

Report No.	:	SA180702W009
Applicant	:	Mundo Reader S.L.
Address	:	Calle Sofía 10, Parque Industrial y Tecnológico Európolis 28232 Las Rozas - Madrid SPAIN
Product	:	Smartphone
FCC ID	:	2AN87AQUARISC
Brand	:	BQ
Model No.	:	Aquaris C
Standards	:	FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE 1528:2013 KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02 / KDB 447498 D01 v06 / KDB 648474 D04 v01r03 / KDB 941225 D01 v03r01 / KDB 941225 D06 v02r01
Sample Received Date	:	Jul. 03, 2018
Date of Testing	:	Jul. 24, 2018 ~ Aug. 03, 2018

CERTIFICATION: The above equipment have been tested by **BV 7LAYERS COMMUNICATIONS TECHNOLOGY** (SHENZHEN) CO. LTD., and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :

Wiky Zhang / Engineer

Luke Lu / Manager

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/about-us/entries/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Rel	ease C	ontrol Record	3
1.	Sumn	nary of Maximum SAR Value	4
2.	Descr	iption of Equipment Under Test	5
3.	SAR	Aeasurement System	6
	3.1	Definition of Specific Absorption Rate (SAR)	6
	3.2	COMOSAR System.	6
		3.2.1 Deasurement System Diagram	6
		3.2.2 RODOT.	(
		3.2.3 E-Field Propes	8
		3.2.4 Phantoms	9
		3.2.5 Device Holder	.10
		3.2.6 System Validation Dipoles	. 11
		3.2.7 Tissue Simulating Liquids	. 11
	3.3	SAR System Verification	.14
	3.4	SAR Measurement Procedure	.15
		3.4.1 Area & Zoom Scan Procedure	.15
		3.4.2 Volume Scan Procedure	.15
		3.4.3 Power Drift Monitoring	.16
		3.4.4 Spatial Peak SAR Evaluation	.16
		3.4.5 SAR Averaged Methods	.10
4.	SAR		.17
	4.1	EUT Configuration and Setting	.17
	4.2	EUT lesting Position	.22
		4.2.1 Head Exposure Conditions.	. 22
		4.2.2 Body-worn Accessory Exposure Conditions.	. 24
		4.2.3 Hotspot Mode Exposure Conditions	. 25
		4.2.4 SAR lest Exclusion Evaluations	. 25
	4.0	4.2.5 Simultaneous Transmission Possibilities	. 26
	4.3	Tissue verification	.21
	4.4	System validation	.21
	4.5	System verification	.28
	4.6	Maximum Output Power.	.29
		4.6.1 Maximum Conducted Power	.29
	4 7	4.6.2 Measured Conducted Power Result	.30
	4.7	SAR lesting Results	.33
		4.7.1 SAR lest Reduction Considerations	.33
		4.7.2 SAR Results for Head Exposure Condition	. 34
		4.7.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm Gap)	.35
		4.7.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm Gap)	.36
		4.7.5 SAK Measurement variability	.37
-	0	4.7.0 Simultaneous multi-band Transmission Evaluation	.38
э. с		ation or less Equipment.	.43
ю. 7	weast	irement Uncertainty	.44
1.	intorn	nation on the resting Laboratories	. 45

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Photographs of EUT and Setup

Release Control Record

Report No.	Reason for Change	Date Issued
SA180702W009	Initial release	Aug. 09, 2018

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest Reported Head SAR _{1g} (W/kg)	Highest Reported Body-worn SAR _{1g} (1.0 cm Gap) (W/kg)	Highest Reported Hotspot SAR _{1g} (1.0 cm Gap) (W/kg)
	GSM850	<mark>1.00</mark>	0.24	0.24
DCE	GSM1900	0.88	0.39	0.39
FCE	WCDMA II	0.98	<mark>0.42</mark>	<mark>0.42</mark>
	WCDMA V	0.49	0.16	0.16
DTS	2.4G WLAN	0.31	0.06	0.06
	5.3G WLAN	0.34	0.09	0.09
NII	5.6G WLAN	0.48	0.08	0.17
	5.8G WLAN	0.51	0.14	0.16
DSS Bluetooth		NA	NA	NA
Highest Simultaneous Transmission SAR		Head (W/kg)	Body-worn (W/kg)	Hotspot (W/kg)
PCE + DTS		1.16	0.47	0.47
PCE + NII		1.25	0.56	0.56
PCE + DSS		N/A	0.66	N/A

Note:

 The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992

2. Description of Equipment Under Test

EUT Type	Smartphone
FCC ID	2AN87AQUARISC
Brand Name	BQ
Model Name	Aquaris C
HW Version	MRS_M1000_B11_LLDM108C1-3
SW Version	1.0.0_20180723-1250
	GSM850 : 824.2 ~ 848.8
	GSM1900 : 1850.2 ~ 1909.8
Tx Frequency Bands	WCDMA Band II : 1852.4 ~ 1907.6
(Unit: MHz)	WCDMA Band V : 826.4 ~ 846.6
	WLAN : 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5700, 5745 ~ 5825
	Bluetooth : 2402 ~ 2480
	GSM & GPRS : GMSK
	EDGE : 8PSK
Unlink Medulations	WCDMA : QPSK
	802.11b : DSSS
	802.11a/g/n/ac : OFDM
	Bluetooth : GFSK, π/4-DQPSK, 8-DPSK, LE
	GSM850 : 32.5
	GSM1900 : 29.5
	WCDMA Band II : 24.0
	WCDMA Band V : 23.5
Maximum Tune-up Conducted Power	WLAN 2.4G : 18.5
(Unit: dBm)	WLAN 5.2G : 13.0
	WLAN 5.3G : 13.0
	WLAN 5.6G : 13.0
	WLAN 5.8G : 13.0
	Bluetooth : 10.5
	WLAN: LDS Antenna
Antenna Type	WWAN: LDS Antenna
EUT Stage	Identical Prototype

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

List of Accessory:

Battery	Brand Name	BQ
	Model Name	BQ battery 3000 (1 CP5/60/72)
	Power Rating	3.85Vdc, 3000mAh
	Туре	Li-ion

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 COMOSAR System

3.2.1 Measurement System Diagram

These measurements were performed with the automated near-field scanning system COMOSAR from SATIMO. The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

Report Format Version 5.0.0 Report No. : SA180702W009

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ± 0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

3.2.2 Robot

The COMOSAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA-KRC2sr) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

3.2.3 E-Field Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Model	SSE2
Frequency	100 MHz to 6 GHz
Directivity	±0.25 dB in brain tissue (rotation around probe axis) ±0.5 dB in brain tissue (rotation normal probe axis)
Dynamic Range	0.001W/kg to > 100W/kg
Probe Linearity	± 0.25 dB
Dimensions	Overall length: 330 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: <1.5 mm

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with EN/IEC 62209-1/-2 and IEEE 1528 std, with CALISAR, SATIMO proprietary calibration system. The calibration is performed with the technique using reference waveguide.

$$\begin{split} & \text{SAR} = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)} \\ & \text{Where :} \\ & \text{Pfw} = \text{Forward Power} \\ & \text{Pbw} = \text{Backward Power} \\ & \text{a and } b = \text{Waveguide Dimensions} \\ & \text{I} = \text{Skin Depth} \end{split}$$

Keithley configuration

Rate=Medium; Filter=ON; RDGS=10; FILTER TYPE=MOVING AVERAGE; RANGE AUTO

After each calibration, a SAR measurement performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The Calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearized output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

 $Vlin(N)=V(N)^{*}(1+V(N)/DCP(N)) \qquad N=1,2,3$

Where the DCP is the dipole compression point in mV

3.2.4 Phantoms

The phantom developed by SATIMO is produced in accordance with the specified in the standards. It has been designed to fit the COMOSAR phantom tables and is delivered with a plastic cover to prevent liquid evaporation.

Model	SAM Phantom	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching reference points with the robot.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: 200 mm	
Filling Volume	approx. 27 liters	

Model	Elliptic Phantom	
Construction	Elliptic Phantom for compliance testing of handheld and body-mounted wireless devices. Elliptic Phantom is fully compatible with the IEC/EN 62209-2 standard and all known tissue simulating liquids. Elliptic Phantom has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching reference points.	
Material	The material is resistant to Glycol and offers high rigidity composite material based on fiberglass).	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Length: 600 mm Width: 400 mm Height: 200 mm	
Filling Volume	approx. 25 liters	

3.2.5 Device Holder

The positioning system is made of an extremely stable material, which ensures easy handling and reproducible positioning. It also allows correct positioning of the dipoles referenced by the IEEE, ANSI and IEC.

Model	Handset Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	152
Mechanical properties	The positioning system developed by SATIMO allows a positioning resolution better than 1 mm. The system is fixed on a bottom rail "x axis" so that the positioning system can be quickly moved from the right to the left part of the phantom. In addition, it can be moved on a perpendicular "y axis" and the height can be adapted. The system is also composed of three rotation points for accurate positioning of the device's acoustical output.	
Accuracy and precision	A curved rail on the top part allows the fast switch from the cheek to the tilt position. The required 15° angle for the tilt position can be easily checked thanks to a printed scale on the curved rail with a tolerance of \pm 1°	

Model	Device Positioning System	
Material properties	The positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.	1
Mechanical properties	2 rows of rail to cover easily the surface of the phantom. The fixing plate is perfectly adapted to larger devices, such as a PC which can be positioned in all configurations.	
Accuracy and precision	Graduated scale available on each axis. The DUT is fixed with a specific adaptable grip.	

3.2.6 System Validation Dipoles

Model	D-Serial	× .
Construction	Symmetrical dipole with $\lambda 0/4$ ablaun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	300 MHz to 6000 MHz	
Return Loss	> 20 dB	
Adaptation	S11 < -20 dB in specified validation Position	

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Frequency (MHz)	Target Permittivity	Range of +5%	Target Conductivity	Range of +5%
()	. •	For Head		
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30

Table-3.1	Targets	of Tissue	Simulating	Liquid
-----------	---------	-----------	------------	--------

The following table gives the recipes for tissue simulating liquids.

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Table-3.2 Recipes of Tissue Simulating Liquid

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the COMOSAR system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In COMOSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The OPENSAR software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In COMOSAR System, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Connections between EUT and System Simulator>

For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for GSM/WCDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

<Considerations Related to GSM / GPRS / EDGE for Setup and Testing>

The maximum multi-slot capability supported by this device is as below.

- 1. This EUT is class B device
- 2. This EUT supports GPRS multi-slot class 33 (max. uplink: 4, max. downlink: 5, total timeslots: 6)
- 3. This EUT supports EDGE multi-slot class 33 (max. uplink: 4, max. downlink: 5, total timeslots: 6)

For GSM850 frequency band, the power control level is set to 5 for GSM mode and GPRS (GMSK: CS1), and set to 8 for EDGE (GMSK: MCS1, 8PSK: MCS9). For GSM1900 frequency band, the power control level is set to 0 for GSM mode and GPRS (GMSK: CS1), and set to 2 for EDGE (GMSK: MCS1, 8PSK: MCS9).

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

<Considerations Related to WCDMA for Setup and Testing>

WCDMA Handsets Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode.

WCDMA Handsets Body-worn SAR

SAR for body-worn configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode.

Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

Handsets with Release 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure.

Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-test	βc	β _d	β₀ (SF)	β _c / β _d	β_{hs} ⁽¹⁾	CM (dB) ⁽²⁾	MPR
1	2 / 15	15 / 15	64	2 / 15	4 / 15	0.0	0
2	12 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	12 / 15 ⁽³⁾	24 / 15	1.0	0
3	15 / 15	8 / 15	64	15 / 8	30 / 15	1.5	0.5
4	15 / 15	4 / 15	64	15 / 4	30 / 15	1.5	0.5
Note 1: Aver Aver	\sim and $\Lambda_{\rm ext} = 8 \leftrightarrow 4$	Δ. – B. / B. – 30 /	$15 \leftrightarrow \beta_{1} = 30/1$	5 * B			

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = \beta_{hs} / \beta_{hs}$

Note 2: CM = 1 for $\beta_c / \beta_d = 12 / 15$, $\beta_{hs} / \beta_c = 24 / 15$.

Note 3: For subtest 2 the β_c / β_d ratio of 12 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11 / 15 and β_d = 15 / 15.

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βc	βd	β _d (SF)	β _c / β _d	β_{hs} ⁽¹⁾	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11 / 15 (3)	15 / 15 (3)	64	11 / 15 (3)	22 / 15	209 / 225	1039 / 225	4	1	1.0	0.0	20	75
2	6 / 15	15 / 15	64	6 / 15	12 / 15	12 / 15	94 / 75	4	1	3.0	2.0	12	67
3	15 / 15	9 / 15	64	15/9	30 / 15	30 / 15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2 / 15	15 / 15	64	2 / 15	4 / 15	2 / 15	56 / 75	4	1	3.0	2.0	17	71
5	15 / 15 (4)	15 / 15 (4)	64	15 / 15 (4)	30 / 15	24 / 15	134 / 15	4	1	1.0	0.0	21	81
5 Note 1: Avc	15 / 15 ⁽⁴⁾	$15 / 15^{(4)}$	$\frac{64}{100} = \frac{6}{100} \frac{1}{100} \frac$	15 / 15 ⁽⁴⁾ = 30 / 15 ⇔ (30 / 15	24 / 15 * β _c	134 / 15	4	1	1.0	0.0	21	

Note 1: Each, Endex and Ecu = 0 ($\beta = 16 / \beta_c = 24 / 15$, $\beta_{hs} / \beta_c = 24 / 15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c / β_d ratio of 11 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 10 / 15 and β_d = 15 / 15.

Note 4: For subtest 5 the β_c / β_d ratio of 15 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14 / 15 and β_d = 15 / 15.

Note 5: Testing UÉ using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: βed cannot be set directly; it is set by Absolute Grant Value.

HSPA+ SAR Guidance

The 3G SAR test reduction procedure is applied to HSPA+ (uplink) with 12.2 kbps RMC as the primary mode. Otherwise, when SAR is required for Rel. 6 HSPA, SAR is required for Rel. 7 HSPA+. Power is measured for HSPA+ that supports uplink 16QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. 1) The channel closest to mid-band frequency is selected for SAR measurement.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Test Reduction for U-NII-1 (5.2 GHz) and U-NII-2A (5.3 GHz) Bands

For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following.

1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition).

2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration.

4.2 EUT Testing Position

According to KDB 648474 D04, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

4.2.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below.

- 1. Define two imaginary lines on the handset
- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig-4.1 Illustration for Handset Vertical and Horizontal Reference Lines

- 2. Cheek Position
- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig-4.2).

Fig-4.2 Illustration for Cheek Position

- 3. Tilted Position
- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig-4.3).

Fig-4.3 Illustration for Tilted Position

4.2.2 Body-worn Accessory Exposure Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.

A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

4.2.3 Hotspot Mode Exposure Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225 D06. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Based on the antenna location shown on appendix D of this report, the SAR testing required for hotspot mode is listed as below.

Antenna	Front Face	Rear Face	Left Side	Right Side	Top Side	Bottom Side
WWAN	V	V	V		V	
WLAN / BT	V	V		V	V	

4.2.4 SAR Test Exclusion Evaluations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following.

	Max.	Max.	Body-Worn					
Mode Tune-up Tune-up Power Power (dBm) (mW)	Tune-up Power (mW)	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?				
BT (2.48 GHz)	10.5	11.22	10	1.8	No			

4.2.5 Simultaneous Transmission Possibilities

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations	Head (Voice / VoIP)	Body-worn (Voice / VoIP)	Hotspot (Data)
1	GSM850 (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
2	GSM1900 (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
3	WCDMA II (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
4	WCDMA V (Voice / Data) + WLAN (Data)	Yes	Yes	Yes
5	GSM850 (Voice / Data) + BT (Data)	No	Yes	No
6	GSM1900 (Voice / Data) + BT (Data)	No	Yes	No
7	WCDMA II (Voice / Data) + BT (Data)	No	Yes	No
8	WCDMA V (Voice / Data) + BT (Data)	No	Yes	No

Note :

1. The 2.4G WLAN and 5G WLAN cannot transmit simultaneously.

2. The WLAN and Bluetooth cannot transmit simultaneously, so there is no co-location test requirement for WLAN and Bluetooth.

4.3 Tissue Verification

The measuring	results for	tissue	simulating	liquid	are shown	as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Jul. 24, 2018	HL850	835	21.5	0.91	42.30	0.90	41.50	1.11	1.93
Jul. 26, 2018	HL1900	1900	21.3	1.41	40.86	1.40	40.00	0.71	2.15
Jul. 27, 2018	HL2450	2450	21.0	1.79	39.83	1.80	39.20	-0.56	1.61
Jul. 30, 2018	HL5G	5200	21.6	4.56	36.11	4.66	36.00	-2.15	0.31
Aug. 01, 2018	HL5G	5600	21.4	5.17	35.56	5.07	35.50	1.97	0.17
Aug. 03, 2018	HL5G	5800	21.1	5.23	35.26	5.27	35.30	-0.76	-0.11
Jul. 24, 2018	BL850	835	21.5	0.95	56.40	0.97	55.20	-2.06	2.17
Jul. 26, 2018	BL1900	1900	21.3	1.54	55.12	1.52	53.30	1.32	3.41
Jul. 27, 2018	BL2450	2450	21.0	1.93	54.20	1.95	52.70	-1.03	2.85
Jul. 30, 2018	BL5G	5200	21.6	5.61	48.61	5.51	48.64	1.81	-0.06
Aug. 01, 2018	BL5G	5600	21.4	5.62	46.89	5.77	46.79	-2.60	0.21
Aug. 03, 2018	BL5G	5800	21.1	6.17	47.64	6.10	47.04	1.15	1.28

Note:

1. The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within ±5% of the target values. Liquid temperature during the SAR testing must be within ±2 °C.

2. Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 6 of this report.

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Test	Droke	Calib		Measured	Measured	Valio	dation for C	w	Validation	for Modul	ation
Date	S/N	Po	int	Conductivity	Permittivity	Sensitivity	Probe	Probe	Modulation	Duty	PAR
				(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Factor	
Jul. 24, 2018	SN 27/15 EPGO262	Head	835	0.91	42.30	Pass	Pass	Pass	GMSK	Pass	N/A
Jul. 26, 2018	SN 27/15 EPGO262	Head	1900	1.41	40.86	Pass	Pass	Pass	GMSK	Pass	N/A
Jul. 27, 2018	SN 27/15 EPGO262	Head	2450	1.79	39.83	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 30, 2018	SN 27/15 EPGO262	Head	5200	4.56	36.11	Pass	Pass	Pass	OFDM	N/A	Pass
Aug. 01, 2018	SN 27/15 EPGO262	Head	5600	5.17	35.56	Pass	Pass	Pass	OFDM	N/A	Pass
Aug. 03, 2018	SN 27/15 EPGO262	Head	5800	5.23	35.26	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 24, 2018	SN 27/15 EPGO262	Body	835	0.95	56.40	Pass	Pass	Pass	GMSK	Pass	N/A
Jul. 26, 2018	SN 27/15 EPGO262	Body	1900	1.54	55.12	Pass	Pass	Pass	GMSK	Pass	N/A
Jul. 27, 2018	SN 27/15 EPGO262	Body	2450	1.93	54.20	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 30, 2018	SN 27/15 EPGO262	Body	5200	5.61	48.61	Pass	Pass	Pass	OFDM	N/A	Pass
Aug. 01, 2018	SN 27/15 EPGO262	Body	5600	5.62	46.89	Pass	Pass	Pass	OFDM	N/A	Pass
Aug. 03, 2018	SN 27/15 EPGO262	Body	5800	6.17	47.64	Pass	Pass	Pass	OFDM	N/A	Pass

4.5 System Verification

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N
Jul. 24, 2018	Head	835	9.64	0.98	9.78	1.45	SN 18/11 DIPC150	SN 27/15 EPGO262
Jul. 26, 2018	Head	1900	39.88	3.88	38.83	-2.63	SN 18/11 DIPG153	SN 27/15 EPGO262
Jul. 27, 2018	Head	2450	53.18	5.23	52.33	-1.60	SN 18/11 DIPJ155	SN 27/15 EPGO262
Jul. 30, 2018	Head	5200	158.70	15.59	155.87	-1.78	SN 24/11/ WGA16	SN 27/15 EPGO262
Aug. 01, 2018	Head	5600	175.47	16.87	168.69	-3.86	SN 24/11/ WGA16	SN 27/15 EPGO262
Aug. 03, 2018	Head	5800	183.93	17.66	176.62	-3.97	SN 24/11/ WGA16	SN 27/15 EPGO262
Jul. 24, 2018	Body	835	9.96	0.96	9.64	-3.21	SN 18/11 DIPC150	SN 27/15 EPGO262
Jul. 26, 2018	Body	1900	40.38	4.16	41.61	3.05	SN 18/11 DIPG153	SN 27/15 EPGO262
Jul. 27, 2018	Body	2450	52.73	5.12	51.24	-2.83	SN 18/11 DIPJ155	SN 27/15 EPGO262
Jul. 30, 2018	Body	5200	152.11	14.56	145.56	-4.31	SN 24/11/ WGA16	SN 27/15 EPGO262
Aug. 01, 2018	Body	5600	169.48	17.19	171.89	1.42	SN 24/11/ WGA16	SN 27/15 EPGO262
Aug. 03, 2018	Body	5800	175.88	17.36	173.56	-1.32	SN 24/11/ WGA16	SN 27/15 EPGO262

The measuring result for system verification is tabulated as below.

Note:

Comparing to the reference SAR value provided by MVG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4.6 Maximum Output Power

4.6.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	GSM850	GSM1900
GSM (GMSK, 1Tx-slot)	32.5	29.5
GPRS (GMSK, 1Tx-slot)	32.5	29.5
GPRS (GMSK, 2Tx-slot)	31.5	29.0
GPRS (GMSK, 3Tx-slot)	29.5	27.0
GPRS (GMSK, 4Tx-slot)	29.5	27.0
EDGE (8PSK, 1Tx-slot)	27.0	26.0
EDGE (8PSK, 2Tx-slot)	25.5	24.0
EDGE (8PSK, 3Tx-slot)	24.5	23.0
EDGE (8PSK, 4Tx-slot)	23.5	22.0

Mode	WCDMA Band II	WCDMA Band V
RMC 12.2K	24.0	23.5
HSDPA	22.0	22.0
HSUPA	21.5	22.0

Mode	2.4G WLAN	5.2G WLAN	5.3G WLAN	5.6G WLAN	5.8G WLAN
802.11b	18.5	N/A	N/A	N/A	N/A
802.11g	14.5	N/A	N/A	N/A	N/A
802.11a	N/A	13.0	13.0	13.0	13.0
802.11n HT20	14.5	13.0	13.0	13.0	13.0
802.11n HT40	14.5	12.5	12.5	12.5	12.5
802.11ac VHT80	N/A	12.5	12.5	12.5	12.5

Mode	2.4G Bluetooth
GFSK	10.5
π/4-DQPSK	8.5
8DPSK	8.5
LE	1.0

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Band	GSM850			GSM1900					
Channel	128	189	251	512	661	810			
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8			
Maximum Burst-Averaged Output Power									
GSM (GMSK, 1Tx-slot)	32.30	32.35	32.38	29.32	29.44	29.33			
GPRS (GMSK, 1Tx-slot)	32.29	32.34	32.37	29.34	29.46	29.35			
GPRS (GMSK, 2Tx-slot)	31.03	31.08	31.11	28.46	28.58	28.47			
GPRS (GMSK, 3Tx-slot)	29.21	29.26	29.29	26.53	26.65	26.54			
GPRS (GMSK, 4Tx-slot)	29.15	29.20	29.23	26.44	26.56	26.45			
EDGE (8PSK, 1Tx-slot)	26.46	26.51	26.54	25.35	25.47	25.36			
EDGE (8PSK, 2Tx-slot)	24.94	24.99	25.02	23.78	23.90	23.79			
EDGE (8PSK, 3Tx-slot)	23.89	23.94	23.97	22.60	22.72	22.61			
EDGE (8PSK, 4Tx-slot)	22.97	23.02	23.05	21.52	21.64	21.53			
		Maximum Frame	e-Averaged Outp	out Power					
GSM (GMSK, 1Tx-slot)	23.30	23.35	23.38	20.32	20.44	20.33			
GPRS (GMSK, 1Tx-slot)	23.29	23.34	23.37	20.34	20.46	20.35			
GPRS (GMSK, 2Tx-slot)	25.03	25.08	25.11	22.46	22.58	22.47			
GPRS (GMSK, 3Tx-slot)	24.95	25.00	25.03	22.27	22.39	22.28			
GPRS (GMSK, 4Tx-slot)	26.15	26.20	26.23	23.44	23.56	23.45			
EDGE (8PSK, 1Tx-slot)	17.46	17.51	17.54	16.35	16.47	16.36			
EDGE (8PSK, 2Tx-slot)	18.94	18.99	19.02	17.78	17.90	17.79			
EDGE (8PSK, 3Tx-slot)	19.63	19.68	19.71	18.34	18.46	18.35			
EDGE (8PSK, 4Tx-slot)	19.97	20.02	20.05	18.52	18.64	18.53			

Note:

1. SAR testing was performed on the maximum frame-averaged power mode.

 The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

Band	WCDMA Band II			V	3GPP		
Channel	9262	9400	9538	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	826.4	836.4	846.6	(dB)
RMC 12.2K	23.30	23.27	23.53	23.21	23.25	23.36	-
HSDPA Subtest-1	21.27	21.24	21.50	21.18	21.22	21.33	0
HSDPA Subtest-2	21.22	21.19	21.45	21.13	21.17	21.28	0
HSDPA Subtest-3	20.75	20.72	20.98	20.66	20.70	20.81	0.5
HSDPA Subtest-4	20.77	20.74	21.00	20.68	20.72	20.83	0.5
HSUPA Subtest-1	21.21	21.18	21.44	21.12	21.16	21.27	0
HSUPA Subtest-2	20.36	20.33	20.59	20.27	20.31	20.42	2
HSUPA Subtest-3	21.34	21.31	21.57	21.25	21.29	21.40	1
HSUPA Subtest-4	20.32	20.29	20.55	20.23	20.27	20.38	2
HSUPA Subtest-5	21.35	21.32	21.58	21.26	21.30	21.41	0

<WLAN 2.4G>

Mode		802.11b	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	18.10	18.41	18.33
Mode		802.11g	-
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	14.19	14.23	14.21
Mode		802.11n (HT20)	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	14.31	14.26	14.37
Mode			
Channel / Frequency (MHz)	3 (2422)	6 (2437)	9 (2452)
Average Power	14.09	14.26	14.16

<WLAN 5.2G>

Mode					
Channel / Frequency (MHz)	36 (5180)	40 (5200)	44 (5220)	48 (5240)	
Average Power	12.22	12.28	12.23	12.34	
Mode		802.11n	(HT20)		
Channel / Frequency (MHz)	36 (5180)	40 (5200)	44 (5220)	48 (5240)	
Average Power	12.30	12.43	12.32	12.38	
Mode		802.11n	n (HT40)		
Channel / Frequency (MHz)	38 (5	5190)	46 (5230)		
Average Power	12	.34	12.46		
Mode	802.11ac (VHT80)				
Channel / Frequency (MHz)	42 (5210)				
Average Power		12.	29		

<WLAN 5.3G>

Mode		802	2.11a		
Channel / Frequency (MHz)	52 (5260)	56 (5280)	60 (5300)	64 (5320)	
Average Power	12.24	12.11	12.14	12.12	
Mode		802.11	n (HT20)		
Channel / Frequency (MHz)	52 (5260)	56 (5280)	60 (5300)	64 (5320)	
Average Power	12.23	12.21	12.28	12.04	
	802.11n (HT40)				
Mode		802.11	n (HT40)		
Mode Channel / Frequency (MHz)	54 (802.11ı 5270)	n (HT40) 62 (#	5310)	
Mode Channel / Frequency (MHz) Average Power	54 (12	802.11 1 5 270) .32	n (HT40) 62 (¹ 12	5310) .43	
Mode Channel / Frequency (MHz) Average Power Mode	54 (12	802.111 5270) .32 802.11ad	n (HT40) 62 (5 12 c (VHT80)	5310) .43	
Mode Channel / Frequency (MHz) Average Power Mode Channel / Frequency (MHz)	54 (12	802.11ı 5270) .32 802.11ac 58 (5	n (HT40) 62 (5 2 2 (5 2 (VHT80) 5290)	5310) .43	

<WLAN 5.6G>

Mode		802.11a						
Channel / Frequency (MHz)	100 (5500)	104 (5520)	108 (5540)	112 (5560)	116 (5580)	132 (5660)	136 (5680)	140 (5700)
Average Power	12.07	12.05	12.02	12.09	12.16	12.11	12.06	12.03
Mode	802.11n (HT20)							
Channel / Frequency (MHz)	100 (5500)	104 (5520)	108 (5540)	112 (5560)	116 (5580)	132 (5660)	136 (5680)	140 (5700)
Average Power	12.11	12.02	12.04	12.01	12.03	12.01	12.05	12.01
Mode				802.11n	(HT40)			
Channel / Frequency (MHz)		102 (5510)			134 (5670)	
Average Power		12	.35			12	.08	
Mode	802.11ac (VHT80)							
Channel / Frequency (MHz)	106 (5530)							
Average Power				12.	.15			

<WLAN 5.8G>

Mode	802.11a					
Channel / Frequency (MHz)	149 (5745)	153 (5765)	157 (5785)	161 (5805)	165 (5825)	
Average Power	12.34	12.25	12.21	12.18	12.13	
Mode			802.11n (HT20)	2.11n (HT20)		
Channel / Frequency (MHz)	149 (5745)	153 (5765)	157 (5785)	161 (5805)	165 (5825)	
Average Power	12.34	12.28	12.25	12.22	12.18	
Mode			802.11n (HT40)			
Channel / Frequency (MHz)	1	151 (5755)		159 (5795)		
Average Power		12.33				
Mode	802.11ac (VHT80)					
Channel / Frequency (MHz)	155 (5775)					
Average Power			12.14			

<Bluetooth>

Mode	Bluetooth GFSK								
Channel / Frequency (MHz)	0 (2402)	39 (2441)	78 (2480)						
Average Power	9.58	10.19	9.27						
Mode		Bluetooth π/4-DQPSK							
Channel / Frequency (MHz)	0 (2402)	39 (2441)	78 (2480)						
Average Power	7.51	7.88	6.86						
Mode									
Channel / Frequency (MHz)	0 (2402)	39 (2441)	78 (2480)						
Average Power	7.13	7.93	6.96						
Mode		Bluetooth LE							
Channel / Frequency (MHz)	0 (2402)	19 (2440)	39 (2480)						
Average Power	0.09	0.59	-0.11						

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

<KDB 941225 D01, 3G SAR Measurement Procedures>

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is \leq 1/4 dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.</p>
- (3) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.</p>

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
1#	GSM850	GPRS12	Right Cheek	251	29.5	29.23	-1.2	0.941	1.06	<mark>1.00</mark>
	GSM850	GPRS12	Right Tilted	251	29.5	29.23	3.88	0.784	1.06	0.83
	GSM850	GPRS12	Left Cheek	251	29.5	29.23	0.34	0.696	1.06	0.74
	GSM850	GPRS12	Left Tilted	251	29.5	29.23	-0.01	0.537	1.06	0.57
	GSM850	GPRS12	Right Cheek	128	29.5	29.15	1.73	0.535	1.08	0.58
	GSM850	GPRS12	Right Cheek	189	29.5	29.20	-2.67	0.696	1.07	0.75
	GSM850	GPRS12	Right Tilted	128	29.5	29.15	0.38	0.501	1.08	0.54
	GSM850	GPRS12	Right Tilted	189	29.5	29.20	1.89	0.596	1.07	0.64
	GSM850	GPRS12	Right Cheek	251	29.5	29.23	-0.45	0.912	1.06	0.97
2#	GSM1900	GPRS12	Right Cheek	661	27.0	26.56	-1.2	0.797	1.11	<mark>0.88</mark>
	GSM1900	GPRS12	Right Tilted	661	27.0	26.56	-2.17	0.72	1.11	0.80
	GSM1900	GPRS12	Left Cheek	661	27.0	26.56	0.68	0.543	1.11	0.60
	GSM1900	GPRS12	Left Tilted	661	27.0	26.56	-2.94	0.575	1.11	0.64
	GSM1900	GPRS12	Right Cheek	512	27.0	26.44	-2.02	0.773	1.14	0.88
	GSM1900	GPRS12	Right Cheek	810	27.0	26.45	-3.02	0.619	1.14	0.70
	GSM1900	GPRS12	Right Tilted	512	27.0	26.44	-2.78	0.728	1.14	0.83
	GSM1900	GPRS12	Right Tilted	810	27.0	26.45	-0.8	0.673	1.14	0.76
	GSM1900	GPRS12	Right Cheek	661	27.0	26.56	1.33	0.761	1.11	0.84
	WCDMA II	RMC12.2K	Right Cheek	9538	24.0	23.53	-1.35	0.746	1.11	0.83
	WCDMA II	RMC12.2K	Right Tilted	9538	24.0	23.53	-2.11	0.736	1.11	0.82
	WCDMA II	RMC12.2K	Left Cheek	9538	24.0	23.53	0.47	0.529	1.11	0.59
	WCDMA II	RMC12.2K	Left Tilted	9538	24.0	23.53	0.02	0.621	1.11	0.69
3#	WCDMA II	RMC12.2K	Right Cheek	9262	24.0	23.30	-2.05	0.83	1.17	<mark>0.98</mark>
	WCDMA II	RMC12.2K	Right Cheek	9400	24.0	23.27	-0.38	0.752	1.18	0.89
	WCDMA II	RMC12.2K	Right Tilted	9262	24.0	23.30	-0.12	0.771	1.17	0.91
	WCDMA II	RMC12.2K	Right Tilted	9400	24.0	23.27	-1.04	0.727	1.18	0.86
	WCDMA II	RMC12.2K	Right Cheek	9262	24.0	23.30	-1.35	0.8	1.17	0.94
4#	WCDMA V	RMC12.2K	Right Cheek	4233	23.5	23.36	0.72	0.478	1.03	<mark>0.49</mark>
	WCDMA V	RMC12.2K	Right Tilted	4233	23.5	23.36	-0.42	0.415	1.03	0.43
	WCDMA V	RMC12.2K	Left Cheek	4233	23.5	23.36	0.37	0.416	1.03	0.43
	WCDMA V	RMC12.2K	Left Tilted	4233	23.5	23.36	0.06	0.3	1.03	0.31

4.7.2 SAR Results for Head Exposure Condition

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	802.11b	-	Right Cheek	6	18.5	18.41	-2.28	0.159	1.02	0.16
	802.11b	-	Right Tilted	6	18.5	18.41	-4.35	0.139	1.02	0.14
5#	802.11b	-	Left Cheek	6	18.5	18.41	1.89	0.305	1.02	<mark>0.31</mark>
	802.11b	-	Left Tilted	6	18.5	18.41	-0.93	0.234	1.02	0.24
	802.11a	-	Right Cheek	52	13.0	12.24	3.21	0.168	1.19	0.20
	802.11a	-	Right Tilted	52	13.0	12.24	0.53	0.171	1.19	0.20
6#	802.11a	-	Left Cheek	52	13.0	12.24	2.07	0.282	1.19	<mark>0.34</mark>
	802.11a	-	Left Tilted	52	13.0	12.24	0.37	0.249	1.19	0.30
	802.11a	-	Right Cheek	116	13.0	12.16	0.22	0.174	1.21	0.21
	802.11a	-	Right Tilted	116	13.0	12.16	1.59	0.126	1.21	0.15
7#	802.11a	-	Left Cheek	116	13.0	12.16	4.14	0.395	1.21	<mark>0.48</mark>
	802.11a	-	Left Tilted	116	13.0	12.16	2.32	0.22	1.21	0.27
	802.11a	-	Right Cheek	149	13.0	12.34	0.98	0.111	1.16	0.13
	802.11a	-	Right Tilted	149	13.0	12.34	0.15	0.13	1.16	0.15
8#	802.11a	-	Left Cheek	149	13.0	12.34	0.87	0.437	1.16	<mark>0.51</mark>
	802.11a	-	Left Tilted	149	13.0	12.34	0.94	0.235	1.16	0.27

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	GSM850	GPRS12	Front Face	251	29.5	29.23	-1.21	0.185	1.06	0.20
9#	GSM850	GPRS12	Rear Face	251	29.5	29.23	1.24	0.222	1.06	<mark>0.24</mark>
	GSM1900	GPRS12	Front Face	661	27.0	26.56	-0.61	0.208	1.11	0.23
10#	GSM1900	GPRS12	Rear Face	661	27.0	26.56	-1.53	0.354	1.11	<mark>0.39</mark>
	WCDMA II	RMC12.2K	Front Face	9538	24.0	23.53	-1.47	0.216	1.11	0.24
11#	WCDMA II	RMC12.2K	Rear Face	9538	24.0	23.53	-1.62	0.375	1.11	<mark>0.42</mark>
	WCDMA V	RMC12.2K	Front Face	4233	23.5	23.36	-0.02	0.129	1.03	0.13
12#	WCDMA V	RMC12.2K	Rear Face	4233	23.5	23.36	-1.19	0.153	1.03	<mark>0.16</mark>
Plot	Band	Mode	Test	Ch.	Max. Tune-up	Measured Conducted	Power	Measured SAR-1g	Scaling	Scaled

4.7.3 SAR Results for Body-worn Exposure Condition (Separation Distance is 1.0 cm Gap)

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
13#	802.11b	-	Front Face	6	18.5	18.41	0.48	0.058	1.02	<mark>0.06</mark>
	802.11b	-	Rear Face	6	18.5	18.41	4.46	0.046	1.02	0.05
	802.11a	-	Front Face	52	13.0	12.24	0.06	0.024	1.19	0.03
14#	802.11a	-	Rear Face	52	13.0	12.24	-0.66	0.078	1.19	<mark>0.09</mark>
	802.11a	-	Front Face	116	13.0	12.16	-0.93	0.029	1.21	0.04
15#	802.11a	-	Rear Face	116	13.0	12.16	0.55	0.062	1.21	<mark>0.08</mark>
	802.11a	-	Front Face	149	13.0	12.34	1.83	0.05	1.16	0.06
16#	802.11a	-	Rear Face	149	13.0	12.34	0.71	0.117	1.16	0.14

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
	GSM850	GPRS12	Front Face	251	29.5	29.23	-1.21	0.185	1.06	0.20
9#	GSM850	GPRS12	Rear Face	251	29.5	29.23	1.24	0.222	1.06	<mark>0.24</mark>
	GSM850	GPRS12	Left Side	251	29.5	29.23	-0.14	0.167	1.06	0.18
	GSM850	GPRS12	Top Side	251	29.5	29.23	0.3	0.124	1.06	0.13
	GSM1900	GPRS12	Front Face	661	27.0	26.56	-0.61	0.208	1.11	0.23
10#	GSM1900	GPRS12	Rear Face	661	27.0	26.56	-1.53	0.354	1.11	<mark>0.39</mark>
	GSM1900	GPRS12	Left Side	661	27.0	26.56	-1.64	0.118	1.11	0.13
	GSM1900	GPRS12	Top Side	661	27.0	26.56	-0.83	0.262	1.11	0.29
	WCDMA II	RMC12.2K	Front Face	9538	24.0	23.53	-1.47	0.216	1.11	0.24
11#	WCDMA II	RMC12.2K	Rear Face	9538	24.0	23.53	-1.62	0.375	1.11	<mark>0.42</mark>
	WCDMA II	RMC12.2K	Left Side	9538	24.0	23.53	-0.5	0.122	1.11	0.14
	WCDMA II	RMC12.2K	Top Side	9538	24.0	23.53	-1.05	0.275	1.11	0.31
	WCDMA V	RMC12.2K	Front Face	4233	23.5	23.36	-0.02	0.129	1.03	0.13
12#	WCDMA V	RMC12.2K	Rear Face	4233	23.5	23.36	-1.19	0.153	1.03	<mark>0.16</mark>
	WCDMA V	RMC12.2K	Left Side	4233	23.5	23.36	-0.97	0.127	1.03	0.13
	WCDMA V	RMC12.2K	Top Side	4233	23.5	23.36	-1.02	0.085	1.03	0.09

4.7.4 SAR Results for Hotspot Exposure Condition (Separation Distance is 1.0 cm Gap)

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
13#	802.11b	-	Front Face	6	18.5	18.41	0.48	0.058	1.02	<mark>0.06</mark>
	802.11b	-	Rear Face	6	18.5	18.41	4.46	0.046	1.02	0.05
	802.11b	-	Right Side	6	18.5	18.41	0.27	0.027	1.02	0.03
	802.11b	-	Top Side	6	18.5	18.41	-3.56	0.03	1.02	0.03
	802.11a	-	Front Face	52	13.0	12.24	0.06	0.024	1.19	0.03
14#	802.11a	-	Rear Face	52	13.0	12.24	-0.66	0.078	1.19	<mark>0.09</mark>
	802.11a	-	Right Side	52	13.0	12.24	0.34	0.035	1.19	0.04
	802.11a	-	Top Side	52	13.0	12.24	3.62	0.047	1.19	0.06
	802.11a	-	Front Face	116	13.0	12.16	-0.93	0.029	1.21	0.04
	802.11a	-	Rear Face	116	13.0	12.16	0.55	0.062	1.21	0.08
17#	802.11a	-	Right Side	116	13.0	12.16	0.02	0.144	1.21	<mark>0.17</mark>
	802.11a	-	Top Side	116	13.0	12.16	3.88	0.011	1.21	0.01
	802.11a	-	Front Face	149	13.0	12.34	1.83	0.05	1.16	0.06
	802.11a	-	Rear Face	149	13.0	12.34	0.71	0.117	1.16	0.14
18#	802.11a	-	Right Side	149	13.0	12.34	2.12	0.138	1.16	<mark>0.16</mark>
	802.11a	-	Top Side	149	13.0	12.34	2.5	0.033	1.16	0.04
FCC SAR Test Report

4.7.5 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR values, i.e., largest divided by smallest value, is \leq 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
GSM850	GPRS12	Right Cheek	251	0.941	0.912	1.03	N/A	N/A	N/A	N/A
GSM1900	GPRS12	Right Cheek	661	0.797	0.761	1.05	N/A	N/A	N/A	N/A
WCDMA II	RMC12.2K	Right Cheek	9262	0.83	0.8	1.04	N/A	N/A	N/A	N/A

4.7.6 Simultaneous Multi-band Transmission Evaluation

<Estimated SAR Calculation>

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

Estimated SAR =
$$\frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Mode / Band	Frequency (GHz)	Max. Tune-up Power (dBm)	Test Position	Separation Distance (mm)	Estimated SAR (W/kg)
BT (DSS)	2.48	10.5	Body	10	0.24

Note:

1. The separation distance is determined from the outer housing of the tablet to the user.

2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion.

FCC SAR Test Report

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

No.	Conditions	Exposure	Test	Max.	Max.	SAR	SPLSR
	(SART + SARZ)	Condition	Position	SART	SARZ	Summation	Σ SAR < 1.6.
			Right Cheek	1.00	0.16	1.16	Not required
			Right Tilted	0.83	0.14	0.97	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.74	0.28	1.02	Σ SAR < 1.6, Not required
			Left Tilted	0.57	0.24	0.81	Σ SAR < 1.6, Not required
		5	Front Face	0.20	0.05	0.25	Σ SAR < 1.6, Not required
	GSM850	Body-Worn	Rear Face	0.24	0.05	0.29	Σ SAR < 1.6, Not required
1	+ WLAN (DTS)		Front Face	0.20	0.05	0.25	Σ SAR < 1.6, Not required
			Rear Face	0.24	0.05	0.29	Σ SAR < 1.6, Not required
		Hotepot	Left Side	0.18	0.00	0.18	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
			Top Side	0.13	0.03	0.16	Analyzed as below
			Bottom Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Head	Right Cheek	1.00	0.21	1.21	Σ SAR < 1.6, Not required
			Right Tilted	0.83	0.20	1.03	Σ SAR < 1.6, Not required
			Left Cheek	0.74	0.51	1.25	Σ SAR < 1.6, Not required
			Left Tilted	0.57	0.30	0.87	Σ SAR < 1.6, Not required
			Front Face	0.20	0.06	0.26	Σ SAR < 1.6, Not required
2	GSM850	Body-wom	Rear Face	0.24	0.14	0.38	Σ SAR < 1.6, Not required
2	+ WLAN (NII)		Front Face	0.20	0.06	0.26	Σ SAR < 1.6, Not required
			Rear Face	0.24	0.14	0.38	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.18	0.00	-	Σ SAR < 1.6, Not required
		Ποτοροτ	Right Side	0.00	0.17	0.17	Σ SAR < 1.6, Not required
			Top Side	0.13	0.06	0.19	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.00	-	Σ SAR < 1.6, Not required
2	GSM850	Rody Worn	Front Face	0.20	0.24	0.44	Σ SAR < 1.6, Not required
3	3 + BT (DSS)	Bouy-worn	Rear Face	0.24	0.24	0.48	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.88	0.16	1.04	Σ SAR < 1.6, Not required
			Right Tilted	0.83	0.14	0.97	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.60	0.28	0.88	Σ SAR < 1.6, Not required
			Left Tilted	0.64	0.24	0.88	Σ SAR < 1.6, Not required
			Front Face	0.23	0.05	0.28	Σ SAR < 1.6, Not required
	GSM1900	Body-Worn	Rear Face	0.39	0.05	0.44	Σ SAR < 1.6, Not required
4	+ WLAN (DTS)		Front Face	0.23	0.05	0.28	Σ SAR < 1.6, Not required
			Rear Face	0.39	0.05	0.44	Σ SAR < 1.6, Not required
			Left Side	0.13	0.00	0.13	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
			Top Side	0.29	0.03	0.32	Analyzed as below
			Bottom Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Head	Right Cheek	0.88	0.21	1.09	Σ SAR < 1.6, Not required
			Right Tilted	0.83	0.20	1.03	Σ SAR < 1.6,
			Left Cheek	0.60	0.51	1.11	Σ SAR < 1.6,
			Left Tilted	0.64	0.30	0.94	Σ SAR < 1.6,
			Front Face	0.23	0.06	0.29	Σ SAR < 1.6,
	GSM1900	Body-Worn	Rear Face	0.39	0.14	0.53	Σ SAR < 1.6,
5	+ WLAN (NII)		Front Face	0.23	0.06	0.29	Σ SAR < 1.6,
			Rear Face	0.39	0.14	0.53	Σ SAR < 1.6,
			Left Side	0.13	0.00	-	Σ SAR < 1.6,
		Hotspot	Right Side	0.00	0.17	0.17	Σ SAR < 1.6,
			Top Side	0.29	0.06	0.35	Σ SAR < 1.6,
			Bottom Side	0.00	0.00	-	Σ SAR < 1.6,
	GSM1900		Front Face	0.23	0.24	0.47	Σ SAR < 1.6,
6	+ BT (DSS)	Body-Worn	Rear Face	0.39	0.24	0.63	Not required $\Sigma SAR < 1.6$,
	BI (D22)		1.00.1000				Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.98	0.16	1.14	∑SAR < 1.6, Not required
			Right Tilted	0.91	0.14	1.05	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.59	0.28	0.87	Σ SAR < 1.6, Not required
			Left Tilted	0.69	0.24	0.93	Σ SAR < 1.6,
			Front Face	0.24	0.05	0.29	Σ SAR < 1.6, Not required
_	WCDMA B2	Body-Worn	Rear Face	0.42	0.05	0.47	Σ SAR < 1.6, Not required
7	+ WLAN (DTS)		Front Face	0.24	0.05	0.29	Σ SAR < 1.6, Not required
			Rear Face	0.42	0.05	0.47	Σ SAR < 1.6, Not required
			Left Side	0.14	0.00	0.14	Σ SAR < 1.6,
		Hotspot	Right Side	0.00	0.03	0.03	Σ SAR < 1.6,
			Top Side	0.31	0.03	0.34	Analyzed
			Bottom Side	0.00	0.00	0.00	Σ SAR < 1.6,
		Head	Right Cheek	0.98	0.21	1.19	Σ SAR < 1.6,
			Right Tilted	0.91	0.20	1.11	Σ SAR < 1.6,
			Left Cheek	0.59	0.51	1.10	Σ SAR < 1.6,
			L oft Tilted	0.69	0.30	0.99	Not required $\Sigma SAR < 1.6$,
			Erent Feee	0.03	0.00	0.33	Not required Σ SAR < 1.6,
		Body-Worn		0.24	0.00	0.50	Not required $\Sigma SAR < 1.6$,
8	+		Rear Face	0.42	0.14	0.56	Not required Σ SAR < 1.6.
	WLAN (NII)		Front Face	0.24	0.06	0.30	Not required $\Sigma SAP < 1.6$
			Rear Face	0.42	0.14	0.56	Not required
		Hotspot	Left Side	0.14	0.00	-	∑ SAR < 1.6, Not required
		riotopot	Right Side	0.00	0.17	0.17	Σ SAR < 1.6, Not required
			Top Side	0.31	0.06	0.37	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.00	-	Σ SAR < 1.6, Not required
	WCDMA B2	D. L. M.	Front Face	0.24	0.24	0.48	Σ SAR < 1.6, Not required
9	+ BT (DSS)	Roan-woru	Rear Face	0.42	0.24	0.66	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.49	0.16	0.65	Σ SAR < 1.6, Not required
			Right Tilted	0.43	0.14	0.57	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.43	0.28	0.71	∑ SAR < 1.6, Not required
			Left Tilted	0.31	0.24	0.55	Σ SAR < 1.6, Not required
		D 1 147	Front Face	0.13	0.05	0.18	Σ SAR < 1.6, Not required
	WCDMA B5	Body-Worn	Rear Face	0.16	0.05	0.21	Σ SAR < 1.6, Not required
10	+ WLAN (DTS)		Front Face	0.13	0.05	0.18	Σ SAR < 1.6, Not required
			Rear Face	0.16	0.05	0.21	Σ SAR < 1.6, Not required
			Left Side	0.13	0.00	0.13	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
			Top Side	0.09	0.03	0.12	Analyzed as below
			Bottom Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Head	Right Cheek	0.49	0.21	0.70	Σ SAR < 1.6, Not required
			Right Tilted	0.43	0.20	0.63	Σ SAR < 1.6, Not required
			Left Cheek	0.43	0.51	0.94	Σ SAR < 1.6, Not required
			Left Tilted	0.31	0.30	0.61	Σ SAR < 1.6, Not required
		_	Front Face	0.13	0.06	0.19	Σ SAR < 1.6, Not required
	WCDMA B5	Body-Worn	Rear Face	0.16	0.14	0.30	∑ SAR < 1.6, Not required
11	+ WLAN (NII)		Front Face	0.13	0.06	0.19	Σ SAR < 1.6, Not required
			Rear Face	0.16	0.14	0.30	Σ SAR < 1.6, Not required
			Left Side	0.13	0.00	-	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.00	0.17	0.17	Σ SAR < 1.6, Not required
			Top Side	0.09	0.06	0.15	Σ SAR < 1.6, Not required
			Bottom Side	0.00	0.00	-	Σ SAR < 1.6, Not required
	WCDMA B5		Front Face	0.13	0.24	0.37	Σ SAR < 1.6, Not required
12	2 + BT (DSS)	Body-Worn	Rear Face	0.16	0.24	0.40	Σ SAR < 1.6, Not required

Test Engineer : Wiky Zhang

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SATIMO	SID835	SN 18/11 DIPC 150	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID1900	SN 18/11 DIPG 153	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SID2450	SN 18/11 DIPJ155	Jun. 08, 2017	2 Years
System Validation Dipole	SATIMO	SWG5500	SN 24/11/ WGA16	Jun. 08, 2017	2 Years
E-Field Probe	MVG	SSE2	SN 27/15 EPGO262	Jun. 07, 2018	1 Year
MultiMeter	Keithley	Multimate 2000	1331865	Jun. 21, 2018	1 Year
Radio Communication Analyzer	ANRITSU	MT8820C	6201300717	Jul. 24, 2018	1 Year
Wireless Communication Test Set	Agilent	E5515C	MY50260600	Jun. 28, 2018	1 Year
ENA Series Network Analyzer	Agilent	E5071C	MY46214638	Jul. 24, 2018	1 Year
Spectrum Analyzer	KEYSIGHT	N9010A	MY54510355	Jun. 27, 2018	1Year
MXG Analog Signal Generator	KEYSIGHT	N5183A	MY50143024	Mar. 01, 2018	1 Year
Power Meter	Agilent	N1914A	MY52180044	Aug. 12, 2016	2 Years
Power Sensor	Agilent	E9304A H18	MY52050011	Jan. 04, 2018	1 Year
Power Meter	Agilent	ML2495A	1506002	Mar. 01, 2018	1 Year
Power Sensor	Agilent	MA2411B	1339353	Mar. 01, 2018	1 Year
Temp. & Humi. Recorder	CLOCK	HTC-1	157248	Jul. 26, 2018	1 Year
Electronic Thermometer	YONGFA	YF-160A	120100323	Sep. 22, 2017	1 Year
Coupler	Woken	0110A056020-1 0	COM27RW1A3	Sep. 20, 2017	1 Year

FCC SAR Test Report

6. Measurement Uncertainty

Source of Uncertainty	Tolerance (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (1g)	Standard Uncertainty (10g)	Vi Veff
Measurement System	T	•						
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	5.9	R	1.732	0.7	0.7	2.4	2.4	∞
Hemispherical Isotropy	12.2	R	1.732	0.7	0.7	4.9	4.9	∞
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6	∞
Linearity	5.9	R	1.732	1	1	3.4	3.4	∞
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6	∞
Readout Electronics	1.0	Ν	1	1	1	1.0	1.0	8
Response Time	0.0	R	1.732	1	1	0.0	0.0	8
Integration Time	2.6	R	1.732	1	1	1.5	1.5	8
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7	8
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7	8
Probe Positioner	1.4	R	1.732	1	1	0.8	0.8	8
Probe Positioning	1.4	R	1.732	1	1	0.8	0.8	8
Max. SAR Eval.	2.3	R	1.732	1	1	1.3	1.3	8
Test Sample Related	I	1	I		T	-	1	1
Device Positioning	2.3	N	1	1	1	2.3	2.3	35
Device Holder	2.7	N	1	1	1	2.7	2.7	12
Power Drift	5.0	R	1.732	1	1	2.9	2.9	∞
Power Scaling	0.0	R	1.732	1	1	0.0	0.0	∞
Phantom and Setup			1	T	r			I
Phantom Uncertainty	4.0	R	1.732	1	1	2.3	2.3	∞
SAR correction	1.2	R	1.732	1	0.84	0.7	0.6	∞
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0	∞
Liquid Conductivity (mea.)	4.1	R	1.732	0.78	0.71	1.8	1.7	∞
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4	∞
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8	∞
Liquid Permittivity (mea.)	5.0	R	1.732	0.23	0.26	0.7	0.8	∞
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1	∞
Combined Standard Uncert	± 11.4 %	± 11.3 %	2923					
Expanded Uncertainty (K =	2)					± 22.7 %	± 22.6 %	

7. Information on the Testing Laboratories

We, BV 7LAYERS COMMUNICATIONS TECHNOLOGY (SHENZHEN) CO. LTD., were founded in 2015 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Add: No. B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-8869-6566 Fax: 86-755-8869-6577

Email: customerservice.dg@cn.bureauveritas.com Web Site: www.bureauveritas.com

The road map of all our labs can be found in our web site also.

---END----

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

System Verification Plots

Product Description: Dipole Model: SID835

Test Date: Jul 24, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

Medium(liquid type)	HL835
Frequency (MHz)	835.000000
Relative permittivity (real part)	42.3
Conductivity (S/m)	0.91
Input power	100mW
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	1.74
Sensor-surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.350000
SAR 10g (W/Kg)	0.656432
SAR 1g (W/Kg)	0.978034
Surface Budded blaining Domotion Surface Budded blaining Domotion Surface Budded blaining Domotion Distribution Distribution Distribution D	View District determiny District 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 05502 0 0 0 05502 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 0 0 05502 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Model: SID835

Test Date: Jul 24, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

Medium(liquid type)	BL835				
Frequency (MHz)	835.00000				
Relative permittivity (real part)	56.40				
Conductivity (S/m)	0.95				
Input power	100mW				
E-Field Probe	SN 27/15 EPGO262				
Crest factor	1.0				
Conversion Factor	1.81				
Sensor-surface	4mm				
Area Scan	dx=8mm dy=8mm				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm				
Variation (%)	-0.350000				
SAR 10g (W/Kg)	0.642167				
SAR 1g (W/Kg)	0.964154				
Color Such 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 1000000 100 10000000 100 100000000 100 10000000000 100 1000000000000000000000000000000000000	Color Scale 0.64725 0.64725 0.64725 0.64725 0.64725 0.75588 0.6771 0.572587 0.6 0.572587 0.7 0.572597 0.7 0.572597 0.7 0.572597 0.7 0.572597 0.7 0.572597 0.7 0.572597 0.				

Model: SID1900

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1900				
Frequency (MHz)	1900.000				
Relative permittivity (real part)	40.86				
Conductivity (S/m)	1.41				
Input power	100mW				
E-Field Probe	SN 27/15 EPGO262				
Crest factor	1.0				
Conversion Factor	2.01				
Sensor-Surface	4mm				
Area Scan	dx=8mm dy=8mm				
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm				
Variation (%)	-1.710000				
SAR 10g (W/Kg)	1.984642				
SAR 1g (W/Kg)	3.783156				
Surface Budance Descend Memily Descend Memily 3 987/28 3 987/28 1000 1000 3 987/28 3 987/28 1000 1000 3 987/28 3 987/28 1000 1000 3 987/28 3 987/28 1000 1000 3 987/28 3 987/28 1000 1000 3 987/28 3 997/28 1000 1000 3 987/28 3 997/28 1000 1000 3 987/28 3 997/28 1000 1000 3 987/28 3 997/28 5 99 1000 1000 3 997/28 5 99 1000 1000 1000 1000 3 997/28 5 99 1000 1000 1000 1000 1000 3 997/28 5 99 1000 1000 1000 1000 1000 2 4 40 1000 1000 1000 1000 1000 1000 1000 5 40/40 1000 1000 10000 100000 100000	Unime Tacadard Materialy 20000000 1 1.56.200 1.000 1 1.56.200 1.000 1 1.56.200 1.000 1 1.56.200 1.000 1 1.000 1.000 1 1.000 1.000 1 1.000 1.000 1 1.000000 1.000000 1 1.000000 1.000000 1 1.000000 1.000000 1 1.0000000 1.000000 1 1.0000000 1.000000 1 1.0000000 1.000000 1 1.0000000 1.0000000 1 1.0000000 1.0000000 1 1.00000000 1.0000000 1 1.0000000000 1.000000000000000000000000000000000000				

Model: SID1900

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1900
Frequency (MHz)	1900.000
Relative permittivity (real part)	55.12
Conductivity (S/m)	1.54
Input power	100mW
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.670000
SAR 10g (W/Kg)	2.144192
SAR 1g (W/Kg)	4.161274
Surface Deskine internet Zommin/Dut 10000 1000 10000 1	Unime Disking biological Zominio04 Color State 1478000 1991001 1991000 1991000 19910000 199100000 199100000000

Model: SID2450

Test Date: Jul 27, 2018

Ambient Temperature: 22.3°C; Liquid Temperature: 21.0°C

Medium(liquid type)	HL_2450
Frequency (MHz)	2450.000
Relative permittivity (real part)	39.83
Conductivity (S/m)	1.79
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=5mm
Variation (%)	-0.830000
SAR 10g (W/Kg)	2.534502
SAR 1g (W/Kg)	5.233414
Surface Tucknet Tucknet <t< td=""><td>Value District of leading Zomm (hUQ) Color State (1997) 2 1997) 2 2002 2 200</td></t<>	Value District of leading Zomm (hUQ) Color State (1997) 2 1997) 2 2002 2 200

Model: SID2450

Test Date: Jul 27, 2018

Ambient Temperature: 22.3°C; Liquid Temperature: 21.0°C

Medium(liquid type)	BL_2450
Frequency (MHz)	2450
Relative permittivity (real part)	54.2
Conductivity (S/m)	1.93
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.12
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=5mm
Variation (%)	-1.060000
SAR 10g (W/Kg)	2.403561
SAR 1g (W/Kg)	5.124501
Color State 100- State 100-	Celor State 199 100 100 10

Model: SWG5500

Test Date: Jul 30, 2018

Ambient Temperature: 22.6°C; Liquid Temperature: 21.6°C

Medium(liquid type)	HL5200
Frequency (MHz)	5200.000
Relative permittivity (real part)	36.11
Conductivity (S/m)	4.56
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.51
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-1.13000
SAR 10g (W/Kg)	5.726557
SAR 1g (W/Kg)	15.58702
Status: Total Total <thtotal< th=""> Total Total <t< td=""><td>Votem Redeted Veterinaly Zoomin0000 100,0000000000000000000000000000000000</td></t<></thtotal<>	Votem Redeted Veterinaly Zoomin0000 100,0000000000000000000000000000000000

Model: SWG5500

Test Date: Jul 30, 2018

Ambient Temperature: 22.6°C; Liquid Temperature: 21.6°C

Medium(liquid type)	BL5200
Frequency (MHz)	5200.000
Relative permittivity (real part)	48.61
Conductivity (S/m)	5.61
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.51
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-1.10000
SAR 10g (W/Kg)	5.598688
SAR 1g (W/Kg)	14.556045
Service Related Internal Service Related Internal Codes Scale (MAG) 19 22338 19 227070 10 207070 10 207070 10 207070 10 207070 10 207070 10 207070 10 207070 10 207	Volumi Radard Internal Volumi Radard Internal Volumi Radard Internal Volumi Radard Internal Volumi Radard Internal INTERNAL INTERN

Model: SWG5500

Test Date: Aug 01, 2018

Ambient Temperature: 22.4°C; Liquid Temperature: 21.4°C

Medium(liquid type)	HL5600
Frequency (MHz)	5600.000
Relative permittivity (real part)	35.56
Conductivity (S/m)	5.17
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.55
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-0.270000
SAR 10g (W/Kg)	6.832385
SAR 1g (W/Kg)	16.869352
Color State 1000 1977754 1000	Const State 100 100 100 10

Model: SWG5500

Test Date: Aug 01, 2018

Ambient Temperature: 22.4°C; Liquid Temperature: 21.4°C

Medium(liquid type)	BL5600
Frequency (MHz)	5600.000
Relative permittivity (real part)	46.89
Conductivity (S/m)	5.62
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.55
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-0.350000
SAR 10g (W/Kg)	8.142952
SAR 1g (W/Kg)	17.189115
Source Builded Internaly Demok/DA Cobes Stade 199 100	University Deministration Consultation 194 194 194 195 194 196 194 196 194 196 194 196 194 196 194 196 194 196 194 196 196

Model: SWG5500

Test Date: Aug 03, 2018

Ambient Temperature: 22.8°C; Liquid Temperature: 21.1°C

Medium(liquid type)	HL5800
Frequency (MHz)	5800.000
Relative permittivity (real part)	35.26
Conductivity (S/m)	5.23
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.44
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-0.750000
SAR 10g (W/Kg)	6.975739
SAR 1g (W/Kg)	17.662545
Speciaries Residued Internative Deminis/CM Provide 190 100	Verson Tableschamuty Demminuturi 1919 </td

Model: SWG5500

Test Date: Aug 03, 2018

Ambient Temperature: 22.8°C; Liquid Temperature: 21.1°C

Medium(liquid type)	BL5800
Frequency (MHz)	5800.000
Relative permittivity (real part)	47.64
Conductivity (S/m)	6.17
Input power	100mW
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	1.44
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	-1.760000
SAR 10g (W/Kg)	7.408943
SAR 1g (W/Kg)	17.356394
Senderce Rudicad intensity Demonstration Under Stade 117 4773 100	Verson Resiductionary

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

Maximum SAR measurement Plots

1# GSM850_GPRS 12_Right Cheek_Ch251 DUT:180702W009 Test Date: Jul 24, 2018 Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

Medium(liquid type) HL835 Frequency (MHz) 848.8 Relative permittivity (real part) 42.3 Conductivity (S/m) 0.91 E-Field Probe SN 27/15 EPGO262 Crest factor 2.0 **Conversion Factor** 1.74 Sensor-Surface 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) -1.200000 SAR 10g (W/Kg) 0.538899 SAR 1g (W/Kg) 0.940543 SURFACE SAR **VOLUME SAR** Zoomin/Out .26enin/0hd Volume Fiste

2# GSM1900_ GPRS12 _Right Cheek_Ch661 DUT:180702W009

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1900
Frequency (MHz)	1880.0
Relative permittivity (real part)	40.86
Conductivity (S/m)	1.41
E-Field Probe	SN 27/15 EPGO262
Crest factor	2.0
Conversion Factor	2.01
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.200000
SAR 10g (W/Kg)	0.380026
SAR 1g (W/Kg)	0.797462

SURFACE SAR

3# WCDMA Band II _ RMC12.2K _Right Cheek_Ch9262

DUT:180702W009

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	HL1900
Frequency (MHz)	1852.4
Relative permittivity (real part)	40.86
Conductivity (S/m)	1.41
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.01
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.050000
SAR 10g (W/Kg)	0.408329
SAR 1g (W/Kg)	0.830146

SURFACE SAR

4# WCDMA Band V _ RMC12.2K _Right Cheek_Ch4233

DUT:180702W009

Test Date: Jul 24, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	0.477753
SAR 10g (W/Kg)	0.281260
Variation (%)	0.720000
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Sensor-Surface	4mm
Conversion Factor	1.74
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conductivity (S/m)	0.91
Relative permittivity (real part)	42.3
Frequency (MHz)	846.6
Medium(liquid type)	HL835

湔

-30 à 30 kin × 120

SAVE Cancel

5# 802.11b_Left Cheek_Ch6

DUT:180702W009

Test Date: Jul 27, 2018

Ambient Temperature: 22.3°C; Liquid Temperature: 21.0°C

Medium(liquid type)	HL_2450
Frequency (MHz)	2437.000
Relative permittivity (real part)	39.83
Conductivity (S/m)	1.79
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=5mm dy=5mm dz=5mm
Variation (%)	1.890000
SAR 10g (W/Kg)	0.138823
SAR 1g (W/Kg)	0.305494
	Cherr Scale Notal 3 String 3 Stri

6# 802.11a_Left Cheek_Ch52

DUT:180702W009

Test Date: Jul 30, 2018

Ambient Temperature: 22.6°C; Liquid Temperature: 21.6°C

Medium(liquid type)	HL_5200
Frequency (MHz)	5260.000
Relative permittivity (real part)	36.11
Conductivity (S/m)	4.56
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	2.070000
SAR 10g (W/Kg)	0.091290
SAR 1g (W/Kg)	0.282202
Statistic fielded landty 20min/fM	Construction Construction Construction

7# 802.11a_Left Cheek_Ch116

DUT:180702W009

Test Date: Aug 01, 2018

Ambient Temperature: 22.4°C; Liquid Temperature: 21.4°C

Medium(liquid type)	HL_5600
Frequency (MHz)	5580.000
Relative permittivity (real part)	35.56
Conductivity (S/m)	5.17
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	4.140000
SAR 10g (W/Kg)	0.119320
SAR 1g (W/Kg)	0.395464
Surface Findaded Manage M/Adj 0.000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.0000000 0.000000 0.00000000 0.000000 0.00000000 0.000000 0.00000000 0.000000 0.000000000 0.0000000 0.00000000000000000000000000000000000	Description Construction Construction

8# 802.11a_Left Cheek_Ch149

DUT:180702W009

Test Date: Aug 03, 2018

Ambient Temperature: 22.8°C; Liquid Temperature: 21.1°C

Medium(liquid type)	HL_5800
Frequency (MHz)	5745.000
Relative permittivity (real part)	35.26
Conductivity (S/m)	5.23
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	0.870000
SAR 10g (W/Kg)	0.119958
SAR 1g (W/Kg)	0.436617
Concersion Concerning Concerning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Care root Construction 0 45775 0 5775 0 57575 0 57575

9# GSM850_GPRS12_Rear Face_1.0cm_Ch251 DUT:180702W009

Test Date: Jul 24, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	0.222044
SAR 10g (W/Kg)	0.162525
Variation (%)	1.240000
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Sensor-Surface	4mm
Conversion Factor	1.81
Crest factor	2.0
E-Field Probe	SN 27/15 EPGO262
Conductivity (S/m)	0.95
Relative permittivity (real part)	56.40
Frequency (MHz)	848.8
Medium(liquid type)	BL835

10# GSM1900_GPRS12_Rear Face_1.0cm_Ch661 DUT:180702W009

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1900
Frequency (MHz)	1880.0
Relative permittivity (real part)	55.12
Conductivity (S/m)	1.54
E-Field Probe	SN 27/15 EPGO262
Crest factor	2.0
Conversion Factor	2.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.5300000
SAR 10g (W/Kg)	0.189923
SAR 1g (W/Kg)	0.353873

SURFACE SAR

11# WCDMA Band II _RMC12.2K_Rear Face_1.0cm_Ch9538

DUT:180702W009

Test Date: Jul 26, 2018

Ambient Temperature: 22.5°C; Liquid Temperature: 21.3°C

Medium(liquid type)	BL1900
Frequency (MHz)	1907.6
Relative permittivity (real part)	55.12
Conductivity (S/m)	1.54
E-Field Probe	SN 27/15 EPGO262
Crest factor	1.0
Conversion Factor	2.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.620000
SAR 10g (W/Kg)	0.198974
SAR 1g (W/Kg)	0.374657

SURFACE SAR

12# WCDMA Band V_RMC12.2K_Rear Face_1.0cm_Ch4233

DUT:180702W009

Test Date: Jul 24, 2018

Ambient Temperature: 22.7°C; Liquid Temperature: 21.5°C

SAR 1g (W/Kg)	0.152713
SAR 10g (W/Kg)	0.111207
Variation (%)	-1.190000
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Sensor-Surface	4mm
Conversion Factor	1.81
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conductivity (S/m)	0.95
Relative permittivity (real part)	56.40
Frequency (MHz)	846.6
Medium(liquid type)	BL835

SURFACE SAR

13# 802.11b_Front Face_1cm_Ch 6

DUT:180702W009

Test Date: Jul 27, 2018

Ambient Temperature: 22.3℃; Liquid Temperature: 21.0℃

14# 802.11a_Rear Face_Ch 52

DUT:180702W009

Test Date: Jul 30, 2018

Ambient Temperature: 22.6°C; Liquid Temperature: 21.6°C

15# 802.11a_Rear Face_Ch 116

DUT:180702W009

Test Date: Aug 01, 2018

Ambient Temperature: 22.4°C; Liquid Temperature: 21.4°C

Medium(liquid type)	BL_5600
Frequency (MHz)	5580.000
Relative permittivity (real part)	46.89
Conductivity (S/m)	5.62
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	0.550000
SAR 10g (W/Kg)	0.022829
SAR 1g (W/Kg)	0.061619
Surface Tisdadcilisinity Oder Scale Tisdadcilisinity	Version Tabled String Outro State 000000000000000000000000000000000000

16# 802.11a_Rear Face_Ch 149

DUT:180702W009

Test Date: Aug 03, 2018

Ambient Temperature: 22.8°C; Liquid Temperature: 21.1°C

Medium(liquid type)	BL_5800
Frequency (MHz)	5745.000
Relative permittivity (real part)	47.64
Conductivity (S/m)	6.17
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	0.710000
SAR 10g (W/Kg)	0.039967
SAR 1g (W/Kg)	0.117087
Correction Correction Correction <td>Cherr Stadard Swimey 2erwindhd</td>	Cherr Stadard Swimey 2erwindhd

17# 802.11a_Right Side_Ch 116

DUT:180702W009

Test Date: Aug 01, 2018

Ambient Temperature: 22.4°C; Liquid Temperature: 21.4°C

Medium(liquid type)	BL_5600
Frequency (MHz)	5580.000
Relative permittivity (real part)	46.89
Conductivity (S/m)	5.62
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	0.020000
SAR 10g (W/Kg)	0.049562
SAR 1g (W/Kg)	0.144250
Surface Tistadand Stantagy Other Stand 0000750 000000 0000000 0000000 0000000 000000	Construction Co

18# 802.11a_Right Side_Ch 149

DUT:180702W009

Test Date: Aug 03, 2018

Ambient Temperature: 22.8°C; Liquid Temperature: 21.1°C

Medium(liquid type)	BL_5800
Frequency (MHz)	5745.000
Relative permittivity (real part)	47.64
Conductivity (S/m)	6.17
Crest factor	1.0
E-Field Probe	SN 27/15 EPGO262
Conversion Factor	2.04
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x11,dx=4mm dy=4mm dz=2mm
Variation (%)	2.120000
SAR 10g (W/Kg)	0.050906
SAR 1g (W/Kg)	0.137560
Cher Tristence Tris	Cher States laining

Appendix C. Calibration Certificate for Probe and Dipole

The MVG calibration certificates are shown as follows.

Appendix C CALIBRATION REPORTS

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6 7 2018	J.S.
Checked by :	Jérôme LUC	Product Manager	6 7 2018	J.S.
Approved by :	Kim RUTKOWSKI	Quality Manager	6.7 2018	Kim Acchaint

Distribution : BV 7Layers Communications Technology (Shoreka) Co. Ltd.		Customer Name
(Shenzhen) Co. Liu	Distribution :	BV 7Layers Communications Technology (Shenzhen) Co. Ltd

Issue	Date	Modifications		
A	6 7, 2018	Initial release		

Page: 2/10

This document shall not be reproduced, except in full or in part, without the written approval of MIG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

TABLE OF CONTENTS

1	De	vice Under Test	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Ca	libration Measurement Resnlts	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment	

Page: 3/10

This document shall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MFG.

1 DEVICE UNDER TEST

mvg

Device Under Test				
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE			
Manufacturer	MVG			
Model	SSE2			
Serial Number	SN 27/15 EPGO262			
Product Condition (new / used)	Used			
Frequency Range of Probe	0.7 GHz-6GHz			
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.222 MΩ			
	Dipole 2: R2=0.200 MΩ			
	Dipole 3: R3=0.200 MΩ			

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528. OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528. OET 65 Bulletin C. CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

3.2 SENSITIVITY

mvg

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528. OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR 158.1.18.SATU A

Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty			1		5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

mvg

Normx dipole $1 (\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.76	0.67	0,67

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
90	93	91

Calibration curves ei=f(V) (i=1.2.3) allow to obtain H-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MIG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MIG.

5.2 LINEARITY

Linearity.0+/-1.39% (+/-0.06dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz + 100MHz)	Pernuttivity	Epsilon (S/m)	ConvF
HL750	750	40.03	0.93	1.71
BL750	750	56.83	1.00	1.76
HL850	835	42.19	0.90	1.79
BL850	835	54.67	1.01	1.86
HL900	900	42.08	1.01	1.84
HL1450	1450	40.64	I.18	1.87
BL1450	1450	53.01	1.33	1.93
HL1750	1750	41.01	1.45	1.88
BL1750	1750	53.50	1,50	195
HL1900	1900	38.45	1.45	2.14
BL1900	1900	53.32	1.56	2.20
HL2000	2000	38.26	1.38	2.02
HL2300	2300	39.44	1.62	2.24
BL2300	2300	54.52	1.77	2.32
HL2450	2450	37.50	1.80	2.25
BL2450	2450	53.22	1.89	2.31
HL2600	2600	39.80	1.99	2.16
BL2600	2600	52.52	2.23	2.21
HL5200	5250	35.85	4_74	1 70
BL5200	5250	48.01	5.40	1.76
HL3600	5600	36.66	5.17	1.69
BL5600	5600	46.79	5.77	1.75
HL5800	5800	35.31	5.31	1 71
BL5800	5800	47 04	6.10	1.74

LOWER DETECTION LIMIT: 9mW kg

Page: 7:10

This document chall not be reproduced, except in full or in pair, without the written approval of MIG. The information contained herein is to be used only for the purpose for which it is submitted and is not so be released in whole or part without written approval of MIG.

5.4 ISOTROPY

HL900 MHz

- Axial isotropy: - Hemispherical isotropy:

0.04 d	в
0.07 d	В

HL1800 MHz

- Axial isotropy: - Hemispherical isotropy: 0.06 dB 0.08 dB

	Isotropy curves					
0-	IL	T	T	1		
6	1	-		1	_	Dipole at 30
4					1	_
.0 (++	++			+	
2					Z	
6				1		
0-	06-04	02 00	12 04 1	16 0	s 10	

HL5600 MHz

- Axial isotropy: - Hemispherical isotropy: 0.06 dB 0.08 dB

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR.158.1.18 SATU A

Isolropy curves

Page 9/10

This document shall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MFG.

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN109132	02/2016 02/2019		
Reference Probe	₩VG	EP 94 SN 37/08	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 10:10

This document chall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not so be released in whole or part without written approval of MFG.

SAR Reference Dipole Calibration Report

Ref: ACR.165.2.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108, GUANGDONG, P.R.C.

MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO : SN 18/11 DIPC150

SERIAL NO.: SN 18/11 DIPC150

Calibration Date: 06/8/2017

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JS
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	them Authousti

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Date	Modifications
6/14/2017	Initial release
	Date 6/14/2017

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MFG.