٦

9 TEST INSTRUMENTS LIST

Test Equipr	nent Of Radiated S	purious Emissions			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14
Receiver	R&S	ESR7	101199	2022/09/15	2023/09/14
Receiver	R&S	ESPI7	101477	2022/07/16	2023/07/15
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/09/15	2023/09/14
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2022/07/16	2023/07/15
Amplifier	SKET	PA-000318G-45	N/A	2022/09/13	2023/09/12
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2022/07/14	2023/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2022/07/16	2023/07/15
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2022/9/14	2025/9/13
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

٦

Test Equipment Of RF Conducted Test										
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due					
Spectrum	R&S	FSP40	100817	2022/09/15	2023/09/14					
Spectrum	Agilent	N9020A	MY49100060	2022/09/07	2023/09/06					
Spectrum	KEYSIGHT	N9030A	MY52350152	2022/07/01	2023/06/30					
Spectrum	KEYSIGHT	N9010A	MY54330814	2022/07/01	2023/06/30					
Signal Generator	Agilent	N5182A	MY47420955	2022/09/07	2023/09/06					
Signal Generator	r Agilent E8257D		MY44320250	2022/07/01	2023/06/30					
Signal Generator	Agilent	N5181A	MY46240904	2022/08/02	2023/08/01					
Signal Generator	R&S	CMW500	132429	2022/09/07	2023/09/06					
BluetoothTester	Anritsu	MT8852B	06262047872	2022/09/07	2023/09/06					
Power probe	DARE	RPR3006W	14100889SN042	2022/09/07	2023/09/06					
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2022/09/14	2023/09/13					
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2022/09/14	2023/09/13					
2.4GHz/5GHz RF Test sorfware	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A					
Audio Analyzer	Audioprecision	N/A	ATSI-41094	2022/7/1	2023/6/30					


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

10 CONDUCTED BAND EDGES MEASUREMENT

10.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

10.2 BLOCK DIAGRAM OF TEST SETUP

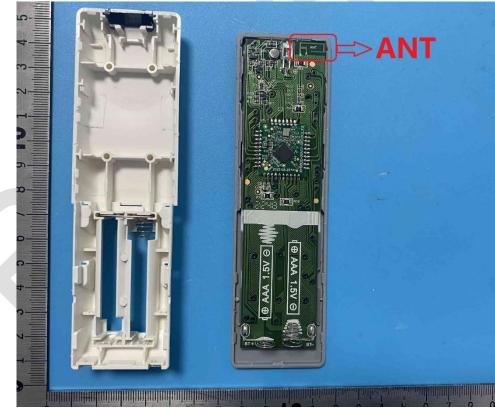
Report No.: BLA-EMC-202301-A2002 Page 12 of 56

10.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

11 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	N/A					


11.1 CONCLUSION

Standard Requirement:

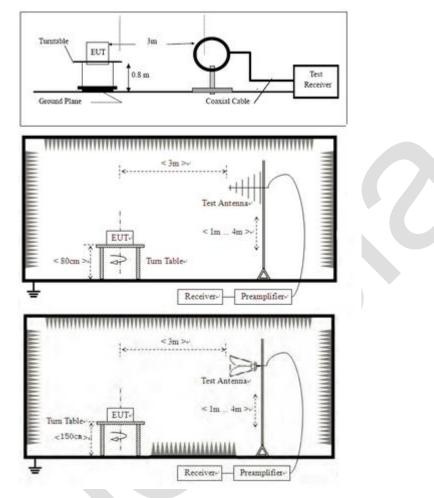
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6						
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G						
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G						
Tester	Jozu						
Temperature	25 ℃						
Humidity	60%						


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

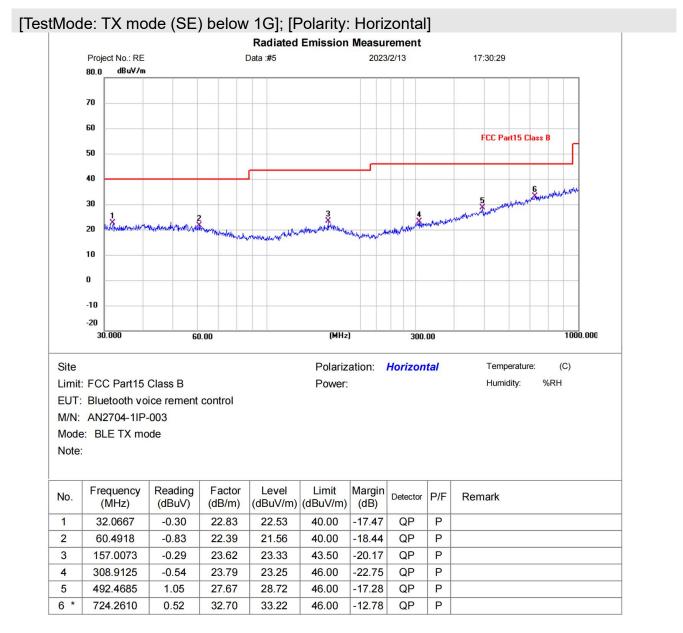
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

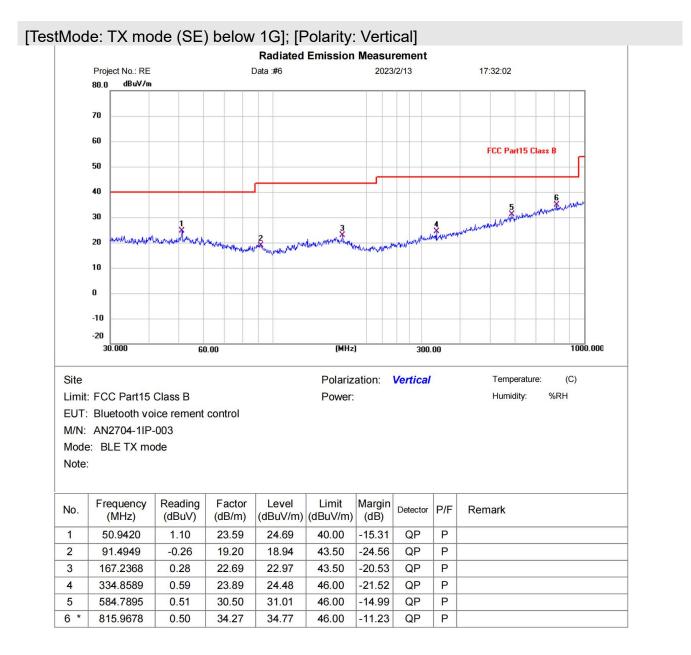
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

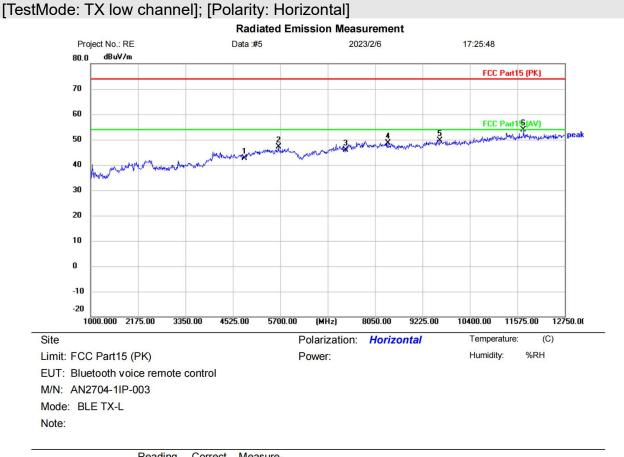

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.

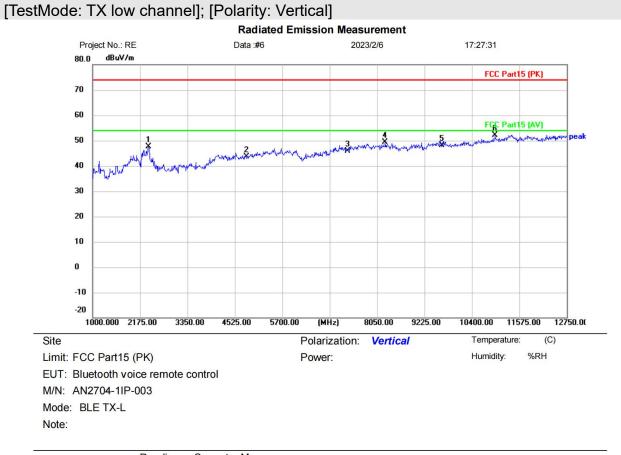
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



12.4 TEST DATA


*:Maximum data x:Over limit !:over margin

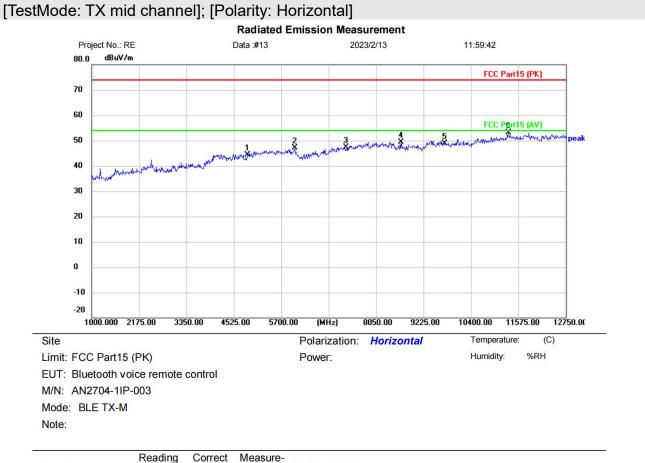
Above 1GHz:



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	38.53	4.13	42.66	74.00	-31.34	peak	
2		5653.000	40.26	6.76	47.02	74.00	-26.98	peak	
3		7326.000	37.64	8.21	45.85	74.00	-28.15	peak	
4		8367.250	39.63	9.07	48.70	74.00	-25.30	peak	
5		9648.000	38.51	11.01	49.52	74.00	- <mark>24.4</mark> 8	peak	
6	*	11727.750	40.19	13.77	53.96	74.00	-20.04	peak	

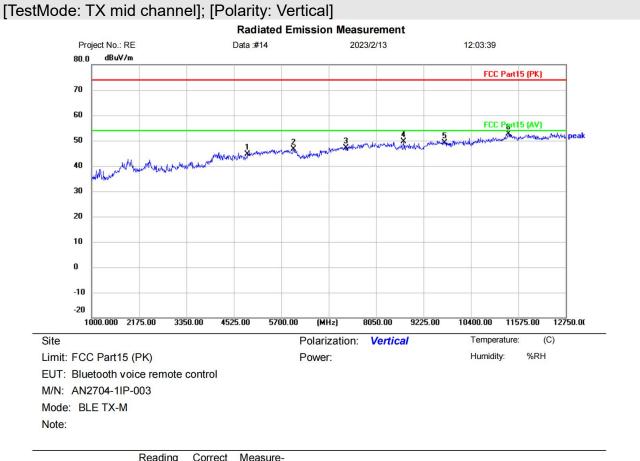
*:Maximum data x:Over limit !:over margin

(Reference Only



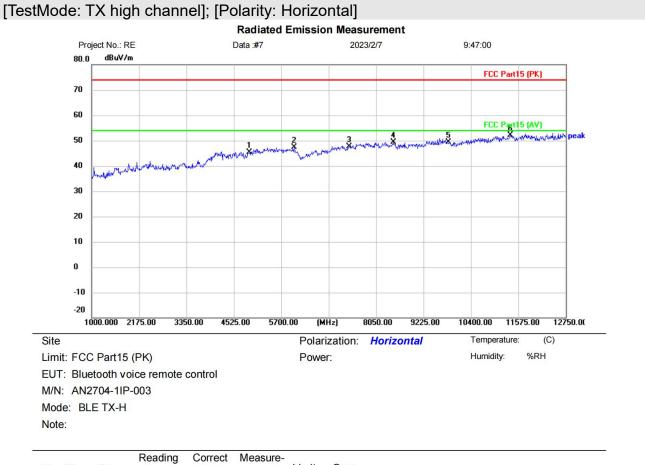
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2386.500	48.66	- <mark>1.11</mark>	47.55	74.00	-26.45	peak	
2		4824.000	39.58	4.13	43.71	74.00	-30.29	peak	
3		7326.000	37.73	8.21	45.94	74.00	-28.06	peak	
4		8249.750	40.26	9.01	49.27	74.00	-24.73	peak	
5		9648.000	37.12	11.01	48.13	74.00	-25.87	peak	
6	*	10975.750	38.73	13.42	52.15	74.00	-21.85	peak	

(Reference Only



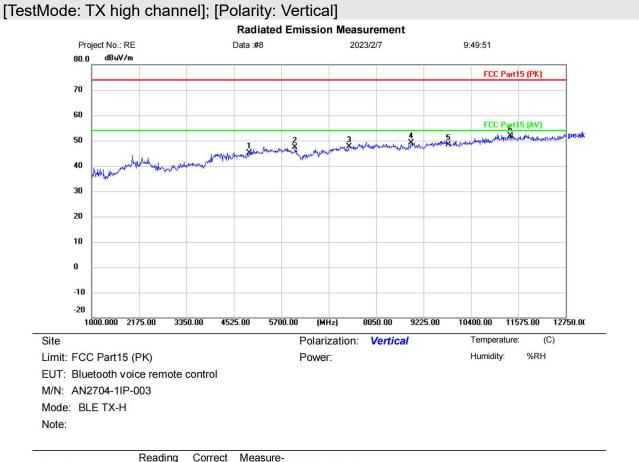
No.	Mk	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	39.98	4.32	44.30	74.00	-29.70	peak	
2		6040.750	43.14	4.07	47.21	74.00	-26.79	peak	
3		7311.000	39.20	8.18	47.38	74.00	-26.62	peak	
4		8661.000	40.23	9.20	49.43	74.00	- <mark>24</mark> .57	peak	
5		9748.000	37.50	11.26	48.76	74.00	-25.24	peak	
6	*	11328.250	39.56	13.59	53.15	74.00	-20.85	peak	

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4874.000	40.40	4.32	44.72	74.00	-29.28	peak		
2		6005.500	42.75	3.92	46.67	74.00	-27.33	peak		
3		7311.000	38.97	8.18	47.15	74.00	-26.85	peak		
4		8731.500	40.28	9.23	49.51	74.00	-24.49	peak		
5		9748.000	37.97	11.26	49.23	74.00	-24.77	peak		
6	*	11328.250	38.92	13.59	52.51	74.00	-21.49	peak		

(Reference Only



No.	Mk	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	40.57	4.82	45.39	74.00	-28.61	peak	
2		6017.250	43.29	3.97	47.26	74.00	-26.74	peak	
3		7386.000	39.26	8.36	47.62	74.00	-26.38	peak	
4		8473.000	40.33	9.12	49.45	74.00	-24.55	peak	
5		9848.000	37.86	11.52	49.38	74.00	-24.62	peak	
6	*	11375.250	38.63	13.62	52.25	74.00	-21.75	peak	

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	40.23	4.82	45.05	74.00	-28.95	peak	
2		6040.750	43.26	4.07	47.33	74.00	- <mark>26.67</mark>	peak	
3		7386.000	39.32	8.36	47.68	74.00	-26.32	peak	
4		8919.500	39.71	9.31	49.02	74.00	-24.98	peak	
5		9848.000	36.74	11.52	48.26	74.00	-25.74	peak	
6	*	11375.250	38.24	13.62	51.86	74.00	-22.14	peak	

(Reference Only

Report No.: BLA-EMC-202301-A2002 Page 25 of 56

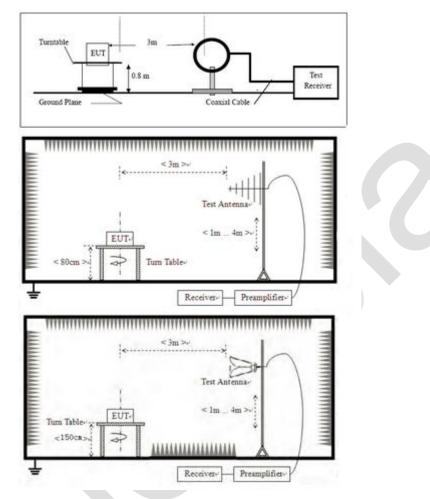
Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia Technical Services(Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

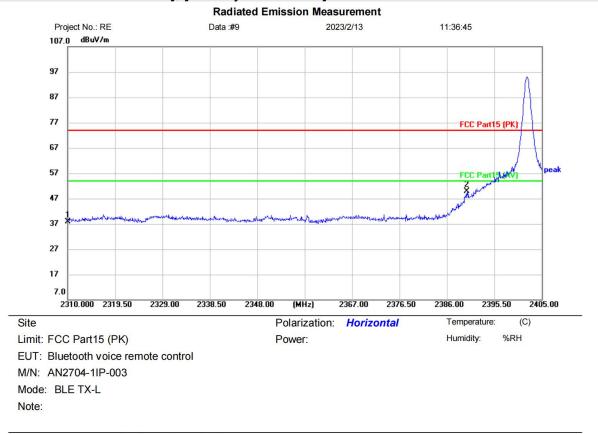
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

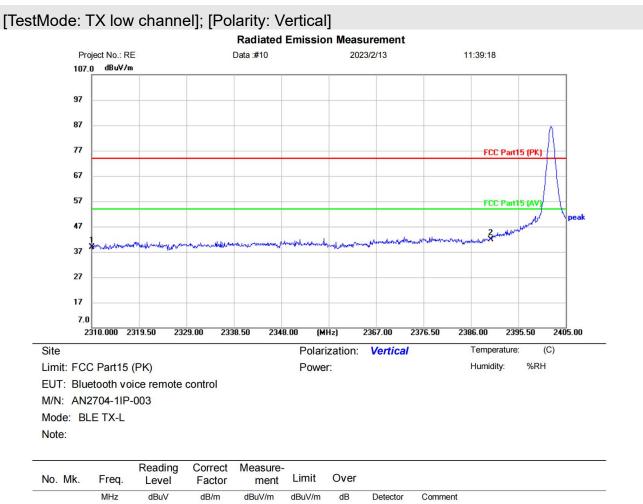
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	42.11	-4.27	37.84	74.00	-36.16	peak	
2	*	2390.000	53.63	-3.82	49.81	74.00	-24.19	peak	

*:Maximum data x:Over limit !:over margin

(Reference Only

(Reference Only

Test Result: Pass

1

2

2310.000

2390.000

43.10

45.73

-4.27

-3.82

38.83

41.91

74.00

74.00

-35.17

-32.09

peak

peak