

RADIO TEST REPORT FCC ID: 2AN4U-V2

Product:	Bluetooth speaker
Trade Mark:	N/A
Model No.:	V2
Serial Model:	B1,B2,B3,B4,B5,B6,B7,B8,B9 V1,V2,V3,V4,V5,V6,V7,V8,V9 S1,S2,S3,S4,S5,S6,S7,S8,S9
Report No.:	SER171025856002E
Issue Date:	03 Nov. 2017

Prepared for

Shenzhen Yayusi Electronic Technology Co.,Ltd Building A, No.1, Tongli Road, Tongle Community, Longgang District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1	TES	T RESULT CERTIFICATION	3
2	SUN	IMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
4	GEN	NERAL DESCRIPTION OF EUT	6
5	DES	SCRIPTION OF TEST MODES	8
6	SET	UP OF EQUIPMENT UNDER TEST	9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	0
7	TES	ST REQUIREMENTS1	3
	7.1 7.2 7.3 7.4 7.5 7.6 7.7	CONDUCTED EMISSIONS TEST1RADIATED SPURIOUS EMISSION16DB BANDWIDTH2PEAK OUTPUT POWER3POWER SPECTRAL DENSITY3CONDUCTED BAND EDGE MEASUREMENT3SPURIOUS RF CONDUCTED EMISSIONS3	8 7 0 3 7
	7.8	ANTENNA APPLICATION	

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Yayusi Electronic Technology Co.,Ltd
Address:	Building A, No.1, Tongli Road, Tongle Community, Longgang District,
	Shenzhen, China
Manufacturer's Name:	Shenzhen Yayusi Electronic Technology Co.,Ltd
Address:	Building A, No.1, Tongli Road, Tongle Community, Longgang District,
	Shenzhen, China
Product description	
Product name:	Bluetooth speaker
Model and/or type reference:	V2
Serial Model	B1,B2,B3,B4,B5,B6,B7,B8,B9
	V1,V2,V3,V4,V5,V6,V7,V8,V9
	S1,S2,S3,S4,S5,S6,S7,S8,S9
Measurement Procedure Used:	
	ΔΡΡΙΙΛΔΒΙ Ε STANDARDS

	0
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	
KDB 174176 D01 Line Conducted FAQ v01r01	Complied
ANSI C63.10-2013	
FCC KDB 558074 D01 DTS Meas Guidance v04	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	25 Oct. 2017 ~ 03 Nov. 2017	
Testing Engineer	:	Dollen Lin	
		(Allen Liu)	
Technical Manager	:	Jason chen	
-		(Jason Chen)	
		Sam. Chen	
Authorized Signatory	:		
		(Sam Chen)	

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C				
Standard Section	Verdict	Remark		
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.247 (c)	Radiated Spurious Emission	PASS		
15.247 (d)	Power Spectral Density	PASS		
15.205	Band Edge Emission	PASS		
15.203	PASS			

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description		
CNAS-Lab.	:	The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
		The Certificate Registration Number is L5516.
IC-Registration		The Certificate Registration Number is 9270A-1.
FCC- Accredited		Test Firm Registration Number: 463705.
		Designation Number: CN1184
A2LA-Lab.		The Certificate Registration Number is 4298.01
		This laboratory is accredited in accordance with the recognized
		International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories.
		This accreditation demonstrates technical competence for a defined
		scope and the operation of a laboratory quality management system
		(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm		Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	:	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Bluetooth speaker		
Trade Mark	N/A		
FCC ID	2AN4U-V2		
Model No.	V2		
Serial Model	B1,B2,B3,B4,B5,B6,B7,B8,B9 V1,V2,V3,V4,V5,V6,V7,V8,V9 S1,S2,S3,S4,S5,S6,S7,S8,S9		
Model Difference	All the model are the same circuit and RF module, except the appearance and size., Mainly to meet the needs of different clients.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Bluetooth Version	BT V4.2		
Antenna Type	PCB Antenna		
Antenna Gain	1 dBi		
Power supply	DC supply: DC 7.4V/2600mAh from Battery or DC 5V from USB Port.		
	Adapter supply:		
HW Version	V2 V1.9		
SW Version	ATS2825_V2_JH		

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
SER171025856002E	Rev.01	Initial issue of report	Nov 03, 2017

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

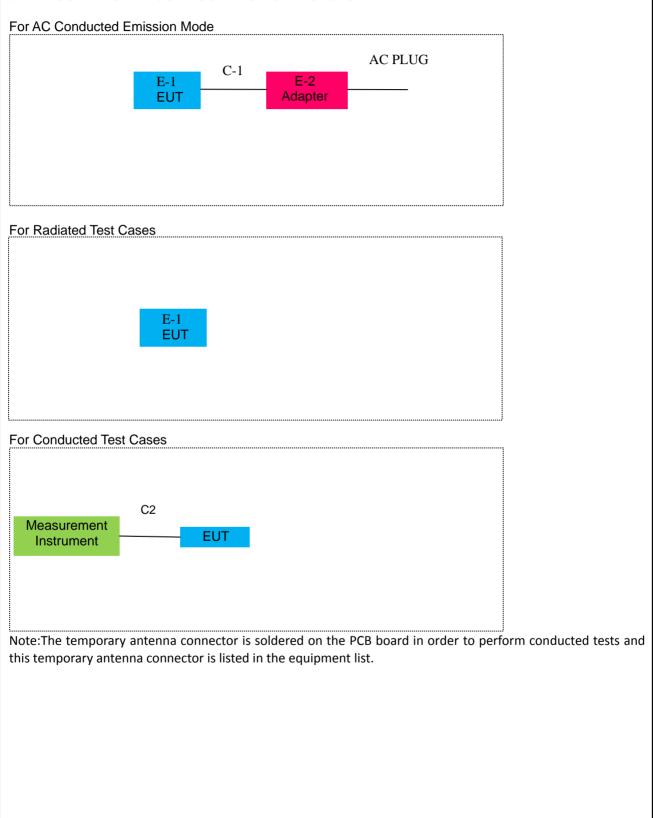
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
lest item	Bluetooth 4.2_LE / GFSK	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps	
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps	
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps	
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps	
Conducted Test Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps	
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps	

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT is set to continuous transmission mode. duty cycle greater than 98%.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Note
E-1	Bluetooth speaker	N/A	V2	2AN4U-V2	EUT
E-2	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.2m
C-2	RF Cable	NO	NO	0.5m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

NTEK

ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2017.06.06	2018.06.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2016.11.10	2017.11.09	1 year
3	EMI Test Receiver	Agilent	N9038A	MY53227146	2017.06.06	2018.06.05	1 year
4	Test Receiver	R&S	ESPI	101318	2017.06.06	2018.06.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2017.04.09	2018.04.08	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2017.06.06	2018.06.05	1 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2017.04.09	2018.04.08	1 year
8	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2017.07.06	2018.07.05	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2017.08.09	2018.08.08	1 year
10	Amplifier	MITEQ	TTA1840-35- HG	177156	2017.06.06	2018.06.05	1 year
11	Loop Antenna	ARA	PLA-1030/B	1029	2017.06.06	2018.06.05	1 year
12	Power Meter	DARE	RPR3006W	15I00041SN 084	2017.08.07	2018.08.06	1 year
13	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
14	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
16	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Condu	Conduction Test equipment								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Test Receiver	R&S	ESCI	101160	2017.06.06	2018.06.05	1 year		
2	LISN	R&S	ENV216	101313	2017.04.19	2018.04.18	1 year		
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2017.06.06	2018.06.05	1 year		
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2017.06.06	2018.06.05	1 year		
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year		
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year		
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year		

1	Filter	TRILTHIC	2400MHz	29	2017.04.19	2018.04.18	1 year
---	--------	----------	---------	----	------------	------------	--------

Note: Each piece of equipment is scheduled for calibration once a year.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

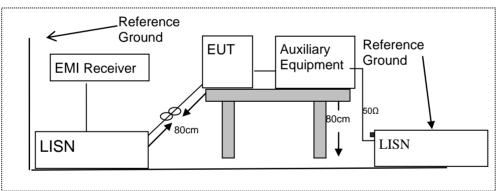
7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit

	Conducted Emission Limit				
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56*	56-46*			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

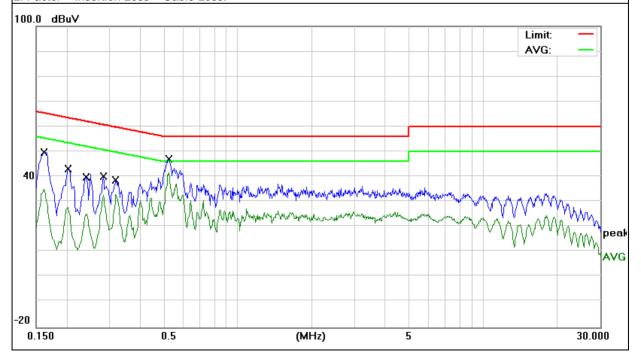
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

EUT:	Bluetoot	n speaker	Model Name	:	V2		
Temperature:	26 ℃		Relative Hum	nidity:	60%		
Pressure:	1010hPa		Phase :		L		
Test Voltage : DC 5V from Ada AC 120V/60Hz			Test Mode:		Mode	1	
		1					
Frequency	Reading Level	Correct Factor	Measure-ment	Lim	nits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dB	μV)	(dB)	
0.162	38.87	9.82	48.69	65.	36	-16.67	QP
0.162	20.54	9.82	30.36	55.	36	-25	AVG
0.198	33.54	9.82	43.36	63.	69	-20.33	QP
0.198	17.07	9.82	26.89	53.	69	-26.8	AVG
0.242	31.21	9.82	41.03	62.	02	-20.99	QP
0.242	14.88	9.82	24.7	52.	02	-27.32	AVG
0.2779	30.29	9.82	40.11	60.	88	-20.77	QP
0.2779	15.61	9.82	25.43	50.	88	-25.45	AVG
0.318	28.41	9.82	38.23	59.	76	-21.53	QP
0.318	16.09	9.82	25.91	49.	76	-23.85	AVG
0.522	34.01	9.83	43.84	5	6	-12.16	QP
0.522	22.14	9.83	31.97	4	6	-14.03	AVG
	e Quasi-Peak ar tion Loss + Cabl	nd Average values e Loss.	5.			Limit	
40		water water and the second sec	Mana Mana Mana	and a state of the state of the			
20							

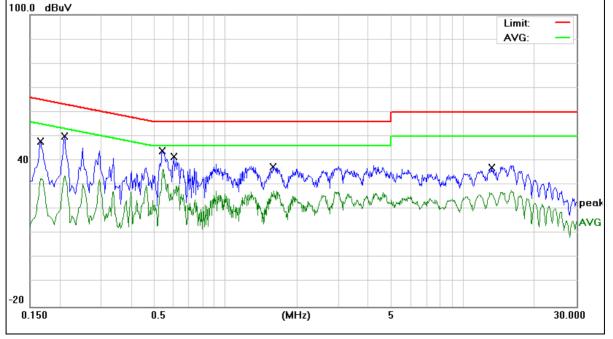


EUT:	Bluetooth speaker	Model Name :	V2
Temperature:	26 ℃	Relative Humidity:	60%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.162	40	9.82	49.82	65.36	-15.54	QP
0.162	25.16	9.82	34.98	55.36	-20.38	AVG
0.202	33.38	9.82	43.2	63.52	-20.32	QP
0.202	18.09	9.82	27.91	53.52	-25.61	AVG
0.242	31.25	9.82	41.07	62.02	-20.95	QP
0.242	15.26	9.82	25.08	52.02	-26.94	AVG
0.2819	30.26	9.82	40.08	60.76	-20.68	QP
0.2819	22.75	9.82	32.57	50.76	-18.19	AVG
0.318	28.88	9.82	38.7	59.76	-21.06	QP
0.318	23.05	9.82	32.87	49.76	-16.89	AVG
0.522	37.33	9.83	47.16	56	-8.84	QP
0.522	31.77	9.83	41.6	46	-4.4	AVG

Remark:

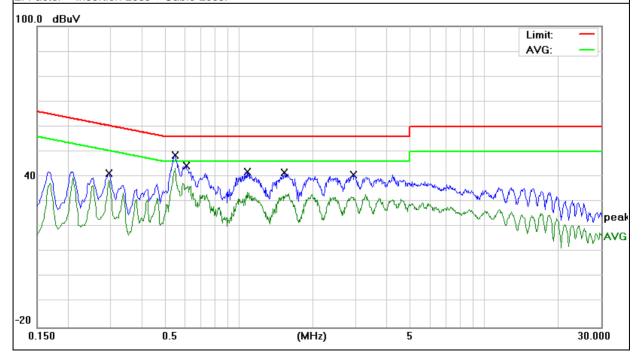
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	Bluetooth speaker	Model Name :	V2
Temperature:	26 ℃	Relative Humidity:	60%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.166	38.26	9.82	48.08	65.15	-17.07	QP
0.166	23.2	9.82	33.02	55.15	-22.13	AVG
0.21	40.35	9.82	50.17	63.2	-13.03	QP
0.21	24.12	9.82	33.94	53.2	-19.26	AVG
0.542	34.13	9.83	43.96	56	-12.04	QP
0.542	26.68	9.83	36.51	46	-9.49	AVG
0.606	31.94	9.83	41.77	56	-14.23	QP
0.606	19.71	9.83	29.54	46	-16.46	AVG
1.59	27.63	9.88	37.51	56	-18.49	QP
1.59	17.77	9.88	27.65	46	-18.35	AVG
13.182	27.06	10.13	37.19	60	-22.81	QP
13.182	17.72	10.13	27.85	50	-22.15	AVG

Remark:

1. All readings are Quasi-Peak and Average values. 2. Factor = Insertion Loss + Cable Loss.



EUT:	Bluetooth speaker	Model Name :	V2
Temperature:	26 ℃	Relative Humidity:	60%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 240V/60Hz	Test Mode:	Mode 1

Frequency	Frequency Reading Level		Measure-ment	Limits	Margin	
(MHz)	(MHz) (dBµV)		(dBµV)	(dBµV)	(dB)	Remark
0.294	31.42	9.82	41.24	60.41	-19.17	QP
0.294	19.2	9.82	29.02	50.41	-21.39	AVG
0.55	38.73	9.83	48.56	56	-7.44	QP
0.55	28.19	9.83	38.02	46	-7.98	AVG
0.61	34.61	9.83	44.44	56	-11.56	QP
0.61	20.42	9.83	30.25	46	-15.75	AVG
1.082	32.05	9.92	41.97	56	-14.03	QP
1.082	23.79	9.92	33.71	46	-12.29	AVG
1.5339	31.64	9.89	41.53	56	-14.47	QP
1.5339	21.46	9.89	31.35	46	-14.65	AVG
2.918	30.87	10.03	40.9	56	-15.1	QP
2.918 22.84		10.03	32.87	46	-13.13	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz					
16.42-16.423	399.9-410	4.5-5.15					
16.69475-16.69525	608-614	5.35-5.46					
16.80425-16.80475	960-1240	7.25-7.75					
25.5-25.67	1300-1427	8.025-8.5					
37.5-38.25	1435-1626.5	9.0-9.2					
73-74.6	1645.5-1646.5	9.3-9.5					
74.8-75.2	1660-1710	10.6-12.7					
123-138	2200-2300	14.47-14.5					
149.9-150.05	2310-2390	15.35-16.2					
156.52475-156.52525	2483.5-2500	17.7-21.4					
156.7-156.9	2690-2900	22.01-23.12					
162.0125-167.17	3260-3267	23.6-24.0					
167.72-173.2	3332-3339	31.2-31.8					
240-285	3345.8-3358	36.43-36.5					
322-335.4	3600-4400	(2)					
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

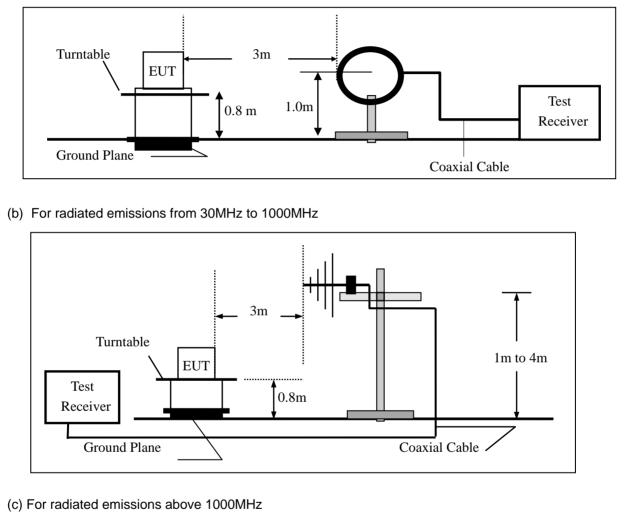
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

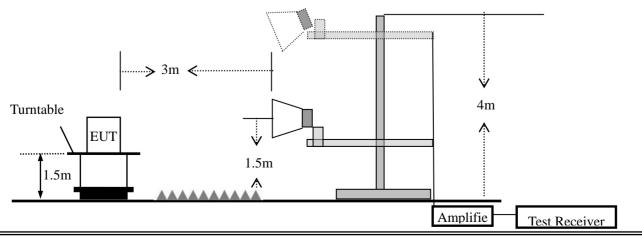
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.




7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	QP 120 kHz					
Ab 200 4000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	10 Hz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious Emission below 30M	1Hz (9KHz to 30MHz)
_		

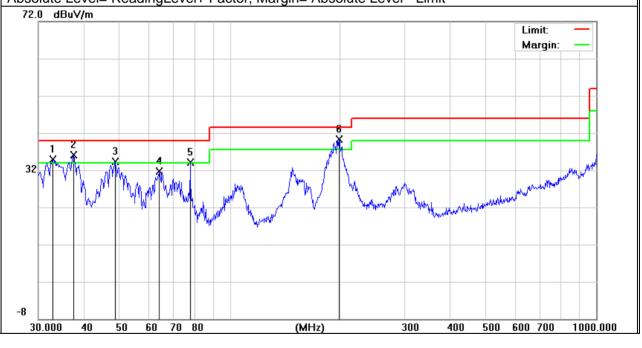
EUT:	Bluetooth speaker	Model No.:	V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	Bluetooth speaker	Model Name :	V2		
Temperature:	25 ℃	Relative Humidity:	55%		
Pressure:	1010hPa	Test Mode:	Mode 1		
Test Voltage :	DC 5V from Adapter AC 120V/60Hz				

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.8637	14.90	19.92	34.82	40.00	-5.18	QP
V	37.4165	18.32	17.76	36.08	40.00	-3.92	QP
V	48.6719	20.87	13.37	34.24	40.00	-5.76	QP
V	64.2074	22.89	8.72	31.61	40.00	-8.39	QP
V	77.8653	22.59	11.54	34.13	40.00	-5.87	QP
V	198.5880	26.59	13.75	40.34	43.50	-3.16	QP
Remark							

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	32.6340	6.82	20.04	26.86	40.00	-13.14	QP	
Н	77.8654	14.00	11.54	25.54	40.00	-14.46	QP	
Н	98.4865	11.68	10.24	21.92	43.50	-21.58	QP	
Н	198.5880	19.85	13.75	33.60	43.50	-9.90	QP	
Н	316.5890	18.45	13.36	31.81	46.00	-14.19	QP	
Н	869.1300	6.59	25.93	32.52	46.00	-13.48	QP	
	e Level= Reading IBuV/m	JLevel+ Facto	r, Margin= A	bsolute Level	- Limit	Limit: Margin:		
	Martin and Martin Martin	² × 3	Moundarand/MarkAM		5 	man Alexandre and a second sec	6	
-8 30.00	0 40 50 60	70 80	(MH:	z) 3	300 400 50	0 600 700	1000.000	

NTEK

Spurio	us Emissi	on Above	e 1GHz (10	GHz to	25GI	Hz)						
EUT:		Bluetoo	oth speake	r	Mod	el No.:		V2				
Temperatu	ire:	20 ℃			Rela	tive Humid	ity:	48%	8%			
Test Mode	:	Mode2	Mode2/Mode3/Mode4 Test E			By:		Allen Liu				
Frequency	Read Level	Cable loss	Antenna Factor	Prea Fac	•	Emission Level	Limi	ts	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dl	B)	(dBµV/m)	(dBµ∨	//m)	(dB)			
			Lov	w Chai	nnel (2	2402 MHz)-A	bove 1	G				
4804.118	62.85	5.21	35.59	44.	30	59.35	74.0	00	-14.65	Pk	Vertical	
4804.118	42.63	5.21	35.59	44.	30	39.13	54.0	00	-14.87	AV	Vertical	
7205.887	61.69	6.48	36.27	44.	60	59.84	74.0	00	-14.16	Pk	Vertical	
7205.887	41.72	6.48	36.27	44.	60	39.87	54.0	00	-14.13	AV	Vertical	
4803.949	62.90	5.21	35.55	44.	30	59.36	74.0	00	-14.64	Pk	Horizontal	
4803.949	42.50	5.21	35.55	44.	30	38.96	54.0	00	-15.04	AV	Horizontal	
7205.994	62.45	6.48	36.27	44.	52	60.68	74.0	00	-13.32	Pk	Horizontal	
7205.994	41.49	6.48	36.27	44.	-	39.72	54.0		-14.28	AV	Horizontal	
Mid Channel (2440 MHz)-Above 1G												
4880.693	64.24	5.21	35.66	44.	20	60.91	74.0	00	-13.09	Pk	Vertical	
4880.693	44.12	5.21	35.66	44.	20	40.79	54.0	00	-13.21	AV	Vertical	
7320.485	65.65	7.10	36.50	44.	43	64.82	74.0	00	-9.18	Pk	Vertical	
7320.485	41.39	7.10	36.50	44.	43	40.56	54.0	00	-13.44	AV	Vertical	
4880.586	63.59	5.21	35.66	44.	20	60.26	74.0	00	-13.74	Pk	Horizontal	
4880.586	41.37	5.21	35.66	44.	20	38.04	54.0	00	-15.96	AV	Horizontal	
7320.454	60.60	7.10	36.50	44.	43	59.77	74.0	00	-14.23	Pk	Horizontal	
7320.454	43.71	7.10	36.50	44.		42.88	54.0		-11.12	AV	Horizontal	
			Hig	h Chai	nnel (2	2480 MHz)- /	Above 1	IG				
4960.702	62.86	5.21	35.52	44.	21	59.38	74.0	00	-14.62	Pk	Vertical	
4960.702	41.92	5.21	35.52	44.	21	38.44	54.0	00	-15.56	AV	Vertical	
7440.351	64.12	7.10	36.53	44.	60	63.15	74.0	00	-10.85	Pk	Vertical	
7440.351	49.46	7.10	36.53	44.	60	48.49	54.0	00	-5.51	AV	Vertical	
4960.546	63.58	5.21	35.52	44.	21	60.10	74.0	00	-13.90	Pk	Horizontal	
4960.546	44.89	5.21	35.52	44.	21	41.41	54.0	00	-12.59	AV	Horizontal	
7440.419	63.96	7.10	36.53	44.	60	62.99	74.0	00	-11.01	Pk	Horizontal	
7440.419	44.12	7.10	36.53	44.	60	43.15	54.0	00	-10.85	AV	Horizontal	

Note: (1) All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz).
(2) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(3) All other emissions more than 20dB below the limit.

Report No.:SER171025856002E

Spurio	us Emissic	on in Restric	cted Band	2310-239	0MHz and 2	483.5-250	0MHz				
EUT:		Bluetooth	speaker	Mode	l No.:	V2	V2				
Temperatu	ire:	20 ℃		Relati	Relative Humidity: 48%			%			
Test Mode	:	Mode2/ M	lode4	Test I	By:	Allen	Liu				
	Meter		Antenna	Preamp	Emission						
Frequency	Reading	Cable Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
				G	FSK						
2310.00	63.65	2.97	27.80	43.80	50.62	74	-23.38	Pk	Horizontal		
2310.00	43.50	2.97	27.80	43.80	30.47	54	-23.53	AV	Horizontal		
2310.00	62.13	2.97	27.80	43.80	49.10	74	-24.90	Pk	Vertical		
2310.00	42.94	2.97	27.80	43.80	29.91	54	-24.09	AV	Vertical		
2390.00	64.48	3.14	27.21	43.80	51.03	74	-22.97	Pk	Vertical		
2390.00	43.69	3.14	27.21	43.80	30.24	54	-23.76	AV	Vertical		
2390.00	63.27	3.14	27.21	43.80	49.82	74	-24.18	Pk	Horizontal		
2390.00	42.75	3.14	27.21	43.80	29.30	54	-24.70	AV	Horizontal		
2483.50	63.11	3.58	27.70	44.00	50.39	74	-23.61	Pk	Vertical		
2483.50	43.36	3.58	27.70	44.00	30.64	54	-23.36	AV	Vertical		
2483.50	66.15	3.58	27.70	44.00	53.43	74	-20.57	Pk	Horizontal		
2483.50	44.91	3.58	27.70	44.00	32.19	54	-21.81	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 3260MMHz-18000MHz							
EUT:	Bluetooth speaker	Model No.:	V2				
Temperature:	20 ℃	Relative Humidity:	48%				
Test Mode:	Mode2/ Mode4	Test By:	Allen Liu				

. .

Frequenc	Readin g Level	Cable Loss	Antenn a	Preamp Factor	Emission Level	Limits	Margin	Detect or	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	Comment
3260	62.82	4.04	29.57	44.70	51.73	74	-22.27	Pk	Vertical
3260	55.21	4.04	29.57	44.70	44.12	54	-9.88	AV	Vertical
3260	64.94	4.04	29.57	44.70	53.85	74	-20.15	Pk	Horizontal
3260	57.79	4.04	29.57	44.70	46.70	54	-7.30	AV	Horizontal
3332	64.53	4.26	29.87	44.40	54.26	74	-19.74	Pk	Vertical
3332	56.14	4.26	29.87	44.40	45.87	54	-8.13	AV	Vertical
3332	64.12	4.26	29.87	44.40	53.85	74	-20.15	Pk	Horizontal
3332	50.57	4.26	29.87	44.40	40.30	54	-13.70	AV	Horizontal
17797	43.37	10.99	43.95	43.50	54.81	74	-19.19	Pk	Vertical
17797	34.42	10.99	43.95	43.50	45.86	54	-8.14	AV	Vertical
17788	42.97	11.81	43.69	44.60	53.87	74	-20.13	Pk	Horizontal
17788	34.46	11.81	43.69	44.60	45.36	54	-8.64	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 DTS 01 Meas. Guidance v04

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

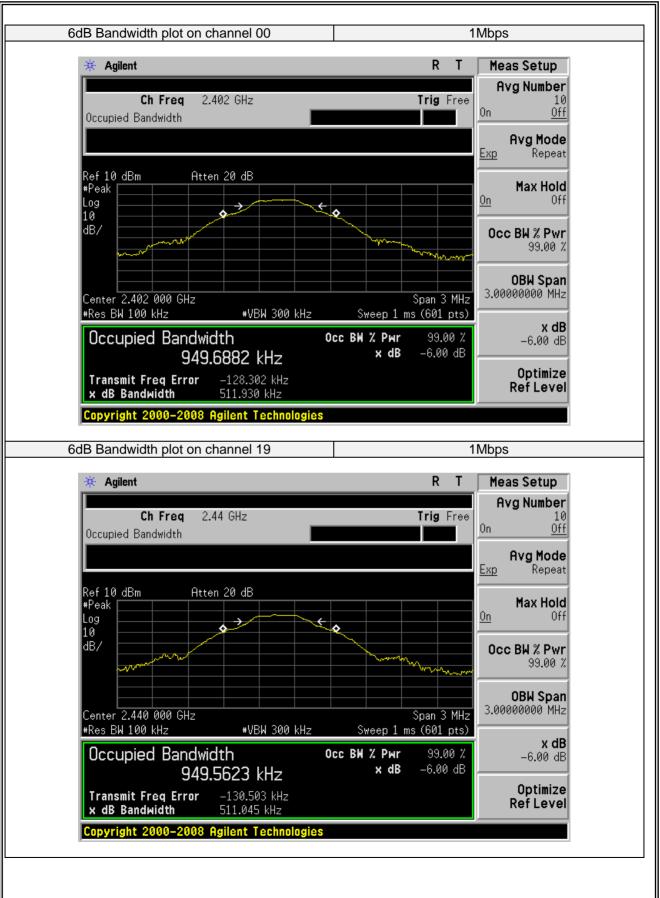
The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

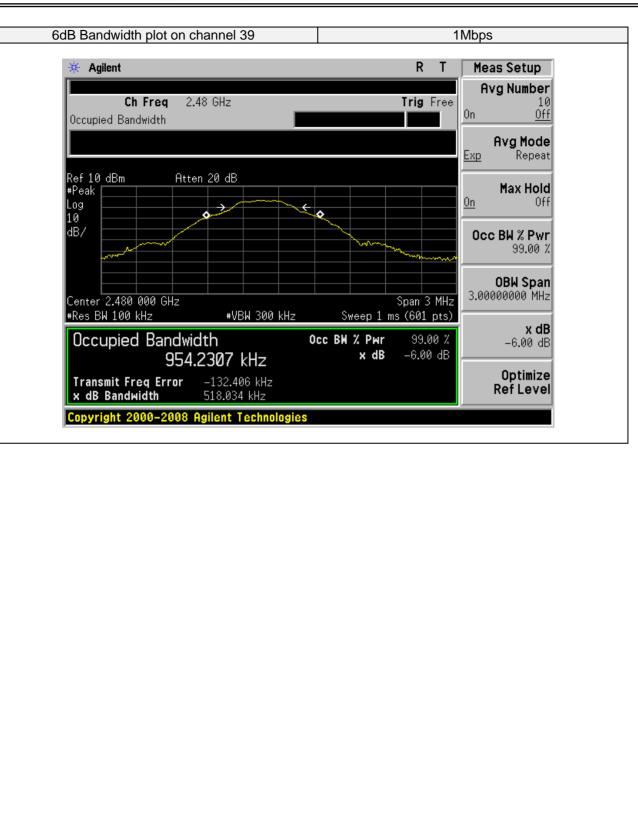
The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \square RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.


g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results


EUT:	Bluetooth speaker	Model No.:	V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	511.93	≥500	Pass
Middle	2440	511.045	≥500	Pass
High	2480	518.034	≥500	Pass

7.4 PEAK OUTPUT POWER

7.4.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 DTS 01 Meas. Guidance v04

7.4.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows KDB 558074 DTS 01 Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.4.6 Test Results

EUT:	Bluetooth speaker	Model No.:	V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Frequency (MHz)	Power Setting	Peak Output Power (dBm)	LIMIT (dBm)	Verdict
		1Mbps		
2402	Default	-3.18	30	PASS
2440	Default	-2.57	30	PASS
2480	Default	-2.74	30	PASS
	(MHz) 2402 2440	(MHz) Power Setting 2402 Default 2440 Default	(MHz) Power Setting (dBm) 1Mbps 2402 Default -3.18 2440 Default -2.57	(MHz) Power Setting (dBm) (dBm) 1Mbps 2402 Default -3.18 30 2440 Default -2.57 30

k output Powe	er plot on ch	nannel 00				1Mbps	
Spectrum							
Ref Level 20.00 d		● RBW 1 M					
Att 40 1Pk View	dB SWT 1 ms	5 9 VBW 3 M	IHZ Mode	Sweep			
				M1[1]		2 401	-3.18 dBm 75540 GHz
10 dBm						2.101	70010 0112
) dBm			÷				
-10 dBm					<u> </u>	~	
20 dBm							
20 0011							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.402 GHz			601 pt	S Nea	surina 💼	spa	n 3.0 MHz
+o. 27 OCT 2017							- ///
	11.00.21						
	11:09:24						
		nannel 19				1Mbps	
		nannel 19				1Mbps	
output Powe		nannel 19				1Mbps	Ţ.
Spectrum	er plot on ch	• RBW 1 M		Sween		1Mbps	
Spectrum Ref Level 20.00 c Att 40	er plot on ch						
Spectrum Ref Level 20.00 c Att 40 1Pk View	er plot on ch	• RBW 1 M		M1[1]			-2.57 dBm 75040 GHz
Spectrum Ref Level 20.00 c Att 40 1Pk View	er plot on ch	• RBW 1 M					-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 10 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 1Pk View 0 dBm 0 dBm	er plot on ch	● RBW 1 M s ● VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 1Pk View 10 dBm 0 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 IPk View 10 dBm -10 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Coutput Powe Spectrum Ref Level 20.00 c Att 40 IPk View 10 dBm -10 dBm -20 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 IPk View 10 dBm -10 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 IPk View 10 dBm -10 dBm -20 dBm -30 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
x output Powe	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 1Pk View 10 dBm -10 dBm -20 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
x output Powe	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 10 dBm 0 10 dBm 0 -10 dBm -0 -20 dBm -30 dBm -50 dBm -60 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
Spectrum Ref Level 20.00 c Att 40 1Pk View 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]			-2.57 dBm
x output Powe	er plot on ch	• RBW 1 M • VBW 3 M	1Hz Mode	M1[1]		2.439	-2.57 dBm

Spetrum	K Output F Of	ver plot on ch				1Mbps	
IPk View M1[1] -2.74 dBm 10 dBm 2.47979030 GHz 0 dBm M1 0 -10 dBm V 0 -20 dBm V 0 -30 dBm V V -40 dBm V V -50 dBm V V -70 dBm V	Ref Level 20.00		• RBW 1 MHz				
10 dBm M1[1] -2.74 dBm 0 dBm M1 2.47979030 GHz 0 dBm M1 M1 -10 dBm M1 M1 -20 dBm M1 M1 -30 dBm M1 M1 -30 dBm M1 M1 -30 dBm M1 M1 -40 dBm M1 M1 -50 dBm M1 M1 -70 dBm M1 M1 -70 dBm M1 M1 -70 dBm M1 M1 -70 dBm M1 M1 M1 M1 M1		40 dB SWT 1 ms	VBW 3 MHz Mi	ode Sweep			
10 dBm M1 I I I I I 0 dBm M1 I I I I I I -10 dBm I I I I I I I I -10 dBm I I I I I I I I I -20 dBm I				M1[1]		0.470	-2.74 dBm
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70	10 dBm					2.479	79030 GHZ
-10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70			MI				
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	U dBm			+			
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-10 dBm				<u> </u>		
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm						
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 601 pts Span 3.0 MHz	-20 06111						
-50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 CHz 601 pts Span 3.0 MHz Mersurino	-30 dBm						
-50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 601 pts Span 3.0 MHz Messuring a	-40 dBm						
-60 dBm -70 dBm -70 dBm CF 2.48 GHz 601 pts Span 3.0 MHz Meesuring							
-70 dBm CF 2.48 GHz 601 pts Span 3.0 MHz Measuring a Measuring a	-50 dBm						
CF 2.48 GHz 601 pts Span 3.0 MHz	-60 dBm						
CF 2.48 CHz 601 pts Span 3.0 MHz							
Measuring 🗰 💷 👬	70 d0m						
Measuring 🗰 💷 👬	-70 ubiii						
			60	1 ptc			n 2 0 MUz
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring 🔳		
	CF 2.48 GHz	17 11:11:49	60:	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	ruring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring.		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	Ruting 🔳		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring.		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring.		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring.		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts			
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring		
	CF 2.48 GHz	17 11:11:49	60	1 pts	suring.		

7.5 POWER SPECTRAL DENSITY

7.5.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 DTS 01 Meas. Guidance v04

7.5.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Measurement Procedure 10.3 Method AVGPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04

This procedure may be used when the maximum (average) conducted output power was used to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT must be configured to transmit continuously (duty cycle ≥ 98%); otherwise sweep triggering/signal gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered).

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set instrument center frequency to DTS channel center frequency.

b) Set the span to 1.5 times DTS bandwidth.

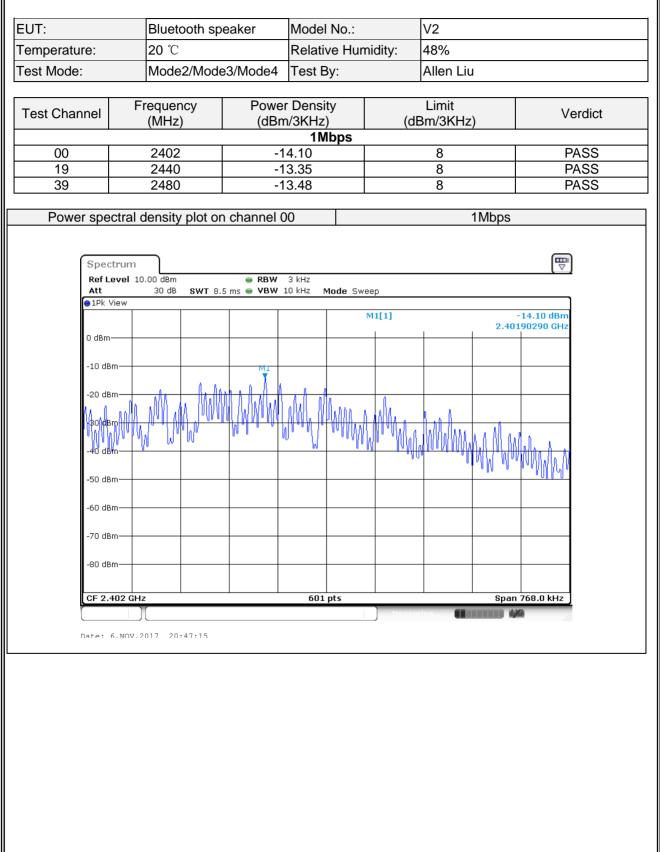
c) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{kHz}$.

d) Set VBW ≥3 x RBW.

e) Detector = power averaging (RMS) or sample detector (when RMS not available).

f) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.

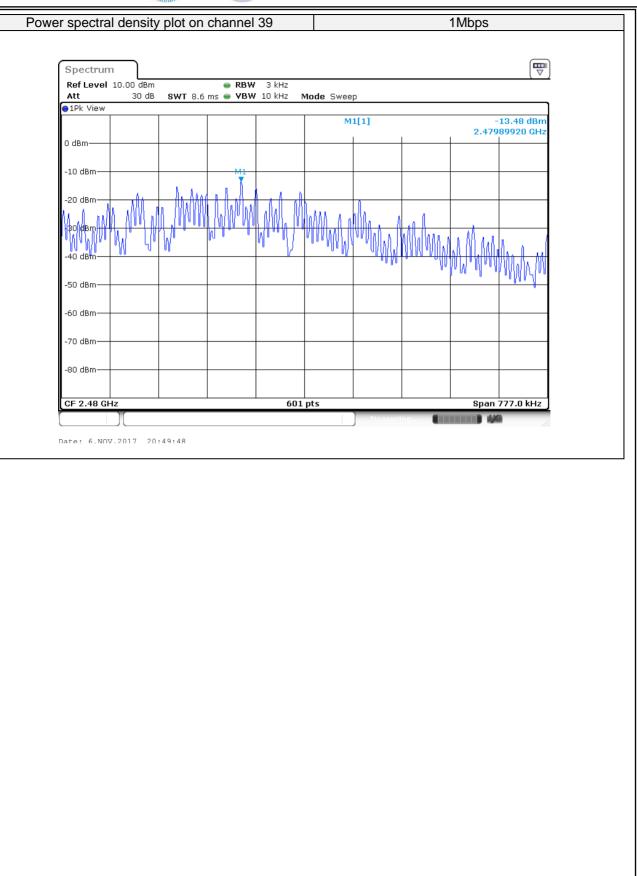
g) Sweep time = auto couple.


h) Employ trace averaging (RMS) mode over a minimum of 100 traces.

i) Use the peak marker function to determine the maximum amplitude level.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing

7.5.6 Test Results



Б

Downey op option down its what as the second do	
Power spectral density plot on channel 19	1Mbps
Spectrum	
Ref Level 10.00 dBm 🛛 👄 RBW 3 kHz	· · · · · · · · · · · · · · · · · · ·
Att 30 dB SWT 8.5 ms	
	M1[1] -13.35 dBm 2.43990160 GHz
0 dBm	
-10 dBm	
the standard and the printing between all and an	lattas a valta.
	WWW MALLING AN ANALANA ANALANA
-40 dBm	a on a hitter an allowed and an allowed and a second secon
-50 dBm	an na an a
-60 dBm	
-70 dBm	
-80 dBm	
CF 2.44 GHz 601	pts Span 767.0 kHz

7.6 CONDUCTED BAND EDGE MEASUREMENT

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 DTS 01 Meas. Guidance v04

7.6.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04.

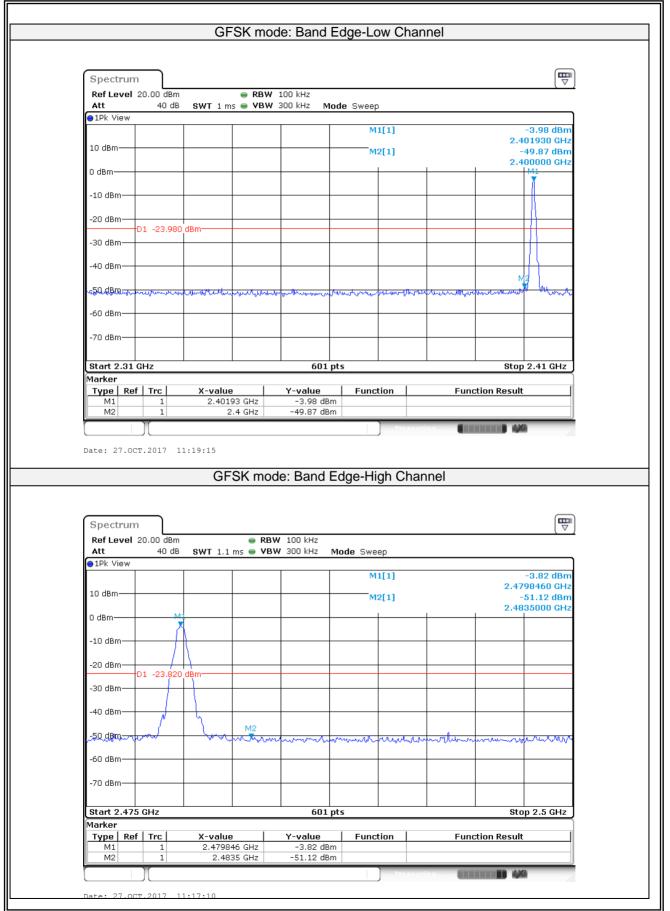
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.6.6 Test Results

EUT:	Bluetooth speaker	Model No.:	V2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.7 SPURIOUS RF CONDUCTED EMISSIONS

7.7.1 Conformance Limit

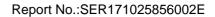
1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.7.2 Measuring Instruments

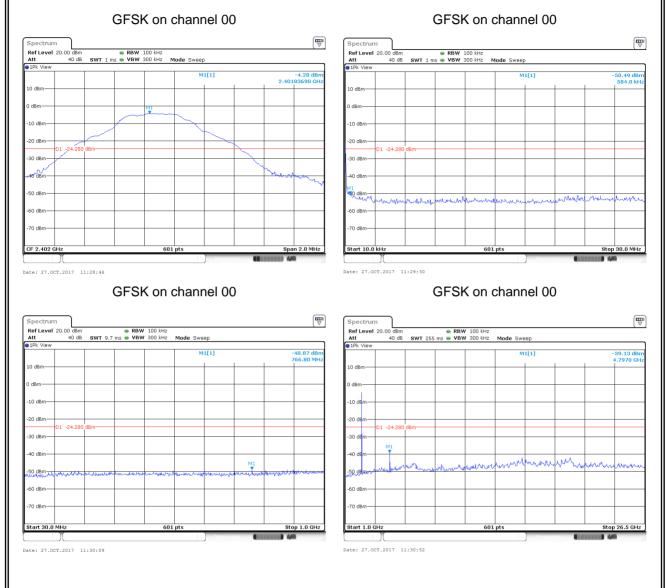
The Measuring equipment is listed in the section 6.3 of this test report.

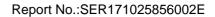
7.7.3 Test Setup

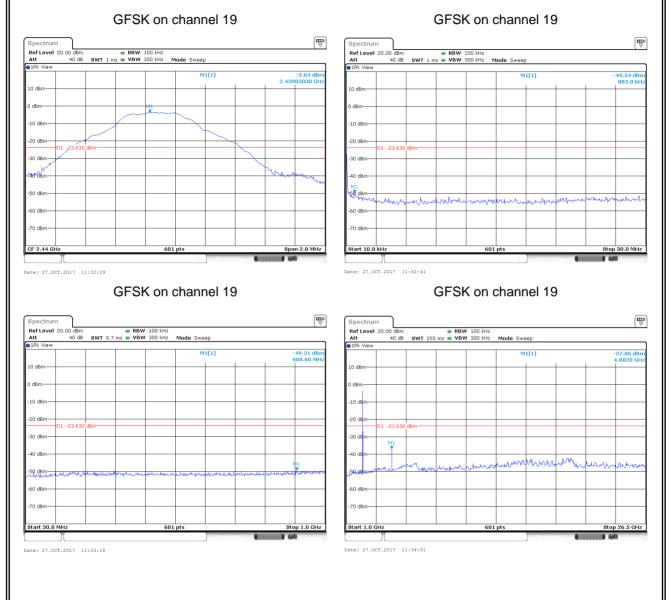

Please refer to Section 6.1 of this test report.

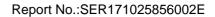
7.7.4 Test Procedure

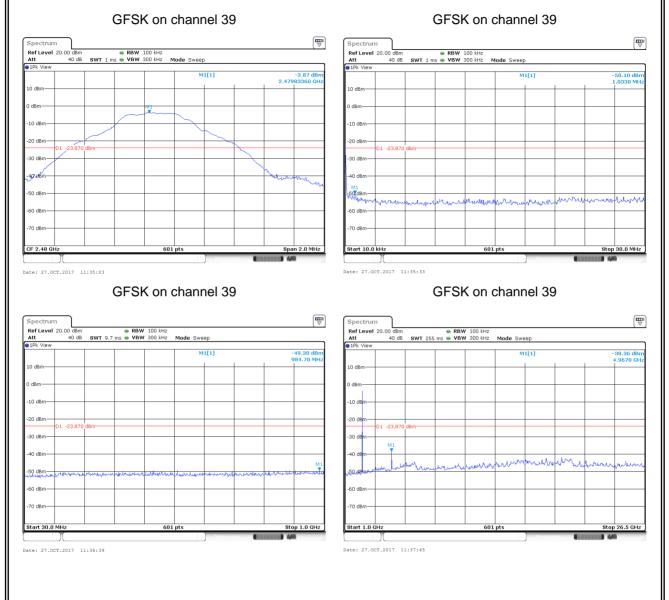
The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequeny range from 9KHz to 26.5GHz.


7.7.5 Test Results


Remark: The measurement frequency range is from 9KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.


Test Plot




Test Plot

Test Plot

7.8 ANTENNA APPLICATION

7.8.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.8.2 Result

The EUT antenna is permanent attached PCB antenna(Gain:1dBi). It comply with the standard requirement.

END OF REPORT