

FCC Radio Test Report

FCC ID: 2AN6E-FLY6PRO

According to

47 CFR FCC Part 15, Subpart C(Section 15.247) ANSI C63.10:2013

Product Name	:	Fly6 PRO
Model No.	:	CE604
Trade Mark	:	CYCLIQ
Product No.	:	POC230803010-S001
Applicant	:	CYCLIQ PRODUCTS PTY LTD
		PO Box 404, Subiaco, 6904, Australia
Receipt date	:	2023.08.03
Test date	:	2023.08.09~2023.08.18
Issued Date	:	2023.08.25

Prepared By:	Checked By:	Approved By:	Standard
Gavin Xu	Tim zhang	Misue Su	H B
Gavin Xu	7 im. zhong	Misrie Gu	HAIYUN Contraction of the seal

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Haiyun Standard Technical Co., Ltd. This document may be altered or revised by Shenzhen Haiyun Standard Technical Co., Ltd. Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.

Table of Contents

REPORT ISSUED HISTORY	4
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 PARAMETERS OF TEST SOFTWARE	9
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.5 SUPPORT UNITS	9
3 . AC POWER LINE CONDUCTED EMISSIONS	10
3.1 LIMIT	10
3.2 TEST PROCEDURE	10
3.3 DEVIATION FROM TEST STANDARD	10
3.4 TEST SETUP	11
3.5 EUT OPERATING CONDITIONS	11
3.6 TEST RESULTS	11
4. RADIATED EMISSIONS	12
4.1 LIMIT	12
4.2 TEST PROCEDURE	13
4.3 DEVIATION FROM TEST STANDARD	14
4.4 TEST SETUP	14
4.5 EUT OPERATING CONDITIONS	15
4.6 TEST RESULT - 9 KHZ TO 30 MHZ	15
4.7 TEST RESULT - 30 MHZ TO 1000 MHZ	15
4.8 TEST RESULT - ABOVE 1000 MHZ	15
5.BANDWIDTH	16
5.1 LIMIT	16
5.2 TEST PROCEDURE	16
5.3 DEVIATION FROM STANDARD	16
5.4 TEST SETUP	16
5.5 EUT OPERATION CONDITIONS	16
5.6 TEST RESULTS	17
6 . MAXIMUM OUTPUT POWER	18

6.1 LIMIT	18
6.2 TEST PROCEDURE	18
6.3 DEVIATION FROM STANDARD	18
6.4 TEST SETUP	18
6.5 EUT OPERATION CONDITIONS	18
6.6 TEST RESULTS	18
7 . CONDUCTED SPURIOUS EMISSION	19
7.1 LIMIT	19
7.2 TEST PROCEDURE	19
7.3 DEVIATION FROM STANDARD	19
7.4 TEST SETUP	19
7.5 EUT OPERATION CONDITIONS	19
7.6 TEST RESULTS	19
8 . POWER SPECTRAL DENSITY	20
8.1 LIMIT	20
8.2 TEST PROCEDURE	20
8.3 DEVIATION FROM STANDARD	20
8.4 TEST SETUP	20
8.5 EUT OPERATION CONDITIONS	20
8.6 TEST RESULTS	20
9. MEASUREMENT INSTRUMENTS LIST	21
10 . ANTENNA REQUIREMENT	22
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	23
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	26
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	27
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ	30
APPENDIX E - BANDWIDTH	41
APPENDIX F - MAXIMUM OUTPUT POWER	50
APPENDIX G - CONDUCTED SPURIOUS EMISSION	55
APPENDIX H - POWER SPECTRAL DENSITY	67

REPORT ISSUED HISTORY

Original Report Issue Date: 2023.08.25

- No additional attachment
- Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section Test Item Test Result Judgme					
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247(a)(2)	Bandwidth	APPENDIX E	PASS		
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS		
15.247(d)	Conducted Spurious Emission	APPENDIX G	PASS		
15.247(e)	Power Spectral Density	APPENDIX H	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

(1) "N/A" denotes test is not applicable to this device.

(2) The device what use a permanently attached SMD antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

Company:	Shenzhen Haiyun Standard Technical CO., Ltd.
Address:	No. 110-113, 115, 116, Block B, Jinyuan Business Building, Bao'an District, Shenzhen, China
CNAS Registration Number:	CNAS L18252
CAB identifier:	CN0145
Company Number:	30427
A2LA Certificate Number:	6823.01
FCC Designation Number:	CN1340
Test Firm Registration Number.	457288
Telephone:	0755-26024411

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

Uncertainty				
Parameter	Uncertainty			
Occupied Channel Bandwidth	±143.88kHz			
Power Spectral Density	±0.743dB			
Conducted Spurious Emission	±1.328dB			
RF power conducted	±0.384dB			
Conducted emission(9kHz~30MHz) AC main	±2.72dB			
Radiated emission(9kHz~30MHz)	±2.66dB			
Radiated emission (30MHz~1GHz)	±4.62dB			
Radiated emission (1GHz~18GHz)	±4.86dB			
Radiated emission (18GHz~40GHz)	±3.80dB			

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	25°C	52%	AC 120V/60Hz	Albert Fan
Radiated Emissions-9 kHz to 30 MHz	24.2°C	53%	DC 3.85V	Albert Fan
Radiated Emissions-30 MHz to 1000 MHz	24.2°C	53%	DC 3.85V	Albert Fan
Radiated Emissions-Above 1000 MHz	24.2°C	53%	DC 3.85V	Albert Fan
Bandwidth	24.5°C	54%	DC 3.85V	Jason Huang
Maximum Output Power	24.5°C	54%	DC 3.85V	Jason Huang
Conducted Spurious Emission	24.5°C	54%	DC 3.85V	Jason Huang
Power Spectral Density	24.5°C	54%	DC 3.85V	Jason Huang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Fly6 PRO
Brand Name	CYCLIQ
Test Model	CE604
Power Supply	DC 3.85V from lithium battery
Operation Frequency	2402 MHz~2480 MHz
Modulation Type	GFSK
Bit Rate of Transmitter	1Mbps, 2Mbps
Max. Output Power	-6.2 dBm (-0.0002 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20 2442	
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3. Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Yuyang	YY-01	PCB	Ant	2.04

Note:

(1) The antenna gain is provided by the manufacturer.(2) The antenna is for testing purposes only.

(3) The antenna manufacture is Shenzhen Yuyang Wireless Technology Co., Ltd.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39	
Mode 3	TX Mode_1Mbps Channel 00	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test	
Final Test Mode Description	
Mode 3 TX Mode_1Mbps Channel 00	

Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 3 TX Mode_1Mbps Channel 00			

Radiated emissions test - Above 1GHz		
Final Test Mode Description		
Mode 1 TX Mode_1Mbps Channel 00/19/39		
Mode 2	TX Mode_2Mbps Channel 00/19/39	

Conducted test	
Final Test Mode Description	
Mode 1 TX Mode_1Mbps Channel 00/19/39	
Mode 2	TX Mode_2Mbps Channel 00/19/39

Note:

(1) For radiated emission above 1 GHz test, the spurious points of 1GHz~18GHz and 18GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.

(2) For AC power line conducted emissions and radiated emissions below 1 GHz test, the TX Mode_1Mbps Channel 00 is found to be the worst case and recorded.

2.3 PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test Software Version		Command	
Frequency (MHz)	2402	2440	2480
1Mbps	default	default	default
2Mbps	default	default	default

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 SUPPORT UNITS

Support Equipment				
No. Equipment Brand Name Model Name Remarks				
1 Notebook Lenovo Thinkbook 15 /				/
2	2 Adapter Lenovo ADLX65ULGC2A /			

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dl	BμV)
	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

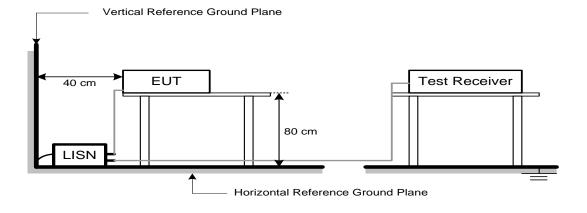
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50µH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- All readings are QP Mode value unless otherwise stated AVG in column of [Note]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " * " marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3
	(MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960	(MHz) (microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 88-216 150 216-960 200

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBµV/m at 3 m)	
	Peak	Average
Above 1000	74	54

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level ($dB\mu V/m$)=20log Emission level ($\mu V/m$).

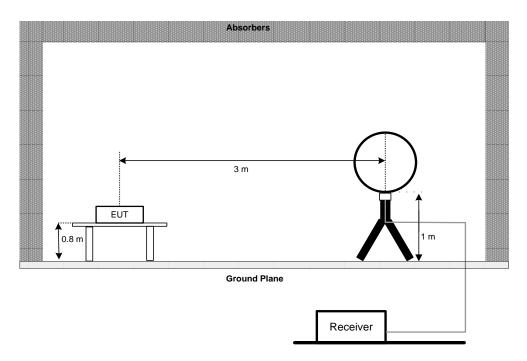
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

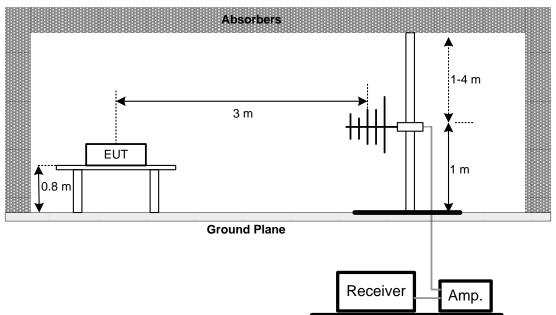
The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

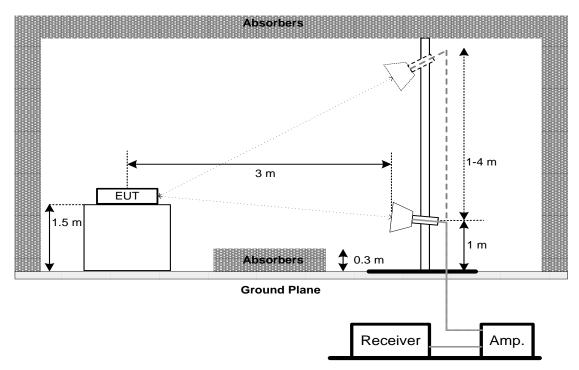
Spectrum Parameters	Setting 1000 MHz		
Start Frequency			
Stop Frequency	10th carrier harmonic		
RBW / VBW	1 MHz / 3 MHz for PK value		
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value		


Spectrum Parameters	Setting			
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector			
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector			
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector			
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector			
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector			
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector			

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP


9 kHz to 30 MHz

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits ($dB\mu V$) + distance extrapolation factor.

4.7 TEST RESULT - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1000 MHz

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

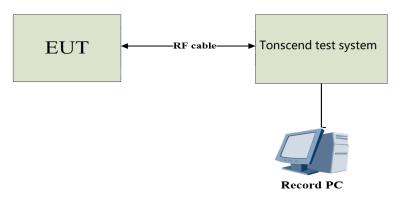
Section	Test Item	Limit	
	6 dB Bandwidth	>= 500 kHz	
FCC 15.247(a)(2)	99% Emission Bandwidth	-	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Spectrum Parameters	Setting
Span Frequency	> Measurement Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


For 99% Emission Bandwidth:

Spectrum Parameters	Setting			
Span Frequency	Between 1.5 times and 5.0 times the OBW			
RBW	1% to 5% of the OBW			
VBW	approximately three times RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS Please refer to the APPENDIX E.

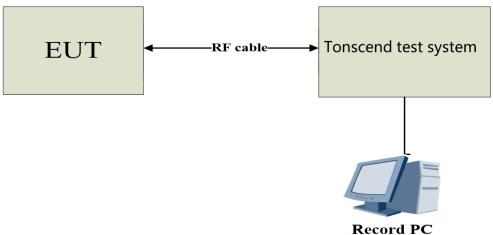
6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit	
FCC 15.247(b)(3)	Maximum Output Power	1.0000 watt or 30.00 dBm	

6.2 TEST PROCEDURE

a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.


b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	≥ 3×RBW
RBW	2 MHz
VBW	3×RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

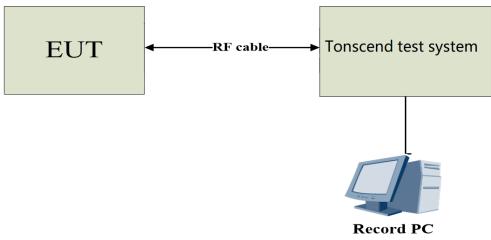
Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSION

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE


- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

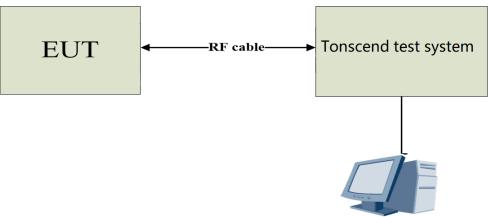
8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

8.2 TEST PROCEDURE

a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.


b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	1.5 times DTS BW
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

Record PC

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

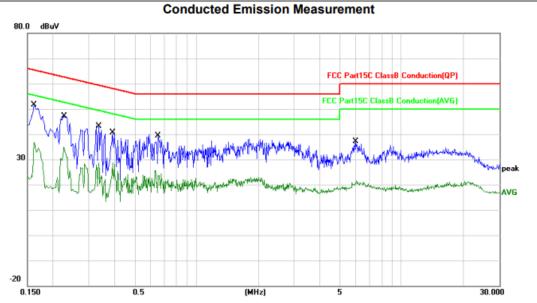
No.EquipmentManufacturerType No.Serial No.(yyyy/mm/dd)1Test receiverRohde&SchwarzESU1001842023/5/32Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32023/4/233Low frequency amplifierUnknownLNA 0920N20142023/5/34High frequency amplifierSchwarzbeckBBV 97182842023/5/35Loop AntennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311chamber)1GHz chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	Cal. Due date (yyyy/mm/dd) 2024/5/2 2024/5/2 2024/5/2 2024/5/2 2025/7/3 2025/7/3 2025/7/3 2025/7/3 2025/7/3 2025/7/3 2024/5/2 2024/5/2 2024/5/2
No.EquipmentManufacturerType No.Serial No.(yyyy/mm/dd)1Test receiverRohde&SchwarzESU1001842023/5/32Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32023/4/233Low frequency amplifierUnknownLNA 0920N20142023/5/34High frequency amplifierSchwarzbeckBBV 97182842023/5/35Loop AntennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311chamber)1GHz z-40GHzUnknownUnknownUnknown2023/5/32RF cable(966 chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	(yyyy/mm/dd) 2024/5/2 2024/4/22 2024/5/2 2025/7/3 2025/7/3 2025/7/3 2025/7/3 2025/7/3 2024/5/2 2024/5/2
2Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32023/4/233Low frequency amplifierUnknownLNA 0920N20142023/5/34High frequency amplifierSchwarzbeckBBV 97182842023/5/35Loop AntennaSchwarzbeckBBV 97182842023/5/36Log periodic antennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310RF cable(966 chamber)9KHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz z-40GHzUnknownUnknownUnknown2023/5/3	2024/4/22 2024/5/2 2024/5/2 2025/7/3 2025/5/4 2025/7/3 2024/5/2 2024/5/2
2Horn AntennaSchwarzbeck9120 D32023/4/233Low frequency amplifierUnknownLNA 0920N20142023/5/34High frequency amplifierSchwarzbeckBBV 97182842023/5/35Loop AntennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311chamber)1GHz -18GHzUnknownUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	2024/5/2 2024/5/2 2025/7/3 2024/4/22 2025/5/4 2025/7/3 2024/5/2 2024/5/2
3amplifierUnknown0920N20142023/5/34High frequency amplifierSchwarzbeckBBV 97182842023/5/35Loop AntennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz -18GHzUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknown2023/5/3	2024/5/2 2025/7/3 2024/4/22 2025/5/4 2025/7/3 2024/5/2 2024/5/2
4SchwarzbeckBBV 97182842023/3/35Loop AntennaSchwarzbeckFMZB151 9B000292022/7/46Log periodic antennaSchwarzbeckVULB 916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311chamber)1GHz -18GHzUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknown2023/5/3	2025/7/3 2024/4/22 2025/5/4 2025/7/3 2024/5/2 2024/5/2
5Loop AntennaSchwarzbeck9B000292022/7/46Log periodic antennaSchwarzbeck916811512023/4/237Horn AntennaSchwarzbeck9120 D32022/5/58Horn AntennaSchwarzbeckBBHA 91709120D-127 32022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz -18GHzUnknownUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	2024/4/22 2025/5/4 2025/7/3 2024/5/2 2024/5/2
6Schwarzbeck916811512023/4/237Horn AntennaSchwarzbeckBBHA 9120 D9120D-127 32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310RF cable(966 chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz -18GHzUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknown2023/5/3	2025/5/4 2025/7/3 2024/5/2 2024/5/2
7Horn AntennaSchwarzbeck9120 D32022/5/58Horn AntennaSchwarzbeckBBHA 91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310RF cable(966 chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/310RF cable(966 chamber)1GHz -18GHzUnknownUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	2025/7/3 2024/5/2 2024/5/2
8Horn AntennaSchwarzbeck91709170#6852022/7/49Temp&Humidity RecorderMeideshiJR900/2023/5/310RF cable(966 chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz -18GHzUnknownUnknownUnknown2023/5/312RF cable(966 chamber)18GH 	2024/5/2 2024/5/2
9RecorderMeldeshiJR90072023/5/310RF cable(966 chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz 	2024/5/2
10chamber)9kHz- 1GHzUnknownUnknownUnknown2023/5/311RF cable(966 chamber)1GHz -18GHzUnknownUnknownUnknown2023/5/312RF cable(966 chamber)18GH z-40GHzUnknownUnknownUnknown2023/5/3	
11chamber)1GHzUnknownUnknownUnknown2023/5/3-18GHzRF cable(96612chamber)18GHUnknownUnknown2023/5/3z-40GHzEarad Technology	2024/5/2
12 chamber)18GH Unknown Unknown 2023/5/3 z-40GHz Earad Technology	
Earad Technology	2024/5/2
13 Test software Farad recimology EZ-EMC /	/
Conducted Emission	
1 Test receiver Rohde&Schwarz ESCI 100718 2023/5/3	2024/5/2
2 LISN Rohde&Schwarz ENV216 100075 2023/5/3	2024/5/2
3 Pulse limiter Rohde&Schwarz ESH3-Z2 102299 2023/5/3	2024/5/2
4 RF cable (9kHz-30MHz) Unknown Unknown 2023/5/3	2024/5/2
5 Test software Farad Technology Co., Ltd EZ-EMC / /	/
RF conducted Emissions	
1 MXA Signal Keysight N9021B MY600801 2023/4/23	2024/4/22
2 RF Control Unit dsusoft JS0806-2 21G80604 49 2023/4/23	2024/4/22
3 power supply dsusoft JS0806-4 N/A 2023/4/23	2024/4/22
4 VXG Signal Generator Keysight M9384B MY612707 87 2023/4/23	2024/4/22
5 EXG Analog 5 Signal Keysight N5173B MY591012 6 Generator 2023/4/23	2024/4/22
6 Test software dsusoft JS1120-3 / /	

10. ANTENNA REQUIREMENT

Test standard: FCC part 15.203

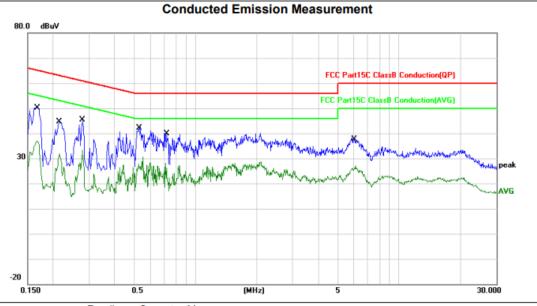
According to the manufacturer declared, the EUT has PCB antenna, the antenna gain is 2.04dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement.

Therefore the EUT is considered sufficient to comply with the provision.


Refer to EUT Photo for further details.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1615	29.67	19.88	49.55	65.39	-15.84	QP	
2		0.1615	16.96	19.88	36.84	55.39	-18.55	AVG	
3		0.2255	25.36	19.88	45.24	62.61	-17.37	QP	
4		0.2255	14.88	19.88	34.76	52.61	-17.85	AVG	
5		0.3341	21.37	19.88	41.25	59.35	-18.10	QP	
6		0.3341	8.65	19.88	28.53	49.35	-20.82	AVG	
7		0.3896	18.57	19.88	38.45	58.07	-19.62	QP	
8		0.3896	8.62	19.88	28.50	48.07	-19.57	AVG	
9		0.6518	17.48	19.88	37.36	56.00	-18.64	QP	
10		0.6518	3.76	19.88	23.64	46.00	-22.36	AVG	
11		6.0145	15.09	19.93	35.02	60.00	-24.98	QP	
12		6.0145	1.68	19.93	21.61	50.00	-28.39	AVG	


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

Test Mode ITX Mode 1Mbps Channel 00 IPhase INeutral			
		Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1660	27.33	19.88	47.21	65.16	-17.95	QP	
2		0.1660	17.06	19.88	36.94	55.16	-18.22	AVG	
3		0.2140	22.80	19.88	42.68	63.05	-20.37	QP	
4		0.2140	12.05	19.88	31.93	53.05	-21.12	AVG	
5		0.2775	22.77	19.88	42.65	60.89	-18.24	QP	
6		0.2775	13.61	19.88	33.49	50.89	-17.40	AVG	
7	*	0.5243	20.24	19.88	40.12	56.00	-15.88	QP	
8		0.5243	8.11	19.88	27.99	46.00	-18.01	AVG	
9		0.7131	18.13	19.88	38.01	56.00	-17.99	QP	
10		0.7131	8.26	19.88	28.14	46.00	-17.86	AVG	
11		6.0465	15.93	19.93	35.86	60.00	-24.14	QP	
12		6.0465	6.43	19.93	26.36	50.00	-23.64	AVG	

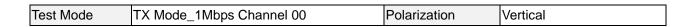
REMARKS:

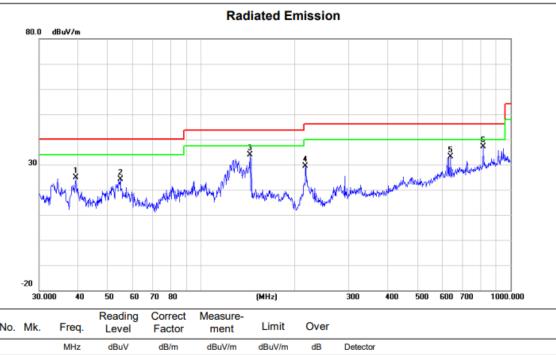
(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

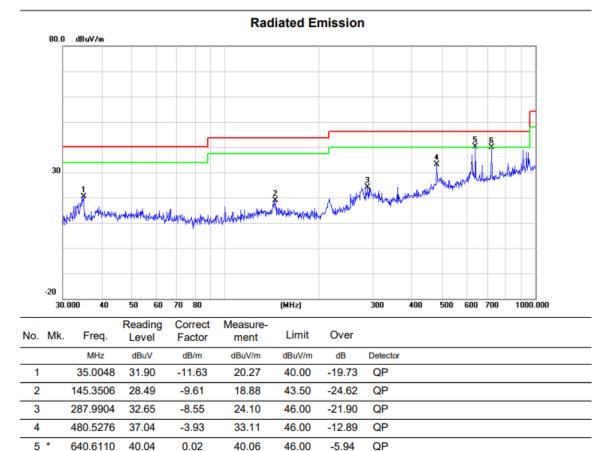
Radiated emission: 9KHz-30MHz


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.


There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector		
1		39.4371	35.62	-10.71	24.91	40.00	-15.09	QP		
2		54.8348	35.66	-11.55	24.11	40.00	-15.89	QP		
3		143.8295	43.45	-9.63	33.82	43.50	-9.68	QP		
4		217.5443	40.32	-10.84	29.48	46.00	-16.52	QP		
5		640.6110	33.08	0.02	33.10	46.00	-12.90	QP		
6	*	815.9678	34.04	3.16	37.20	46.00	-8.80	QP		


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

REMARKS:

6

721.7260

(1) Measurement Value = Reading Level + Correct Factor.

1.36

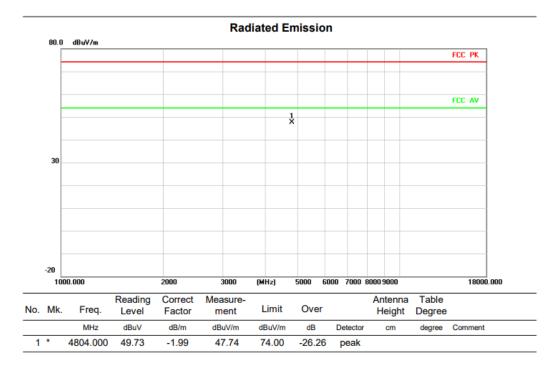
39.87

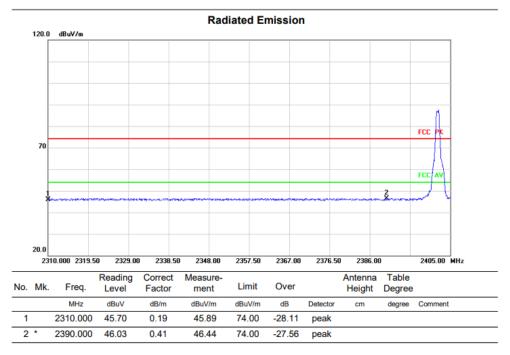
46.00

-6.13

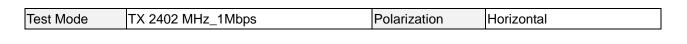
QP

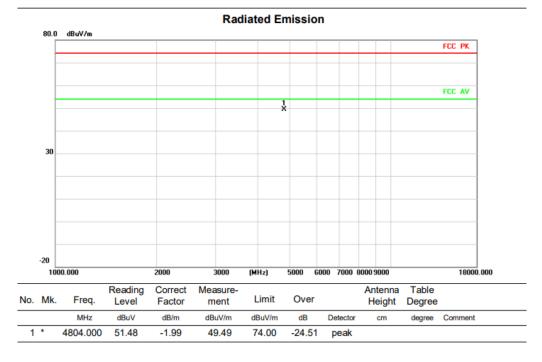
(2) Margin Level = Measurement Value - Limit Value.

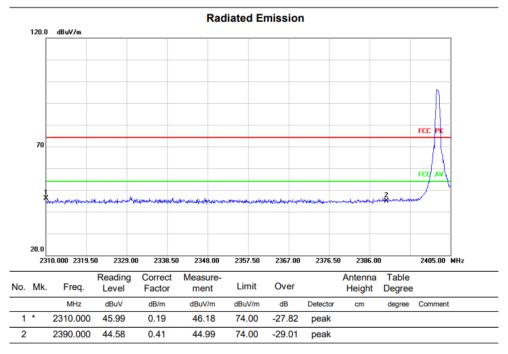

38.51

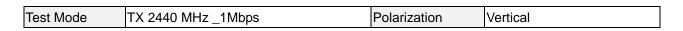


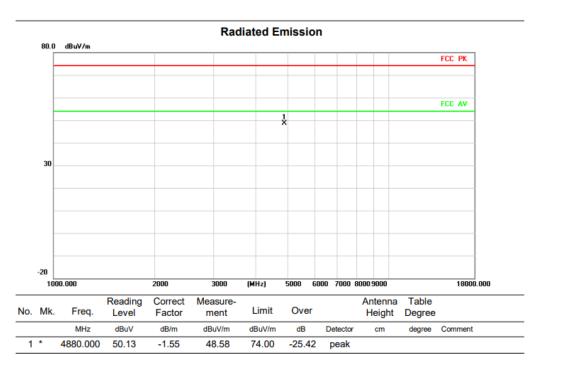
APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ

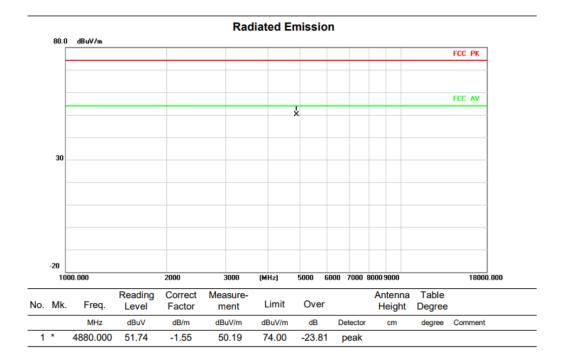


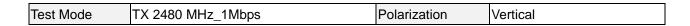

Test Mode TX 2402 MHz_1Mbps Polarization Vertical

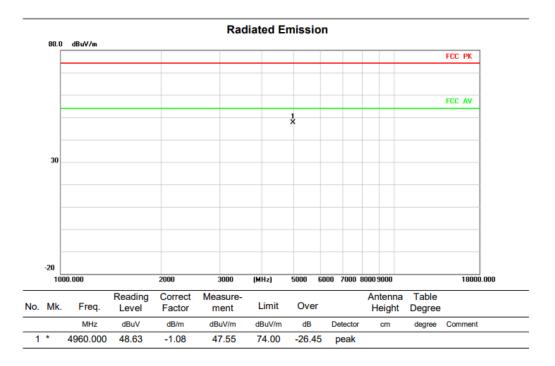


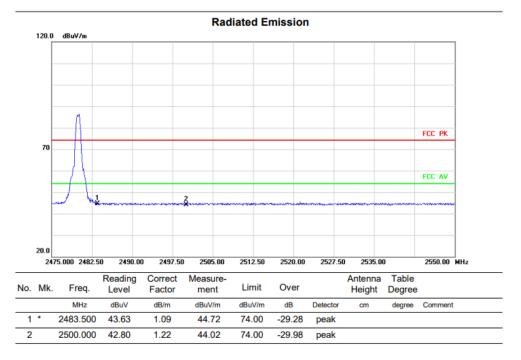


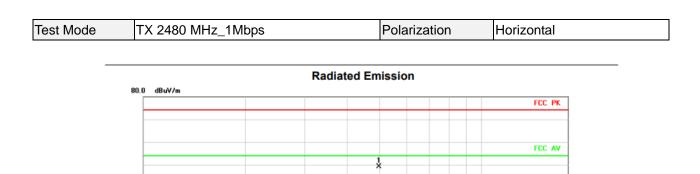


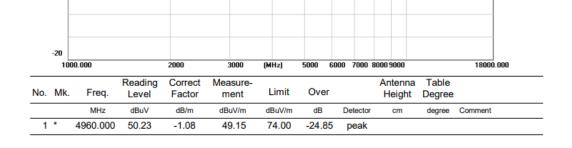


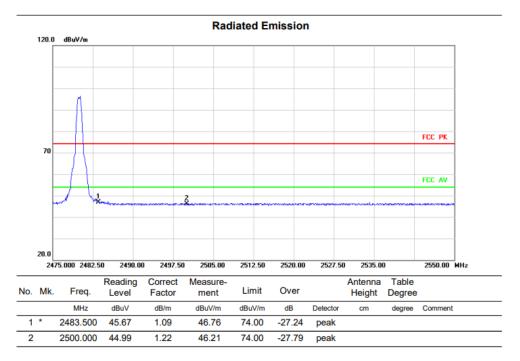




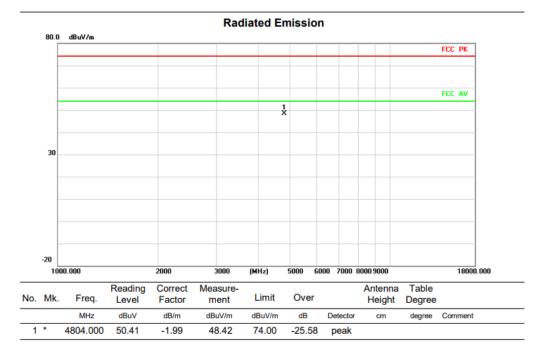


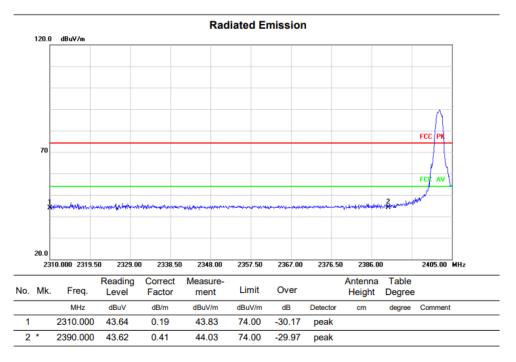


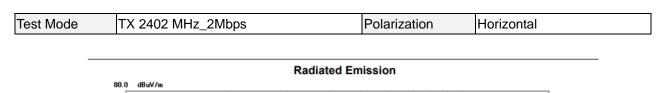


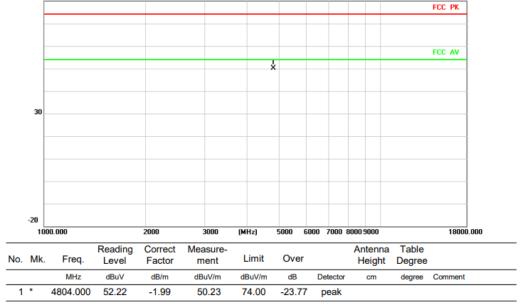


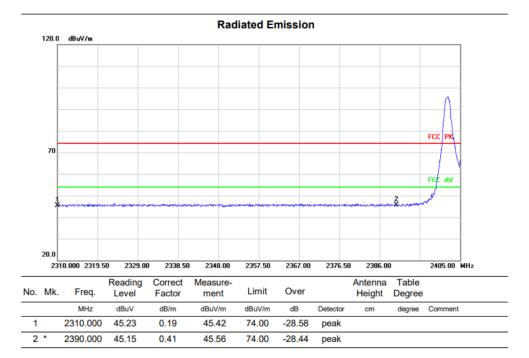
30

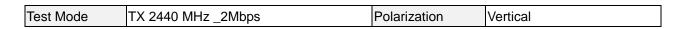


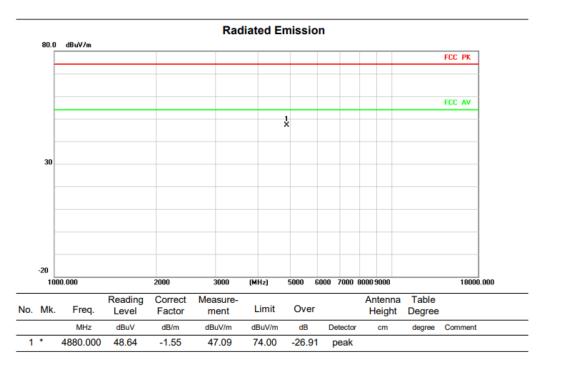


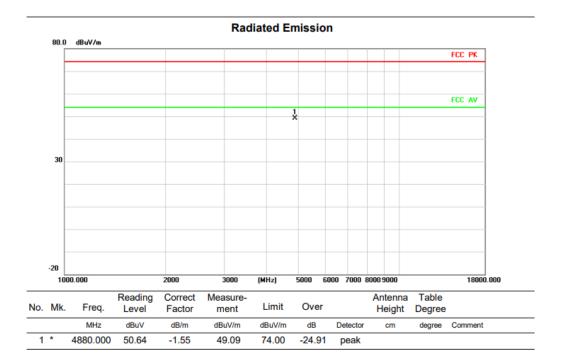


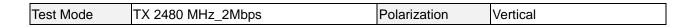


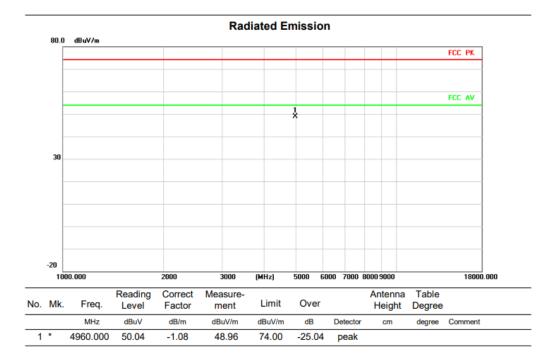


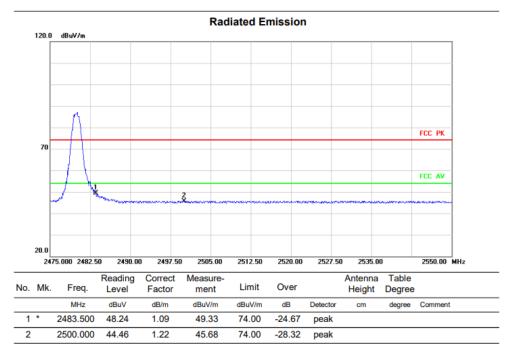


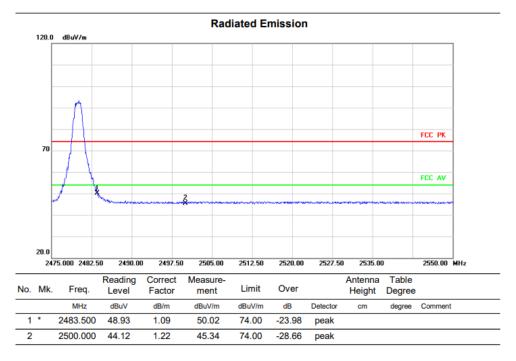









Test Mode TX 2440 MHz _2Mbps Polarization Horizontal



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4960.000	51.84	-1.08	50.76	74.00	-23.24	peak			

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

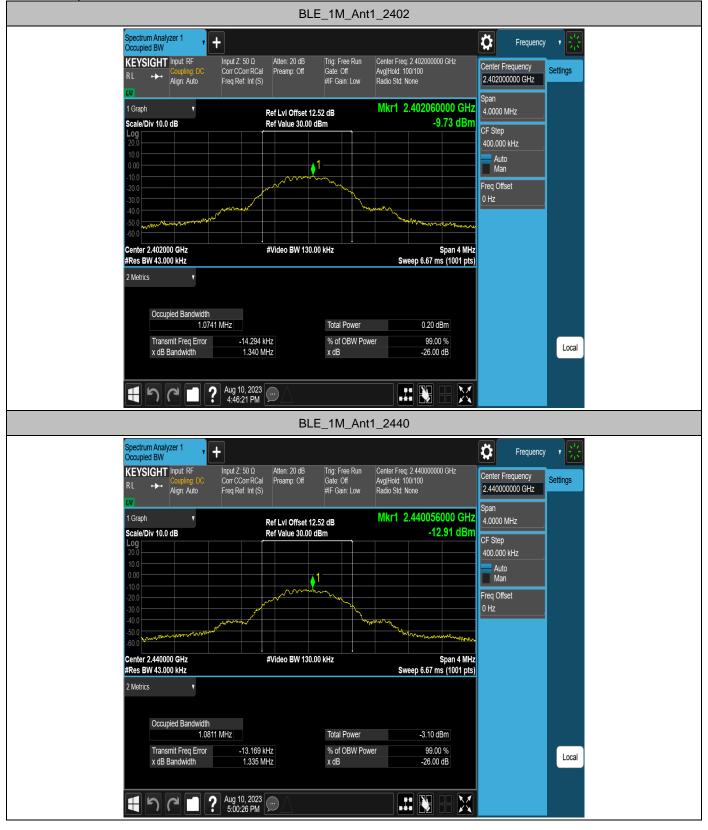
Note: The high frequency, which started from 18GHz to 25GHz, was pre-scanned and the result which was 20dB lower than the limit line was not recorded in this report.

APPENDIX E - BANDWIDTH

DTS Bandwidth

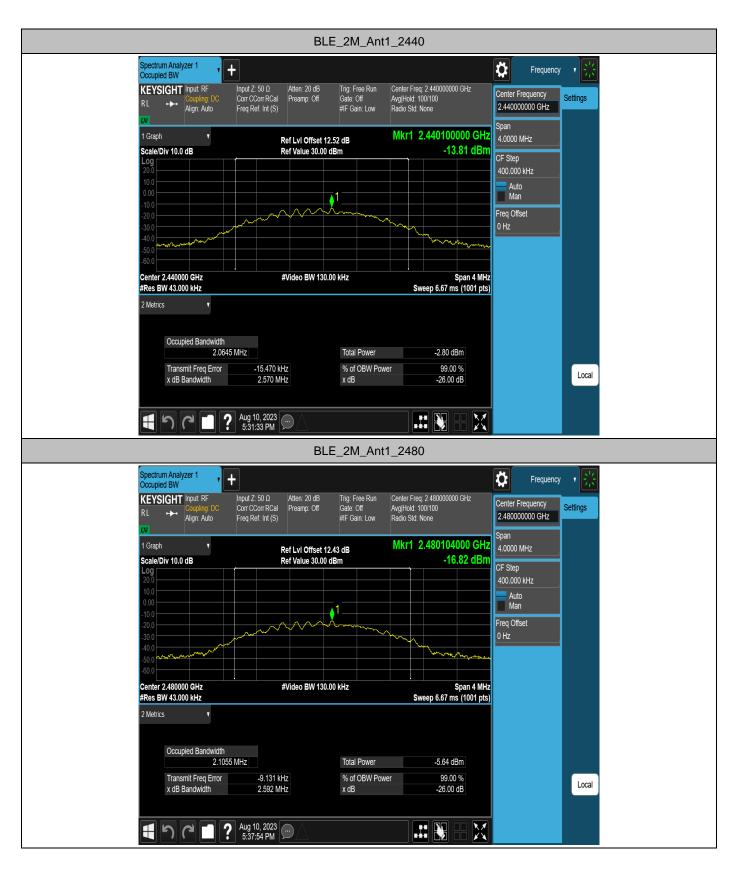
Test Mode	Antenna	Freq(MHz)	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	0.656	2401.660	2402.316	0.5	PASS
BLE_1M		2440	0.660	2439.652	2440.312	0.5	PASS
		2480	0.672	2479.648	2480.320	0.5	PASS
	Ant1	2402	1.244	2401.380	2402.624	0.5	PASS
BLE_2M		2440	1.256	2439.376	2440.632	0.5	PASS
		2480	1.264	2479.368	2480.632	0.5	PASS

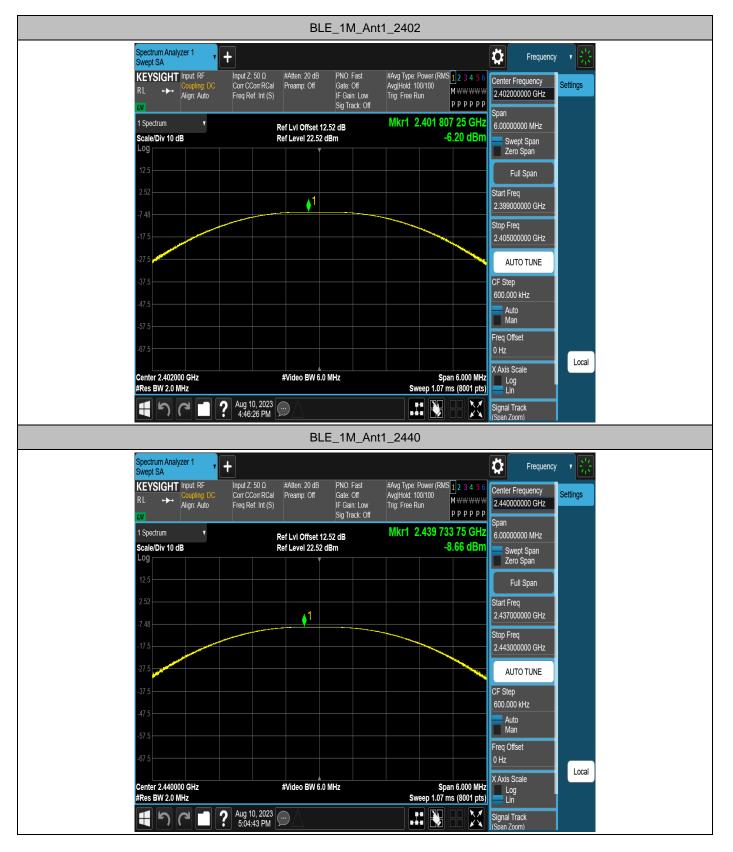
Test Graphs

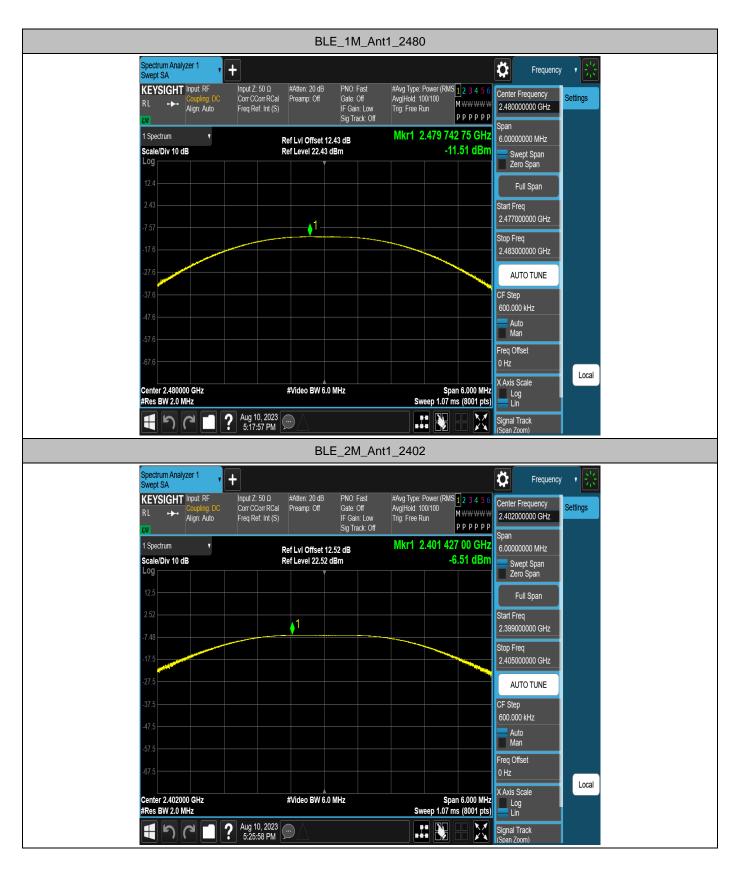


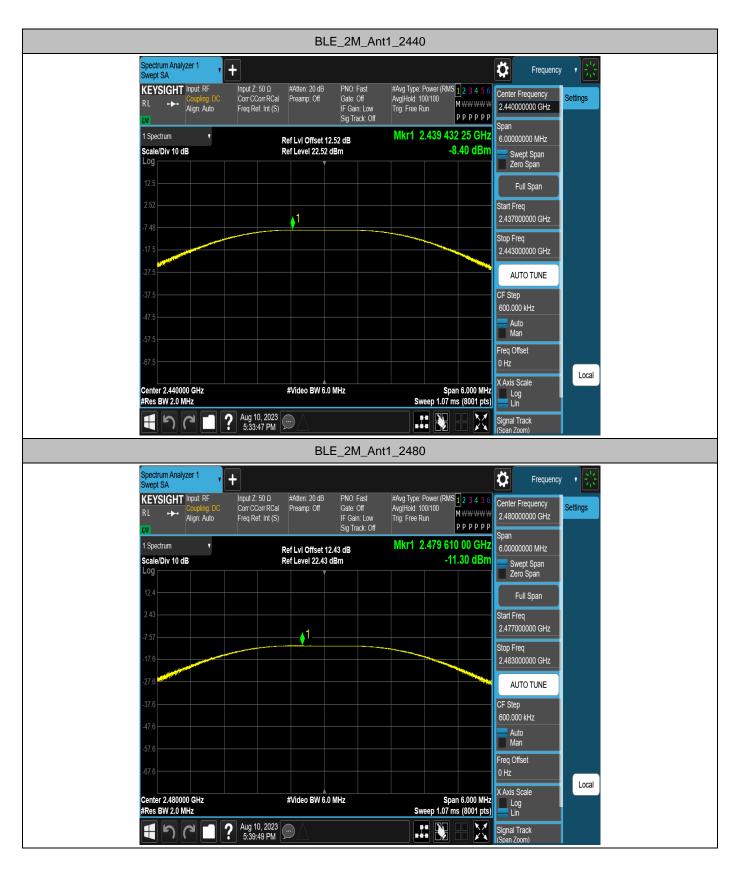
Occupied Channel Bandwidth

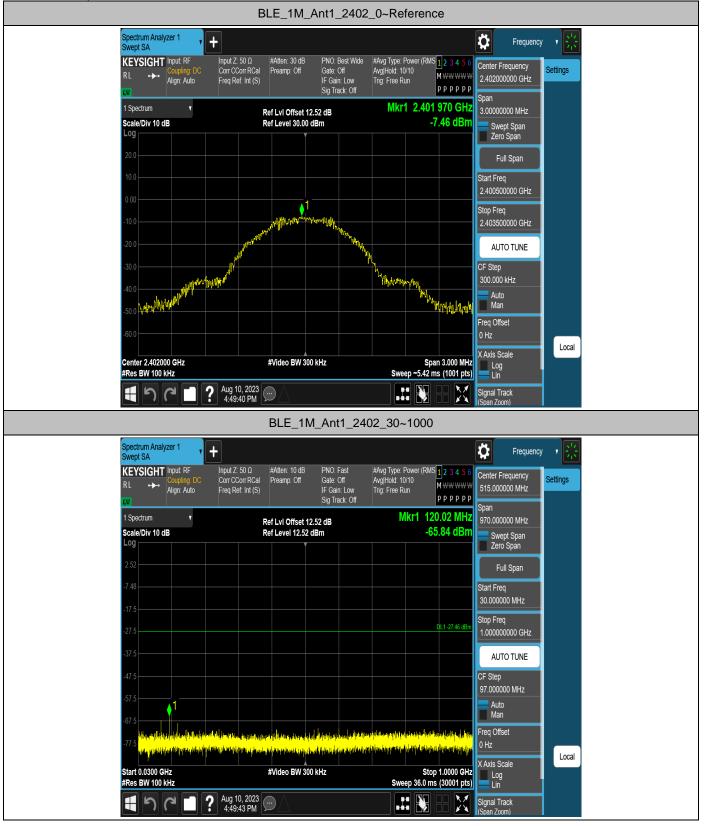
Test Mode	Antenna	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	2402	1.0741	2401.4487	2402.5228		
BLE_1M		2440	1.0811	2439.4463	2440.5274		
		2480	1.0991	2479.4330	2480.5321		
	Ant1	2402	2.0209	2400.9747	2402.9956		
BLE_2M		2440	2.0645	2438.9523	2441.0168		
		2480	2.1055	2478.9381	2481.0436		


Test Graphs


APPENDIX F - MAXIMUM OUTPUT POWER

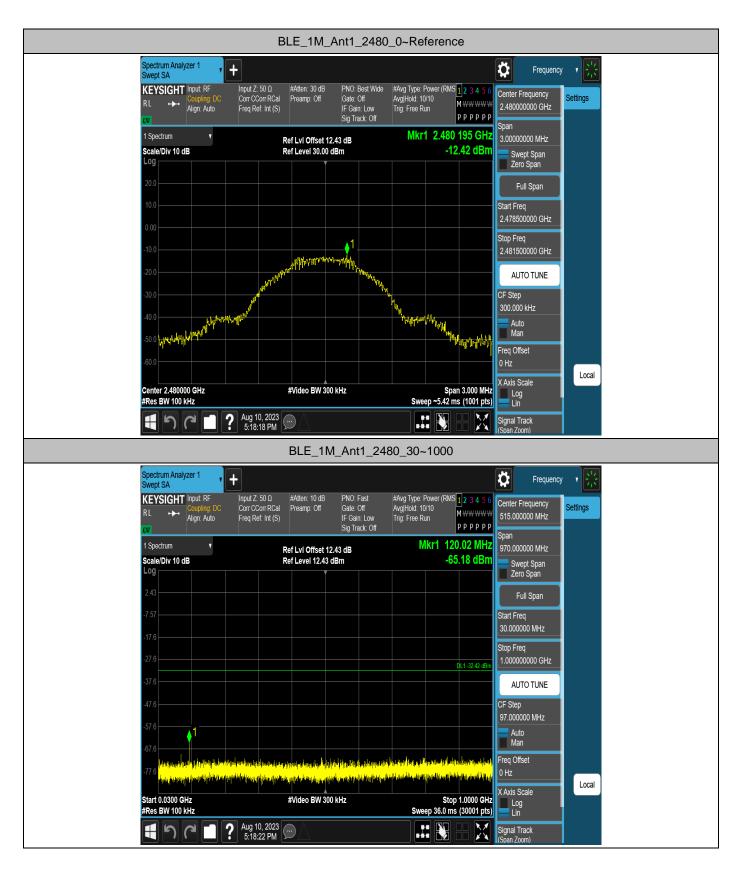

Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	Ant1	2402	-6.20	≤30	PASS
BLE_1M		2440	-8.66	≤30	PASS
		2480	-11.51	≤30	PASS
	Ant1	2402	-6.51	≤30	PASS
BLE_2M		2440	-8.40	≤30	PASS
		2480	-11.30	≤30	PASS

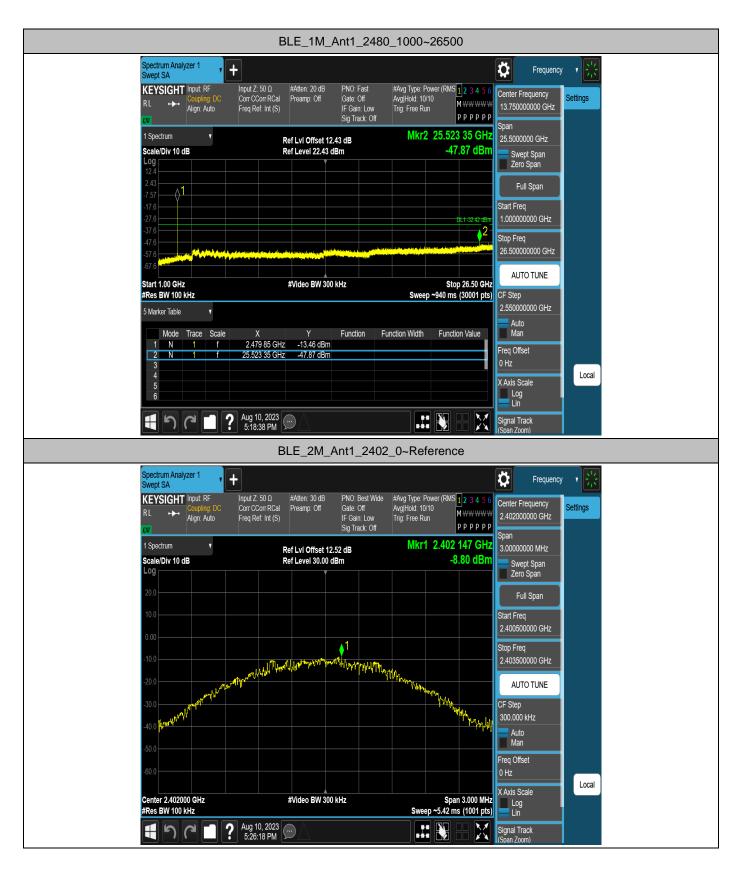

Test Graphs Peak

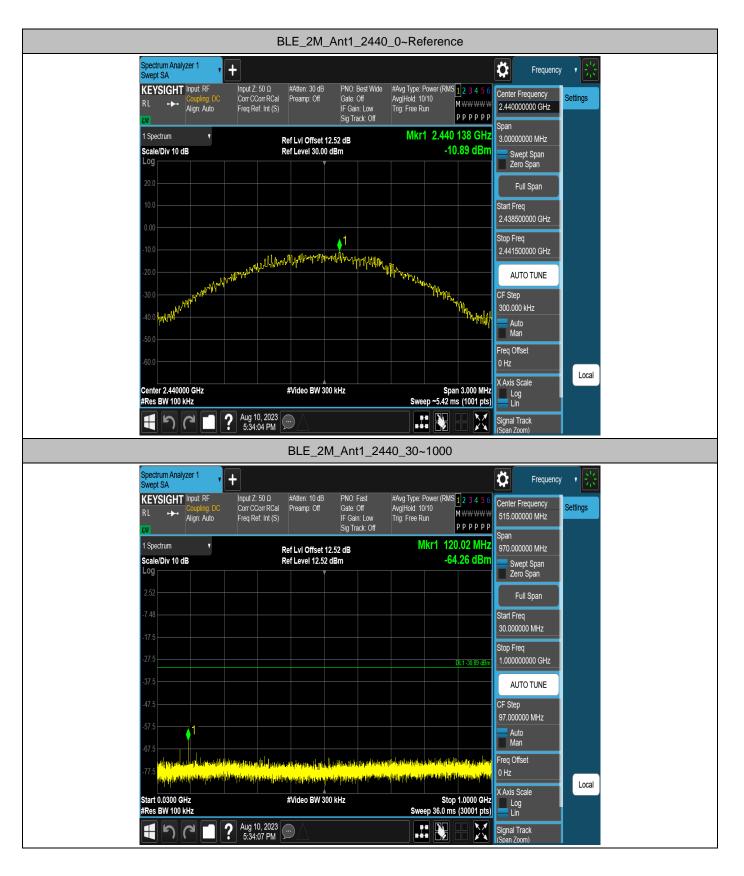


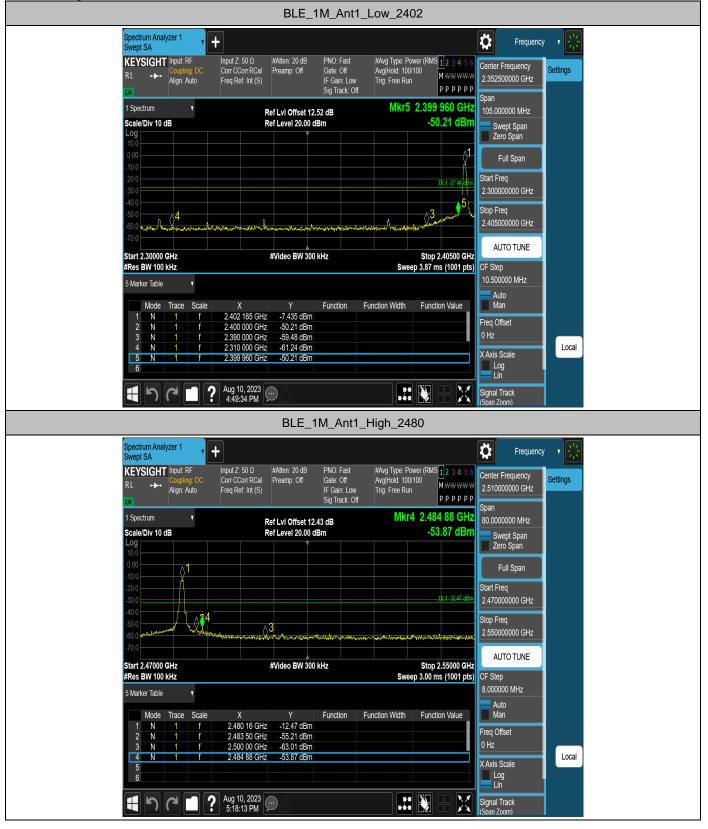
APPENDIX G - CONDUCTED SPURIOUS EMISSION

Conducted Spurious Emission

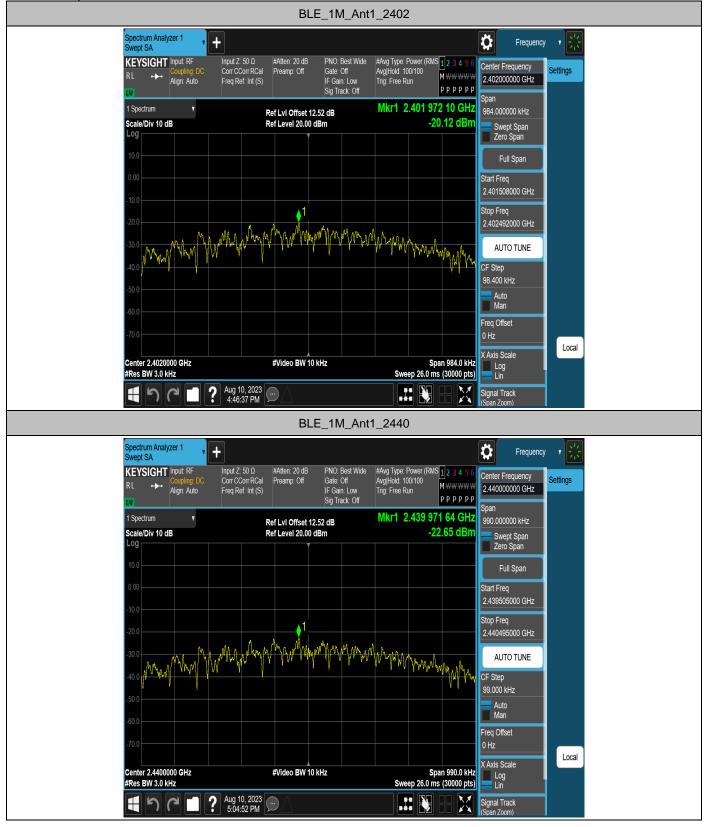


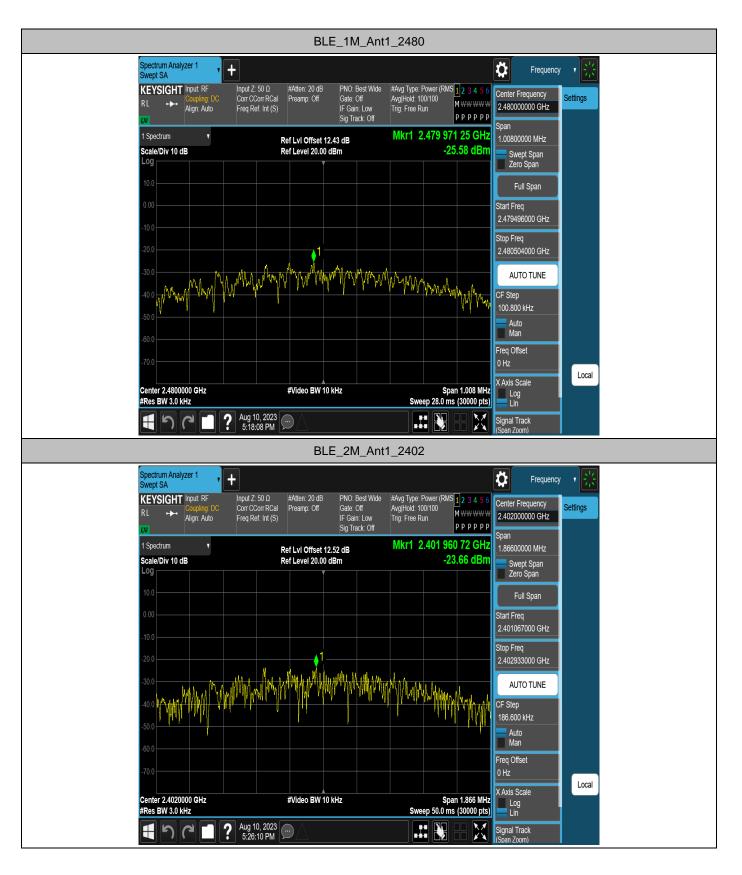






Band edge measurements


APPENDIX H - POWER SPECTRAL DENSITY


Test Mode	Antenna	Freq(MHz)	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	Ant1	2402	-20.12	≤8.00	PASS
BLE_1M		2440	-22.65	≤8.00	PASS
		2480	-25.58	≤8.00	PASS
	Ant1	2402	-23.66	≤8.00	PASS
BLE_2M		2440	-25.67	≤8.00	PASS
		2480	-28.58	≤8.00	PASS

Test Graphs

End of Test Report