M5Station-485

2020

TABLE OF CONTENTS

1.	OU	TLIN	E3	3
2.	SPEC	IFICA	TIONS	1
3.	FUN	СТІО	NAL DESCRIPTION	5
	1.1.	CPU	AND MEMORY	5
	1.2.	STOR	RAGE DESCRIPTION	5
	1.2.	1.	External Flash and SRAM	5
	1.3.	CRYS	STAL	5
	1.4.	RTC	MANAGEMENT AND LOW POWER CONSUMPTION	S
4.	ELE	CTRI	CAL CHARACTERISTICS	7
	4.1.	LIMI	T PARAMETERS	7
	4.2.	WIF	RADIO FREQUENCY	7
	4.3.	Low	7-power Bluetooth radio	3
	4.3.	.1.	receiver	3
	4.3.	.2.	launcher	3
5.	QU	ICK S	TART9)
	5.1.	ARD	OUINO IDE	9
	5.2.	BLUE	ETOOTH SERIAL)
	5 3	\//TE	I SCANNING	1 .

1.OUTLINE

M5Station-485 is a general-purpose IoT workstation in the M5Stack development kit series. It integrates rich interfaces and peripherals and is highly expandable. Large space reserved inside, flexible customization, and more likely to be applicable to various industrial acquisition and control application scenarios.

2. SPECIFICATIONS

Resources	Parameter				
ESP32- D0WDQ6-V3	240MHz dual core, 600 DMIPS, 520KB SRAM, Wi-Fi, dual mode Bluetooth				
Flash	16MB				
LCD screen	1.14" LCD 135x240 ST7789V2 SPI interface				
RTC	BM8563				
PMU	AXP192				
Input power	5V @ 500mA				
IO	G33, G32, G35, G25, G36, G26, G13, G14, G16, G17				
Antenna	Metal Antenna				
Battery	18650 x2 3.7V				
Shell material	PC Plastic				

3. FUNCTIONAL DESCRIPTION

This chapter describes the ESP32-D0WDQ6-V3 various modules and functions.

1.1. CPU AND MEMORY

Xtensa®single-/dual-core32-bitLX6microprocessor(s), upto600MIPS (200MIPSforESP32-S0WD/ESP32-U4WDH, 400 MIPS for ESP32-D2WD):

- 448 KB ROM
- 520 KB SRAM
- 16 KB SRAM in RTC
- QSPI supports multiple flash/SRAM chips

1.2. STORAGE DESCRIPTION

1.2.1.External Flash and SRAM

ESP32 support multiple external QSPI flash and static random access memory (SRAM), having a hardware-based AES encryption to protect the user programs and data.

- ESP32 access external QSPI Flash and SRAM by caching. Up to 16 MB external Flash code space is mapped into the CPU, supports 8-bit, 16-bit and 32-bit access, and can execute code.
- Up to 8 MB external Flash and SRAM mapped to the CPU data space, support for 8-bit, 16-bit and 32-bit access. Flash supports only read operations, SRAM supports read and write operations.

1.3. CRYSTAL

External 2 MHz~60 MHz crystal oscillator (40 MHz only for Wi-Fi/BT functionality)

1.4. RTC MANAGEMENT AND LOW POWER CONSUMPTION

ESP32 uses advanced power management techniques may be switched between different power saving modes. (See Table 5).

• Power saving mode

- Active Mode: RF chip is operating. Chip may receive and transmit a sounding signal.
- Modem-sleep mode: CPU can run, the clock may be configured. Wi-Fi / Bluetooth baseband and RF
 - Light-sleep mode: CPU suspended. RTC and memory and peripherals ULP coprocessor operation. Any wake-up event (MAC, host, RTC timer or external interrupt) will wake up the chip.
 - Deep-sleep mode: only the RTC memory and peripherals in a working state. Wi-Fi and Bluetooth connectivity data stored in the RTC. ULP coprocessor can work.
 - Hibernation Mode: 8 MHz oscillator and a built-in coprocessor ULP are disabled. RTC memory to restore the power supply is cut off. Only one RTC clock timer located on the slow clock and some RTC GPIO at work. RTC RTC clock or timer can wake up from the GPIO Hibernation mode.

• Deep-sleep mode

- related sleep mode: power save mode switching between Active, Modem-sleep, Light-sleep mode. CPU, Wi-Fi, Bluetooth, and radio preset time interval to be awakened, to ensure connection Wi-Fi / Bluetooth.
- Ultra Low-power sensor monitoring methods: the main system is Deep-sleep mode, ULP coprocessor is periodically opened or closed to measure sensor data. The sensor measures data, ULP coprocessor decide whether to wake up the main system.

Functions in different power consumption modes: TABLE 5

Power consumption mode	Active	Modem-sleep	Light-sleep	Deep-sleep	Hibernation	
Sleep mode	Δ	ssociated sleep mod	Ultra low-power			
Sleep mode	Associated sleep mode			Sensor measures data		
CPU	open	open	pause	close	close	
Wi-Fi/Bluetooth Radio	open	open	close	close	close	
RTC memory	open	open	open	open	close	
ULP coprocessor	open	open	open	open/close	close	

4. ELECTRICAL CHARACTERISTICS

4.1.LIMIT PARAMETERS

Table 8: Limiting values

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	3.0	3.6	V
$ _{output}^{1}$	Cumulative IO output current	i n	1,100	mA
T_{store}	Storage temperature	-40	150	°C

1. V_{IO} to the power supply pad, Refer <u>ESP32 Technical Specification</u> Appendix IO_MUX, as SD_CLK of Power supply for VDD_SDIO.

4.2. WIFI RADIO FREQUENCY

Table 9: Wi-Fi RF characteristics

Description	Min	Typical	Max	Unit
Input frequency	2412	-	2462	MHz
Output impedance	-	50	i a	Ω
	Sensitivity	/		-
DSSS, 1 Mbps	(4)	-98		dBm
CCK, 11 Mbps	-	-91	1 8	dBm
OFDM, 6 Mbps	1-1	-93	-	dBm
OFDM, 54 Mbps	-	-75	-	dBm
HT20, MCS0		-93	9	dBm
HT20, MCS7	-	-73		dBm
HT40, MCS0	S=0	-90	-	dBm
HT40, MCS7	-	-70	2	dBm
MCS32	100	-89	i a	dBm
	Adjacent channel	rejection		
OFDM, 6 Mbps	1-4	37	1 =	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0		37	-	dB
HT20, MCS7	1=1	20	-	dB

4.3. LOW-POWER BLUETOOTH RADIO

4.3.1.receiver

Table 10: Low-power Bluetooth receiver characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-	-97	-	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	- 5	-	dB
	F = F0 - 1 MHz	-	- 5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
Adjacent charmer selectivity C/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of hand blooking parformance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.3.2.launcher

Table 11: Characteristics of Low Power Bluetooth transmitter

Parameter	Conditions	Mn	Тур	Max	Unit	
RF transmit power	(#)	-	6.5	-	dBm	
Gain control step	-	2	3	-	dBm	
	$F = F0 \pm 2 MHz$	-1	-52	-1	dBm	
Adjacent channel transmit power	$F = F0 \pm 3 MHz$	2	-58	-	dBm	
	$F = F0 \pm > 3 MHz$	2:	-60	2	dBm	
$\Delta f1_{\text{avg}}$	(JE)	-	-	265	kHz	
$\Delta f2_{ extsf{max}}$	*	247	æ	-	кНz	
$\Delta f 2_{\text{avg}} / \Delta f 1_{\text{avg}}$	121	2	-0.92	2		
ICFT	-	1 5	-10	1 8	кНz	
Drift rate	(#)	-8	0.7		kHz/50 μs	
Drift	(A)	=1	2	=	кНz	

5.QUICK START

5.1.ARDUINO IDE

Visit Arduino's official website(https://www.arduino.cc/en/Main/Software), Select the installation package for your own operating system to download.

- >1.Open up Arduino IDE, navigate to `File`-> `Peferences`-> `Settings`
- >2.Copy the following M5Stack Boards Manager url to `Additional Boards Manager URLs:`

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

- >3.Navigate to `Tools`->`Board:`->`Boards Manager...`
- >4.Search `ESP32` in the pop-up window, find it and click `Install`
- >5.select `Tools`->`Board:`->`ESP32-Arduino-ESP32 DEV Module
- >6Please install FTDI driver before use: https://docs.m5stack.com/en/download

5.2.BLUETOOTH SERIAL

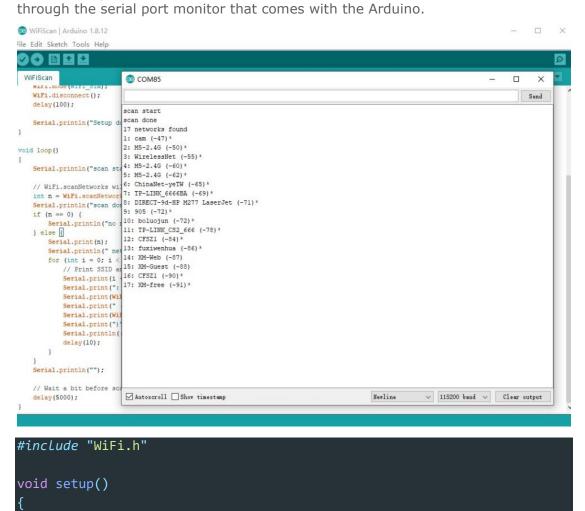
Open the Arduino IDE and open the example program `File`->`Examples`->`BluetoothSerial`->`SerialToSerialBT`. Connect the device to the computer and select the corresponding port to burn. After completion, the device will automatically run Bluetooth, and the device name is `ESP32test`. At this time, use the Bluetooth serial port sending tool on the PC to realize the transparent transmission of Bluetooth serial data.


```
#include "BluetoothSerial.h"

#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and en
able it
#endif

BluetoothSerial SerialBT;

void setup() {
    Serial.begin(115200);
    SerialBT.begin("ESP32test"); //Bluetooth device name
```




```
Serial.println("The device started, now you can pair it with bluetoot
h!");
}

void loop() {
   if (Serial.available()) {
      SerialBT.write(Serial.read());
   }
   if (SerialBT.available()) {
      Serial.write(SerialBT.read());
   }
   delay(20);
}
```

5.3. WIFI SCANNING

Open the Arduino IDE and open the example program `File`->`Examples`->`WiFi`->`WiFiScan`. Connect the device to the computer and select the corresponding port to burn. After completion, the device will automatically run the WiFi scan, and the current WiFi scan result can be obtained


```
Serial.begin(115200);
   WiFi.mode(WIFI_STA);
   WiFi.disconnect();
   delay(100);
   Serial.println("Setup done");
void loop()
   Serial.println("scan start");
   int n = WiFi.scanNetworks();
   Serial.println("scan done");
   if (n == 0) {
        Serial.println("no networks found");
   } else {
       Serial.print(n);
        Serial.println(" networks found");
       for (int i = 0; i < n; ++i) {
            Serial.print(i + 1);
            Serial.print(": ");
            Serial.print(WiFi.SSID(i));
            Serial.print(" (");
            Serial.print(WiFi.RSSI(i));
            Serial.print(")");
            Serial.println((WiFi.encryptionType(i) == WIFI_AUTH_OPEN)?"
 ":"*");
            delay(10);
   Serial.println("");
   delay(5000);
```


FCC Statement:

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment .This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
 Increase the separation between the equipment and receiver.
 Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.