

FCC 47 CFR PART 15 SUBPART C CERTIFICATION TEST REPORT

For

NXG-200

Model No.: NXG-200

FCC ID: 2AN5LNXG200

Trade Mark: N/A

Report No.: ES190426971W

Issue Date: June 5, 2019

Prepared for

SimpalTEK LLC

4095 Roaring Fork Ln, Frisco, TX, United States, 75033

Prepared by

EMTEK(SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	
2 EUT TECHNICAL DESCRIPTION	
3 SUMMARY OF TEST RESULT	6
4 TEST METHODOLOGY	7
 4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES 4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 	
5 FACILITIES AND ACCREDITATIONS	11
5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS	11
6 TEST SYSTEM UNCERTAINTY	
7 SETUP OF EQUIPMENT UNDER TEST	13
 7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT 	
8 TEST REQUIREMENTS	
 8.1 DTS (6DB) BANDWIDTH 8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER 8.3 MAXIMUM POWER SPECTRAL DENSITY	22 23 29 34 46

1 TEST RESULT CERTIFICATION

Applicant	:	SimpalTEK LLC
Address	:	4095 Roaring Fork Ln, Frisco, TX, United States, 75033
Manufacture	:	SimpalTEK LLC
Address	:	4095 Roaring Fork Ln, Frisco, TX, United States, 75033
EUT	:	NXG-200
Model	:	NXG-200
Trademark	:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2 , Subpart J	5100			
FCC 47 CFR Part 15 , Subpart C	PASS			

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

Date of Test :	April 28, 2019 to June 3, 2019	
Prepared by :	Stophen liang	
	Stephen liang/Editor	ENZU.
Reviewer :	Yorping Shen	ENZHEN 8
-	Yaping Shen/Supervisor 🎇	5
Approve & Authorized Signer :	with the	ING *
	Lisa Wang/Manager	

Modified History

Version	Report No.	Revision Date	Summary
V1.0	ES190426971W	June 5, 2019	Original Report

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
IEEE 802.11 WLAN Mode Supported	 ⊠ 802.11b ⊠ 802.11g ⊠ 802.11n(20MHz channel bandwidth)
Data Rate	WIFI: ⊠ 802.11 b:1,2,5.5,11Mbps; ⊠ 802.11 g:6,9,12,18,24,36,48,54Mbps; ⊠ 802.11n(HT20): up to 144.4Mbps;
Modulation	WIFI: ⊠ DSSS with DBPSK/DQPSK/CCK for 802.11b; ⊠ OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Operating Frequency Range	2412-2462MHz for 802.11b/g/n(HT20)
Number of Channels	11 channels for 802.11b/g n(HT20)
Transmit Power Max	⊠ 802.11b:17.49 dBm ⊠ 802.11g:16.42 dBm ⊠ 802.11n (20MHz): 16.39dBm
Test Power Grade	 ⊠ 802.11b:20 ⊠ 802.11g:36 ⊠ 802.11n(HT20):36
Antenna:	Glue rod antenna
Antenna Gain:	3 dBi
Power Supply:	AC 120V/60Hz
Test Voltage:	AC 120V/60Hz
Temperature Range:	-10°C ~ +40°C

FCC Part Clause	Test Parameter	Verdict	Remark		
15.247(a)(2)	DTS (6dB) Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS			
15.247(e)	Maximum Power Spectral Density Level	PASS			
15.247(d)	Unwanted Emission Into Non-Restricted	PASS			
	Frequency Bands				
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS			
15.209	Bands (conducted)				
15.247(d)	Radiated Spurious Emission	PASS			
15.209					
15.207	Conducted Emission Test	PASS			
15.247(b)	Antenna Application	PASS			
	NOTE1: N/A (Not Applicable)				
	NOTE2: According to FCC OET KDB 558074, the report use radiated				
	measurements in the restricted frequency bands. In addition, the radiated				
	test is also performed to ensure the emissions emanating from the device				
	cabinet also comply with the applicable limits.				

3 SUMMARY OF TEST RESULT

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AN5LNXG200 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
Test Receiver	Rohde & Schwarz	ESCS30	828985/018	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
L.I.S.N.	Schwarzbeck	NNLK8129	8129203	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
50Ω Coaxial Switch	Anritsu	MP59B	M20531	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Voltage Probe	Rohde & Schwarz	TK9416	N/A	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
I.S.N	Rohde & Schwarz	ENY22	1109.9508.02	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
Pre-Amplifier	HP	8447D	2944A07999	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Bilog Antenna	Schwarzbeck	VULB9163	142	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Loop Antenna	ARA	PLA-1030/B	1029	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Horn Antenna	Schwarzbeck	BBHA 9120	D143	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Cable	Schwarzbeck	AK9513	ACRX1	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
Cable	Rosenberger	N/A	FP2RX2	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
Cable	Schwarzbeck	AK9513	CRPX1	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020
Cable	Schwarzbeck	AK9513	CRRX2	May 29, 2018 May 28, 2019	May 28, 2019 May 27, 2020

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Signal Analyzer	Agilent	N9010A	My53470879	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Power meter	Anritsu	ML2495A	0824006	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020
Power sensor	Anritsu	MA2411B	0738172	May 28, 2018 May 27, 2019	May 27, 2019 May 26, 2020

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
1	2412	5	2432	9	2452			
2	2417	6	2437	10	2457			
3	2422	7	2442	11	2462			
4	2427	8	2447					

Frequency and Channel list for 802.11 b/g/n (HT20):

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

4.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software	ESP32 v3.4.2				
Frequency (MHz)	2412	2462			
802.11b	20	20	20		
802.11g	36	36	36		
802.11n (20MHz)	36	36	36		

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Sito	Description		
EMC Lab.		:	Accredited by CNAS, 2018.11.30 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2017) The Certificate Registration Number is L2291
			Accredited by TUV Rheinland Shenzhen 2018.3.30 The Laboratory has been assessed according to the requirements ISO/IEC 17025
			Accredited by FCC, August 09, 2018 Designation Number: CN1204 Test Firm Registration Number: 882943 Accredited by A2LA, August 08, 2018 The Certificate Registration Number is 4321.01
			Accredited by Industry Canada, November 09, 2018 The Certificate Registration Number is CN0008
Nam	ne of Firm	:	EMTEK(SHENZHEN) CO., LTD.
Site	Location	:	Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

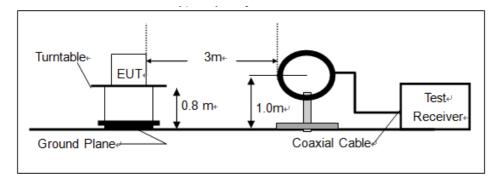
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

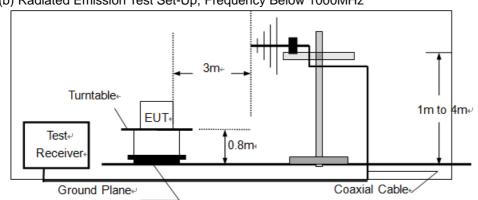
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

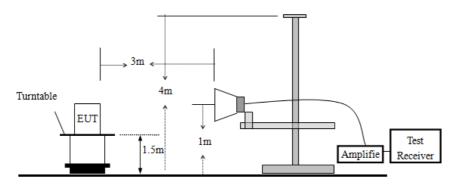

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

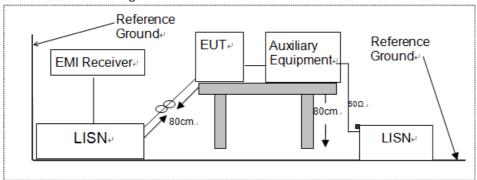
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



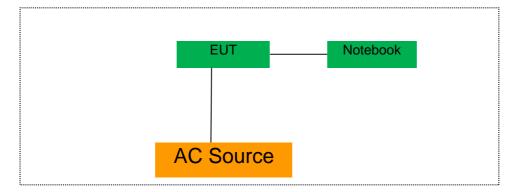
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description	Length (cm)	Shielded /Unshielded	With / Without Ferrite	Supplied by	Certification
USB cable	180	Unshielded	Without Ferrite	Client	/

Cable Description	Length (cm)	Shielded /Unshielded	With / Without Ferrite	Supplied by	Certification	
/	/	/	/	/	/	

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number Supplied by Certification						
Adapter	LISTED	MF-05001000	/	Client	FCC	

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS (6DB) BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

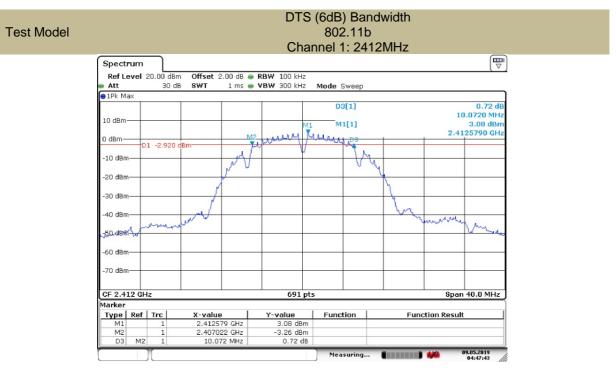
Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

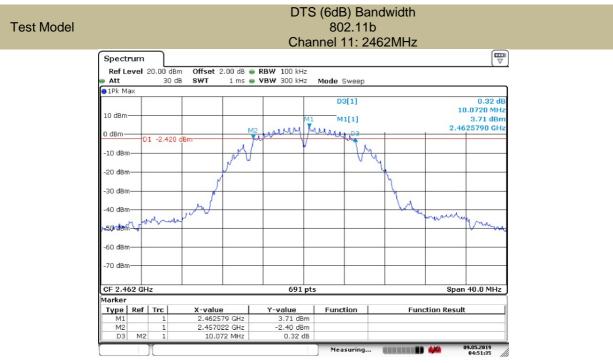
Allow the trace to stabilize.


Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

8.1.5 Test Results

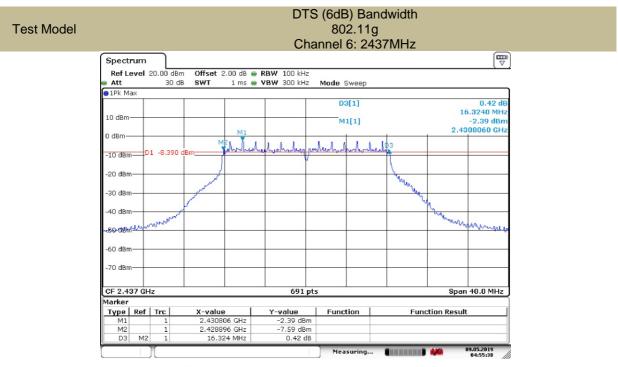

Temperature:	25° C	
Relative Humidity:	55%	
ATM Pressure:	1011 mbar	

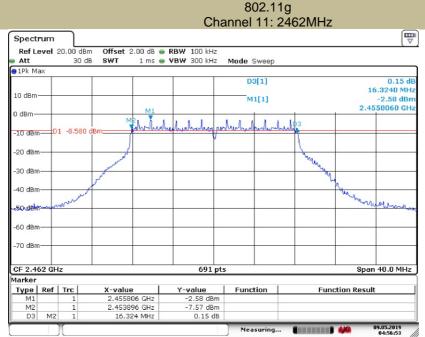
Operation Mode	Channel Number	Channel Frequency (MHz)	6 dB Bandwidth MHz	99% Bandwidth MHz	Limit (kHz)	Verdict
	1	2412	10.072	13.372	>500	PASS
802.11b	6	2437	10.072	13.256	>500	PASS
	11	2462	10.072	13.256	>500	PASS
	1	2412	16.324	17.540	>500	PASS
802.11g	6	2437	16.324	17.540	>500	PASS
	11	2462	16.324	17.540	>500	PASS
002.11m	1	2412	17.54	18.408	>500	PASS
802.11n (HT20)	6	2437	17.54	18.408	>500	PASS
(1120)	11	2462	17.54	18.466	>500	PASS


Date: 9.MAY.2019 04:47:43

Test Model

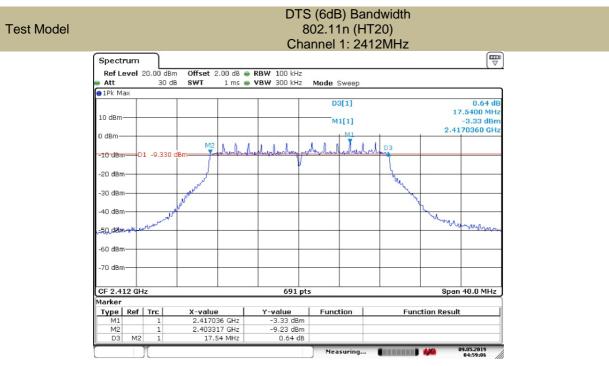
Date: 9.MAY.2019 04:50:17


Date: 9.MAY.2019 04:51:36


Test Model

Date: 9.MAY.2019 04:53:57

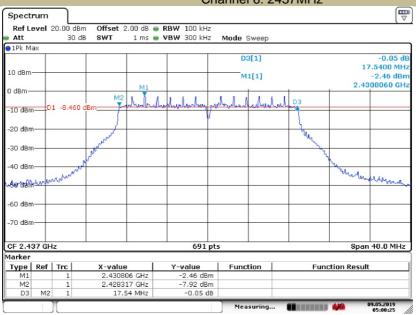
Date: 9.MAY.2019 04:55:39



DTS (6dB) Bandwidth

Date: 9.MAY.2019 04:56:54

Test Model



Date: 9.MAY.2019 04:59:07

DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz

Date: 9.MAY.2019 05:00:26

DTS (6dB) Bandwidth Test Model 802.11n (HT20) Channel 11: 2462MHz Spectrum Offset 2.00 dB ● RBW 100 kHz SWT 1 ms ● VBW 300 kHz Ref Level 20.00 dBm Att 30 dB Mode Sweep Acc 91Pk Max D3[1] -0.28 dl -0.28 dB 17.5400 MHz -2.56 dBm 2.4558060 GHz 10 dBm M1[1] 0 dBm M2 Ĩ. A And A ١. 1 1 A D1 -8.560 -10 dBm -20 dBr -30 dBr 40 dBr wheel wheel where 50 df -60 dBr -70 dBm CF 2.462 GHz 691 pts Span 40.0 MHz Marker Y-value -2.56 dBm -8.01 dBm -0.28 dB Type Ref Trc X-value 2.455806 GHz 2.453317 GHz 17.54 MHz Function Function Result M1 D3 M2 09.05.2019 05:01:31 Measuring... (....) 🦇 1

Date: 9.MAY.2019 05:01:32

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

n According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

n According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain - 6)

8.2.5 Test Results

Temperature:	25° C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	2412	16.28	30	PASS
802.11b	6	2437	17.49	30	PASS
	11	2462	17.32	30	PASS
	1	2412	15.51	30	PASS
802.11g	6	2437	16.42	30	PASS
	11	2462	16.22	30	PASS
002.11m	1	2412	15.41	30	PASS
802.11n (HT20)	6	2437	16.39	30	PASS
(11120)	11	2462	16.17	30	PASS

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

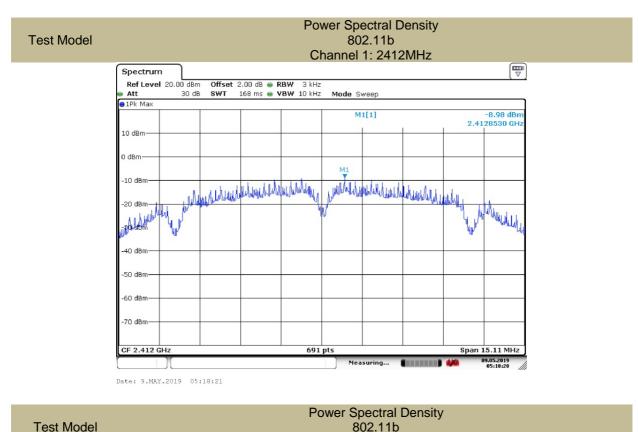
Set the VBW to: 10 kHz.

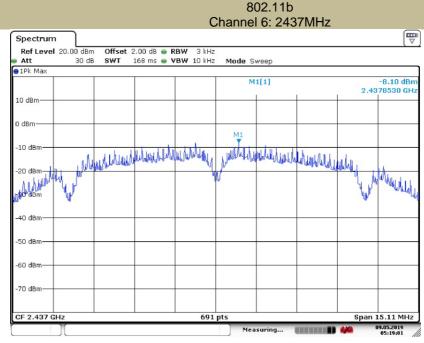
Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

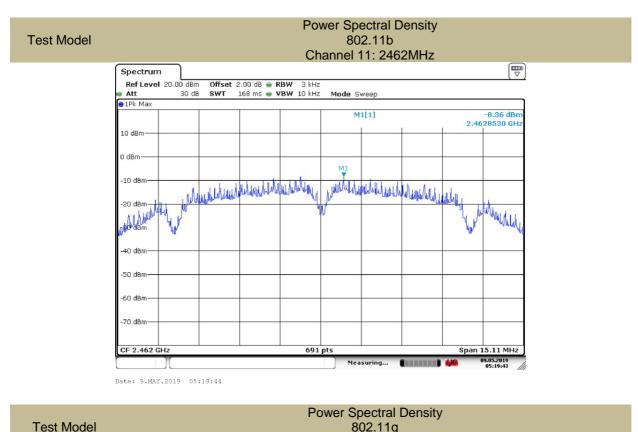
Allow trace to fully stabilize.

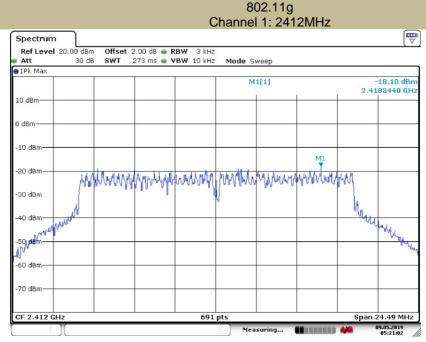

Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain - 6)


8.3.5 Test Results

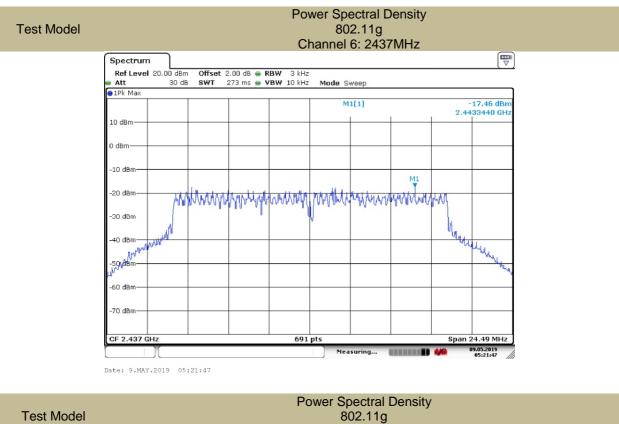
Temperature:	25° C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

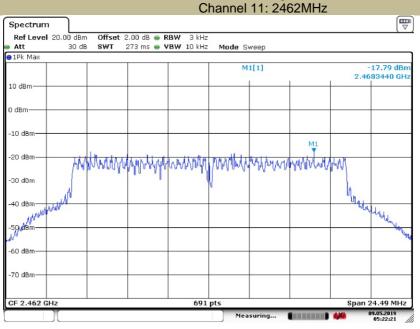
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2412	-8.98	8	PASS
802.11b	6	2437	-8.10	8	PASS
	11	2462	-8.36	8	PASS
	1	2412	-18.10	8	PASS
802.11g	6	2437	-17.46	8	PASS
	11	2462	-17.79	8	PASS
802.11n (HT20)	1	2412	-18.49	8	PASS
	6	2437	-17.61	8	PASS
(1120)	11	2462	-17.87	8	PASS



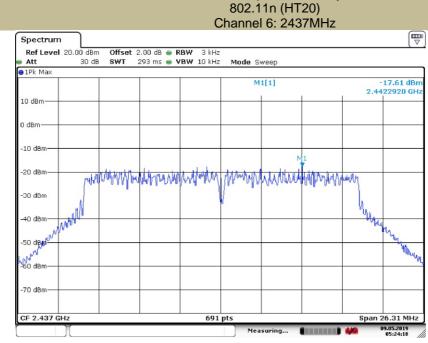


Date: 9.MAY.2019 05:19:02

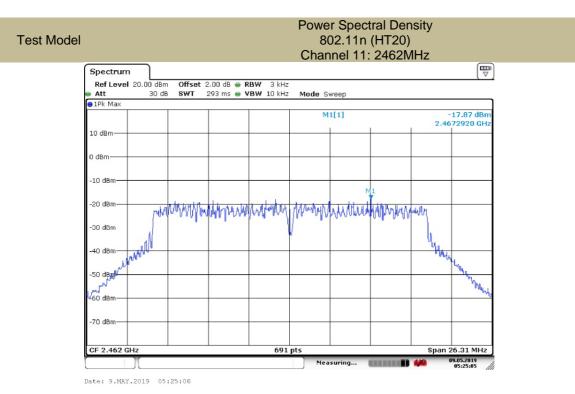




Date: 9.MAY.2019 05:21:03



Date: 9.MAY.2019 05:22:21



Date: 9.MAY.2019 05:24:18

Test Model

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

n Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

n Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

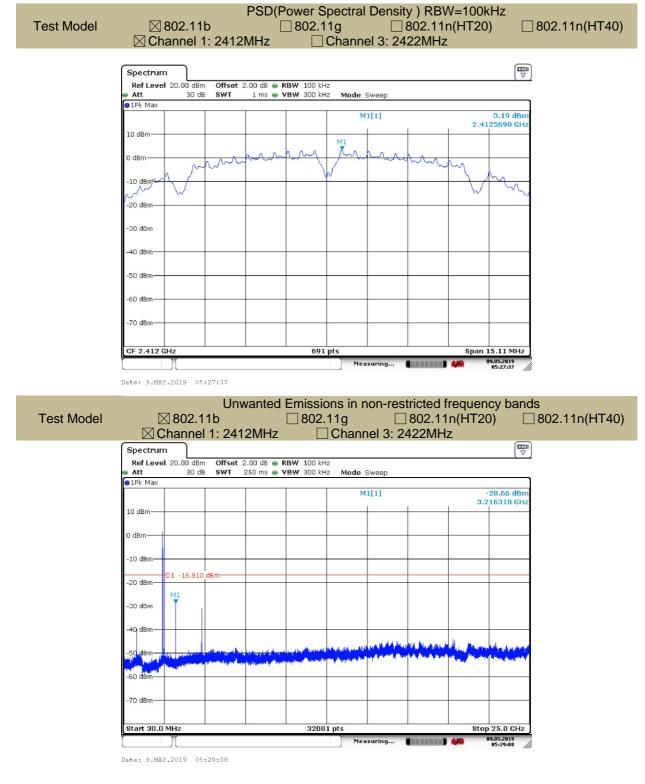
Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

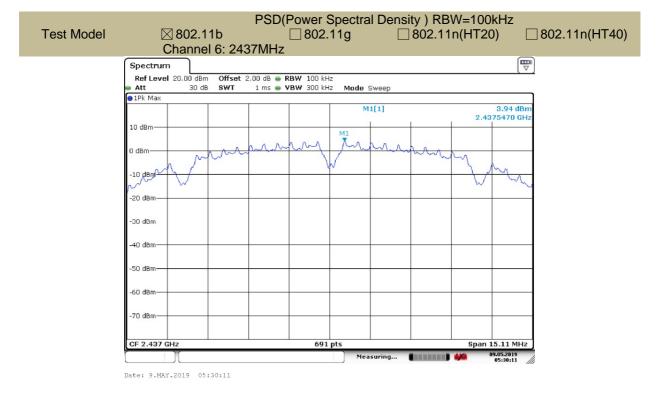
Trace mode = max hold.

Allow trace to fully stabilize.

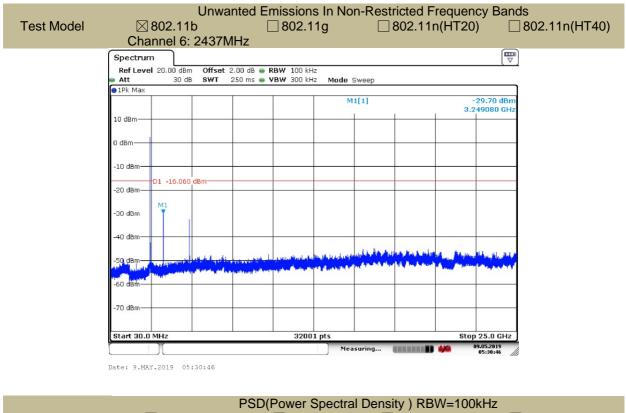

Use the peak marker function to determine the maximum amplitude level.

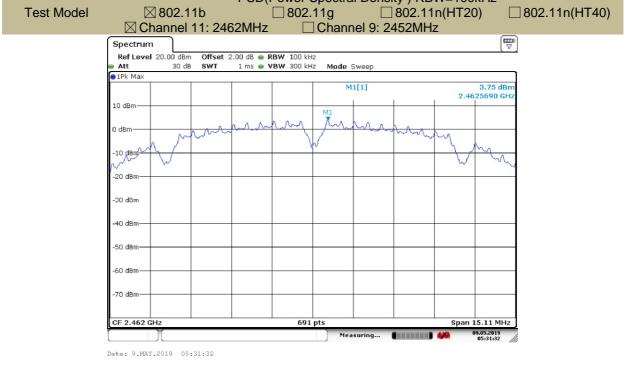
Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

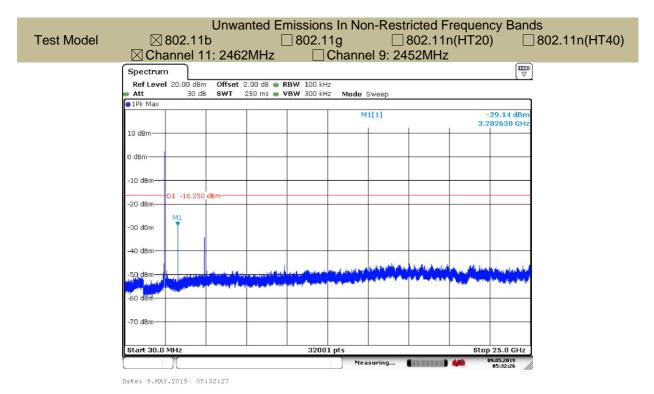
8.4.5 Test Results

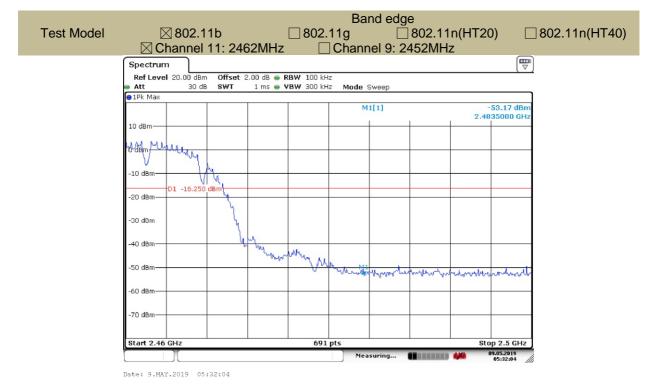

All the modulation modes were tested, the data of the worst mode are described in the following table.

Access to the World









8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to 1 OC 1 artis.200, Restricted bands								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300	
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30	
1.705-30	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

 $\label{eq:RBW} \texttt{RBW} = \texttt{1} \ \texttt{MHz} \ \texttt{for} \ \texttt{f} \geq \texttt{1} \ \texttt{GHz}(\texttt{1}\texttt{GHz} \ \texttt{to} \ \texttt{2}\texttt{5}\texttt{GHz}), \ \texttt{100} \ \texttt{kHz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{GHz}(\texttt{3}\texttt{0}\texttt{MHz} \ \texttt{to} \ \texttt{1}\texttt{GHz}), \ \texttt{200Hz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{50} \ \texttt{KHz} \ \texttt{to} \ \texttt{1} \ \texttt{GHz}), \ \texttt{200Hz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{50} \ \texttt{KHz} \ \texttt{to} \ \texttt{1} \ \texttt{GHz}), \ \texttt{200Hz} \ \texttt{for} \ \texttt{f} < \texttt{1} \ \texttt{1} \ \texttt{GHz}(\texttt{1} \ \texttt{1} \ \texttt{GHz}), \ \texttt{1} \ \texttt{$

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the

measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

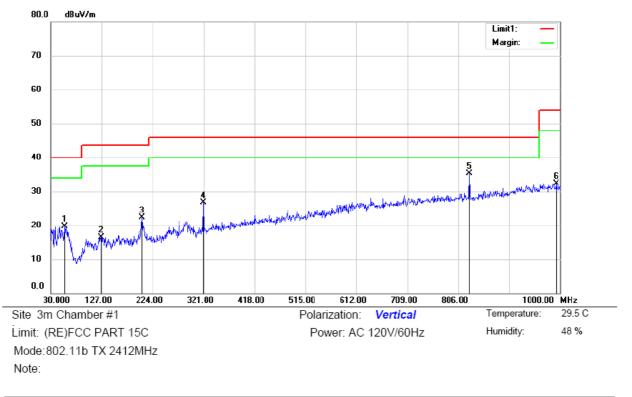
8.5.5 Test Results

Temperature:	29.5° C		
Relative Humidity:	48%		
ATM Pressure:	1011 mbar		

n Spurious Emission below 30MHz (9KHz to 30MHz)

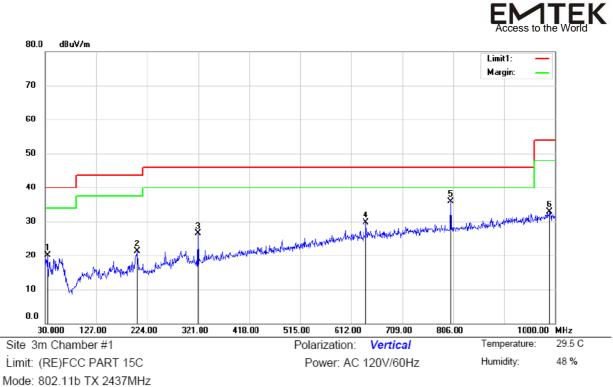
Freq.	Ant.Pol.	Emis Level(d	sion BuV/m)	Limit 3m((dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

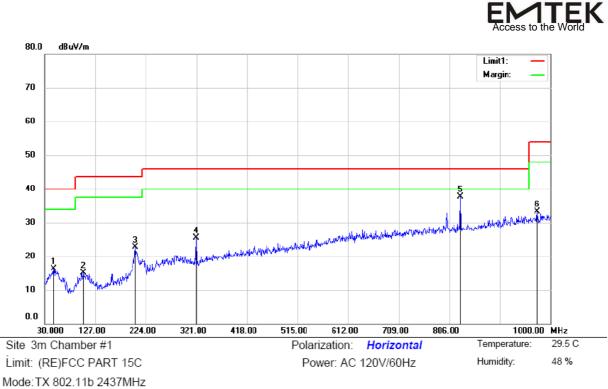

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

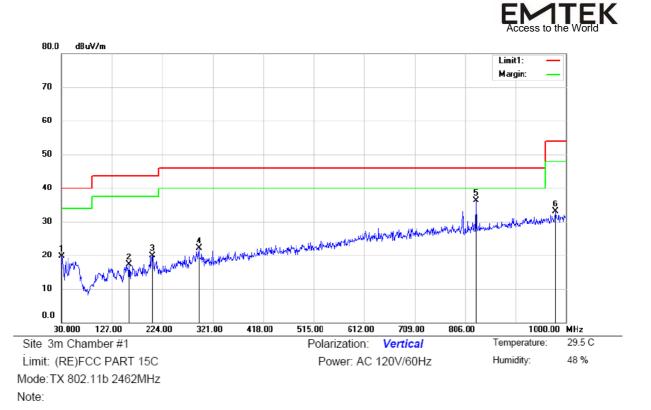
n Spurious Emission below 1GHz (30MHz to 1GHz)


All modes 802.11b/g/n have been tested, the data of the worst mode are described in the following table.

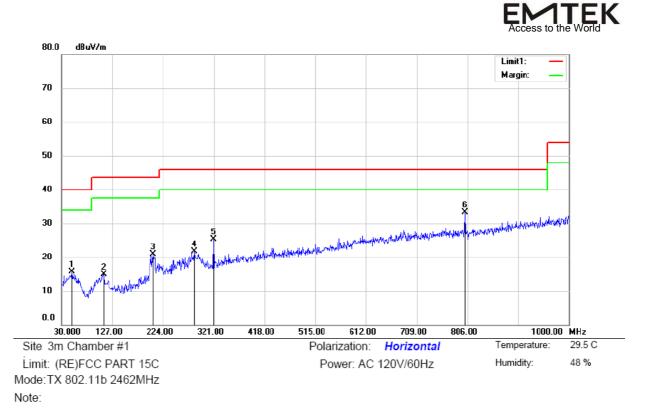
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		56.1900	31.60	-11.94	19.66	40.00	-20.34	QP			
2		126.0300	31.55	-15.06	16.49	43.50	-27.01	QP			
3		203.6300	33.97	-11.57	22.40	43.50	-21.10	QP			
4		320.0300	34.58	-7.93	26.65	46.00	-19.35	QP			
5	*	827.3400	34.84	0.54	35.38	46.00	-10.62	QP			
6		992.2400	28.59	3.81	32.40	54.00	-21.60	QP			



No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		52.3100	27.76	-11.17	16.59	40.00	-23.41	QP			
2		100.8100	27.36	-12.59	14.77	43.50	-28.73	QP			
3		205.5700	33.95	-11.62	22.33	43.50	-21.17	QP			
4		320.0300	34.64	-7.93	26.71	46.00	-19.29	QP			
5		801.1500	35.48	0.29	35.77	46.00	-10.23	QP			
6	*	827.3400	38.07	0.54	38.61	46.00	-7.39	QP			


```
Note:
```

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		33.8800	33.14	-13.12	20.02	40.00	-19.98	QP			
2		204.6000	32.85	-11.59	21.26	43.50	-22.24	QP			
3		320.0300	34.38	-7.93	26.45	46.00	-19.55	QP			
4		640.1300	31.46	-1.76	29.70	46.00	-16.30	QP			
5	*	801.1500	35.69	0.29	35.98	46.00	-10.02	QP			
6		988.3600	29.24	3.73	32.97	54.00	-21.03	QP			



Note:	
INOLO.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		47.4600	27.56	-11.21	16.35	40.00	-23.65	QP			
2		103.7200	27.50	-12.36	15.14	43.50	-28.36	QP			
3		203.6300	34.34	-11.57	22.77	43.50	-20.73	QP			
4		320.0300	33.53	-7.93	25.60	46.00	-20.40	QP			
5	* (827.3400	37.22	0.54	37.76	46.00	-8.24	QP			
6	(974.7800	29.91	3.39	33.30	54.00	-20.70	QP			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		30.9700	33.93	-14.15	19.78	40.00	-20.22	QP			
2		159.9800	31.98	-14.72	17.26	43.50	-26.24	QP			
3		205.5700	31.54	-11.62	19.92	43.50	-23.58	QP			
4		293.8400	30.58	-8.41	22.17	46.00	-23.83	QP			
5	*	827.3400	35.76	0.54	36.30	46.00	-9.70	QP			
6		979.6300	29.55	3.50	33.05	54.00	-20.95	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		50.3700	26.87	-11.24	15.63	40.00	-24.37	QP			
2		110.5100	27.57	-12.64	14.93	43.50	-28.57	QP			
3	1	205.5700	32.52	-11.62	20.90	43.50	-22.60	QP			
4		284.1400	30.48	-8.78	21.70	46.00	-24.30	QP			
5		320.0300	33.30	-7.93	25.37	46.00	-20.63	QP			
6	*	801.1500	33.09	0.29	33.38	46.00	-12.62	QP			

n Spurious Emission Above 1GHz (1GHz to 25GHz)

All modes 802.11b/g/n have been tested, the data of the worst mode are described in the following table.

Test mode:	Test mode: 802.11b		Frequ	ency:	Channe	Channel 1: 2412MHz		
Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
1747.15	V	45.90	32.23	74	54	-28.10	-21.77	
4824.15	V	57.32	43.90	74	54	-16.68	-10.10	
12060.00	V	58.24	45.62	74	54	-15.76	-8.38	
1767.55	Н	44.54	32.90	74	54	-29.46	-21.10	
4824.15	Н	58.66	44.59	74	54	-15.34	-9.41	
12060.00	Н	58.53	46.58	74	54	-15.47	-7.42	

Test mode:	Test mode: 802.11b			ency:	Channe	Channel 6: 2437MHz		
Freq.	Ant.Pol.		ssion BuV/m)	Limit 3m	(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
1773.50	V	47.95	34.33	74	54	-26.05	-19.67	
4874.30	V	57.19	44.90	74	54	-16.81	-9.10	
12185.00	V	58.49	45.99	74	54	-15.51	-8.01	
1976.65	Н	50.45	37.29	74	54	-23.55	-16.71	
4874.30	Н	58.32	45.12	74	54	-15.68	-8.88	
12185.00	Н	57.87	44.56	74	54	-16.13	-9.44	

Test mode:	802.11b		Frequ	ency:	С	Channel 11: 2462MHz			
Freq.	Ant.Pol.		ssion dBuV/m)	Limit 3m	(dBuV/m)	Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV		
1664.70	V	47.11	34.39	74	54	-26.89	-19.61		
4924.45	V	57.36	45.56	74	54	-16.64	-8.44		
7386.00	V	53.01	41.98	74	54	-20.99	-12.02		
1854.25	Н	47.56	34.00	74	54	-26.44	-20.00		
4923.60	Н	58.88	44.90	74	54	-15.12	-9.10		
14772.00	Н	60.66	48.59	74	54	-13.34	-5.41		

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

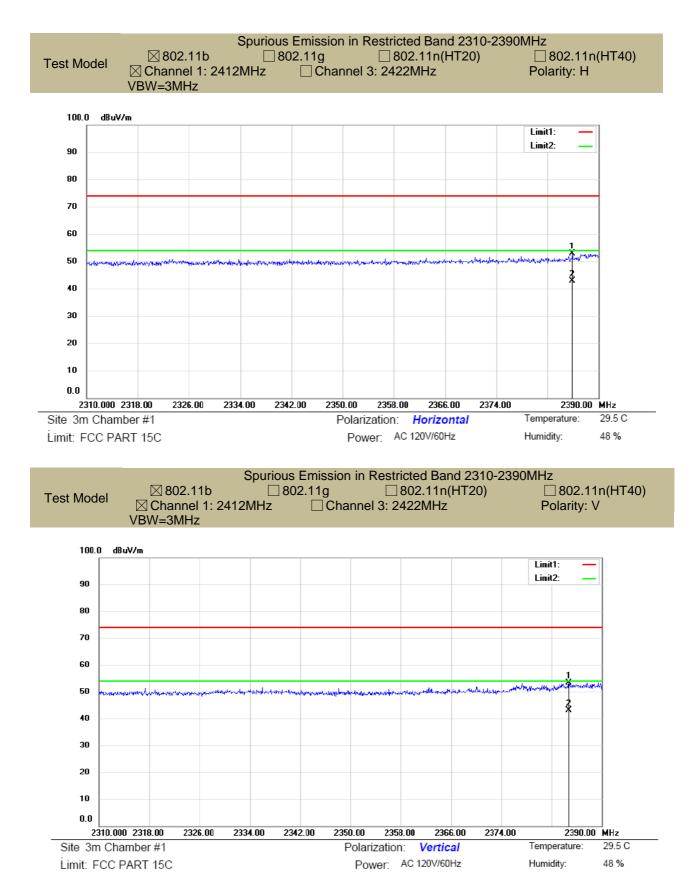
(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp
(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

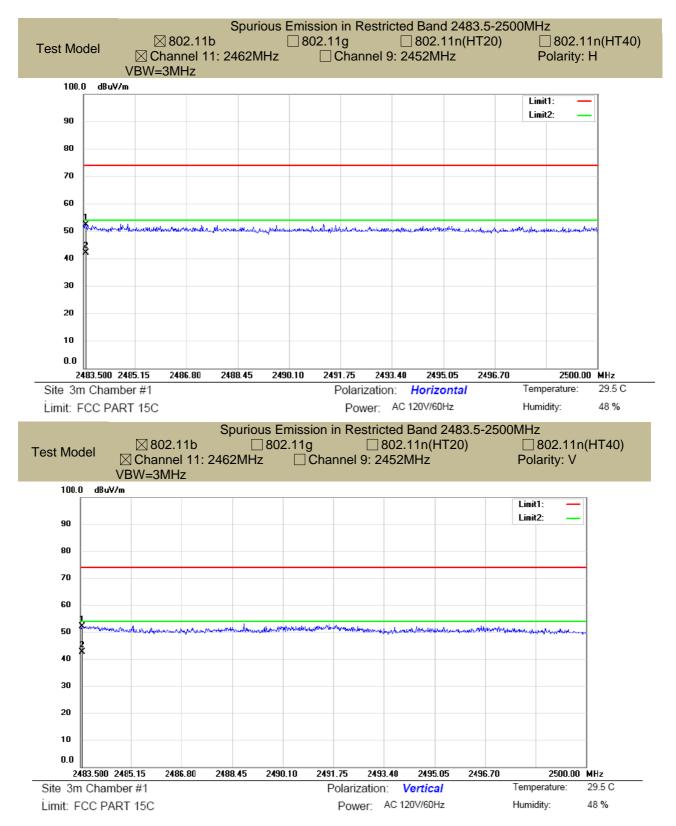
n Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 802.11b/g/n have been tested, the data of the worst mode are described in the following table.

Test mode:	802.11b) F	requency:	Chann	el 1: 2412MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2387.748	Н	51.27	74	-22.73	40.78	54	-13.22
2385.136	V	51.34	74	-22.66	40.26	54	-13.74
Test mode:	802.11b) F	requency:	Chann	el 11: 2462MHz		


Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Over(dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Over(dB)
2483.799	Н	52.28	74	-21.72	42.33	54	-11.67
2484.622	V	52.19	74	-21.81	41.80	54	-12.20

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).


(2) Emission Level= Reading Level+Correct Factor +Cable Loss.
(3) Correct Factor= Ant_F + Cab_L - Preamp

(4)Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

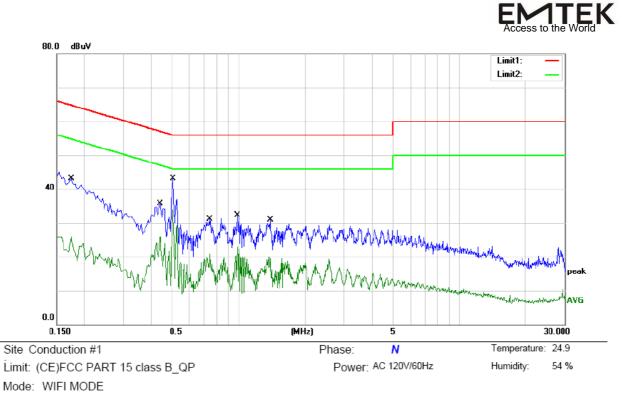
Conducted Emission Limit								
Frequency(MHz)	Quasi-peak	Average						
0.15-0.5	66-56	56-46						
0.5-5.0	56	46						
5.0-30.0	60	50						

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

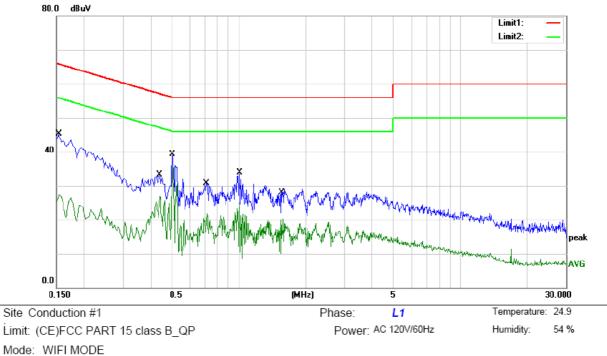
Test according to clause 7.3 conducted emission test setup


8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Pass


The 120V &240V voltage have been tested, and the worst result recorded was report as below.


```
Note:
```

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1740	33.48	9.55	43.03	64.77	-21.74	QP	
2	0.1740	16.41	9.55	25.96	54.77	-28.81	AVG	
3	0.4420	26.08	9.56	35.64	57.02	-21.38	QP	
4	0.4420	16.40	9.56	25.96	47.02	-21.06	AVG	
5	0.5060	33.53	9.56	43.09	56.00	-12.91	QP	
6 *	0.5060	24.30	9.56	33.86	46.00	-12.14	AVG	
7	0.7420	21.47	9.57	31.04	56.00	-24.96	QP	
8	0.7420	11.38	9.57	20.95	46.00	-25.05	AVG	
9	0.9860	22.64	9.58	32.22	56.00	-23.78	QP	
10	0.9860	13.38	9.58	22.96	46.00	-23.04	AVG	
11	1.3780	21.39	9.59	30.98	56.00	-25.02	QP	
12	1.3780	10.61	9.59	20.20	46.00	-25.80	AVG	


```
Note:
```

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1540	35.55	9.65	45.20	65.78	-20.58	QP	
2		0.1540	17.68	9.65	27.33	55.78	-28.45	AVG	
3		0.4420	23.75	9.56	33.31	57.02	-23.71	QP	
4		0.4420	17.28	9.56	26.84	47.02	-20.18	AVG	
5		0.5020	29.81	9.56	39.37	56.00	-16.63	QP	
6	*	0.5020	26.05	9.56	35.61	46.00	-10.39	AVG	
7		0.7180	21.06	9.57	30.63	56.00	-25.37	QP	
8		0.7180	12.26	9.57	21.83	46.00	-24.17	AVG	
9		1.0060	24.27	9.58	33.85	56.00	-22.15	QP	
10		1.0060	15.57	9.58	25.15	46.00	-20.85	AVG	
11		1.5460	20.40	9.59	29.99	56.00	-26.01	QP	
12		1.5460	10.48	9.59	20.07	46.00	-25.93	AVG	

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

PASS.

The EUT is a Glue rod antenna for WIFI 2.4G, the gain is 3 dBi.

- Antenna use a permanently attached antenna which is not replaceable.
- Not using a standard antenna jack or electrical connector for antenna replacement
- The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

Detail of factor for radi	ated emission			
Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	N N	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	١	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

----- End of Report ------