FCC Measurement/Technical Report on Precision Boring Tool EWE100-203CKB7 Contains FCC ID: 2AN3Q-EWE Contains IC: 23358-EWE Test Report Reference: MDE_BIGKA_1704_FCCb Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard ! ! Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com # **Table of Contents** | 1 | Applied Standards and Test Summary | 3 | |-----|---|------------| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | _ | | 1.3 | Measurement Summary / Signatures | Ę | | 2 | Administrative Data | 6 | | 2.1 | Testing Laboratory | ϵ | | 2.2 | Project Data | 6 | | 2.3 | Applicant Data | ϵ | | 2.4 | Manufacturer Data | 6 | | 3 | Test object Data | 7 | | 3.1 | General EUT Description | 7 | | 3.2 | EUT Main components | 7 | | 3.3 | Ancillary Equipment | 8 | | 3.4 | Auxiliary Equipment | 8 | | 3.5 | EUT Setups | 8 | | 3.6 | Test Channels | 3 | | 3.7 | Product labelling | 3 | | 4 | Test Results | 9 | | 4.1 | Transmitter Spurious Radiated Emissions | Ç | | 4.2 | Band Edge Compliance Radiated | 15 | | 5 | Test Equipment | 17 | | 6 | Antenna Factors, Cable Loss and Sample Calculations | 19 | | 6.1 | LISN R&S ESH3-Z5 (150 kHz - 30 MHz) | 19 | | 6.2 | Antenna R&S HFH2-Z2 (9 kHz - 30 MHz) | 20 | | 6.3 | Antenna R&S HL562 (30 MHz - 1 GHz) | 21 | | 6.4 | Antenna R&S HF907 (1 GHz – 18 GHz) | 22 | | 6.5 | Antenna EMCO 3160-09 (18 GHz – 26.5 GHz) | 23 | | 6.6 | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz) | 24 | | 7 | Setup Drawings | 25 | | 8 | Measurement Uncertainties | 26 | | 9 | Photo Report | 26 | #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS #### Type of Authorization Certification for an Intentional Radiator. # **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-16 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz # Note 1: (DTS Equipment) The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 DTS Meas Guidance v04, 2017-04-05". ANSI C63.10–2013 is applied. #### **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. # 1.2 FCC-IC CORRELATION TABLE # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC # DTS equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|--| | Conducted emissions on AC
Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 2: 5.2 (a) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 2: 5.4 (d) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 2: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 2: 5.2 (b) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | # 1.3 MEASUREMENT SUMMARY / SIGNATURES # 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) | 915.24 | | | | | |--|--|--------------|--------|--------| | Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 | | Final Result | | | | OP-Mod | le
chnology, Operating Frequency, Measurement range | Setup | FCC | IC | | | LE, high, 1 GHz - 26 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, high, 30 MHz - 1 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, low, 1 GHz - 26 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, low, 30 MHz - 1 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, mid, 1 GHz - 26 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, mid, 30 MHz - 1 GHz | S01_ab01 | Passed | Passed | | Bluetooth | LE, mid, 9 kHz - 30 MHz | S01_ab01 | Passed | Passed | | 47 CFR | CHAPTER I FCC PART 15 Subpart C | § 15.247 (d) | , | | | §15.247 | 7 | | | | | 31012-17 | | | | _ | |--|----------|----------|--------|---| | Band Edge Compliance Radiated | | | | | | The measurement was performed according to ANS | I C63.10 | Final Re | esult | | | | | | | | | OP-Mode | Setup | FCC | IC | | | Radio Technology, Operating Frequency, Band Edge | | | | | | Bluetooth LE, high, high | S01_ab01 | Passed | Passed | | N/A: Not applicable N/P: Not performed The EUT incorporates the certified module EWE, FCC ID: 2AN3Q-EWE, IC: 23358-EWE. The limited modular approval is restricted because it has no shielding and therefore for this product, which incorporates the module, only radiated spurious emissions tests incl. radiated band-edge test have been performed. According to the applicant: Another model 310.875 differs from the tested model 310.870 only regarding the laser marking on the housing. All technical parameters shall be identical. **Zlayers** 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 (responsible for accreditation scope) Dipl.-Ing. Marco Kullik (responsible for testing and report) Dipl.-Ing. Andreas Petz #### 2 ADMINISTRATIVE DATA 2.1 TESTING LABORATORY Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-00 FCC Designation Number: DE0015 FCC Test Firm Registration: 929146 Responsible for accreditation scope: Dipl.-Ing. Marco Kullik Report Template Version: 2018-01-10 2.2 PROJECT DATA Responsible for testing and report: Dipl.-Ing. Andreas Petz Employees who performed the tests: documented internally at 7Layers Date of Report: 2018-04-19 Testing Period: 2018-01-07 to 2018-01-10 2.3 APPLICANT DATA Company Name: BIG KAISER Präzisionswerkzeuge AG Address: Glattalstrasse 516 8153 Rümlang Switzerland Contact Person: Mr. Jose Fenollosa 2.4 MANUFACTURER DATA Company Name: same as applicant Address: Contact Person: TEST REPORT REFERENCE: MDE_BIGKA_1704_FCCb Page 6 of 26 # 3 TEST OBJECT DATA # 3.1 GENERAL EUT DESCRIPTION | Kind of Device product description | Precision Boring Tool | |--|---| | Product name | EWE100-203CKB7 | | Туре | 310.870 | | Declared EUT data by | the supplier | | Voltage Type | DC | | Voltage Level | 3.0 | | Tested Modulation Type | GFSK | | General product description | Bluetooth Low Energy Transceiver | | Specific product description for the EUT | The EUT is a part of a boring tool which has a radio device implemented in order to transfer wireless data. The radio device supports Bluetooth Low Energy (BTLE) technologies. | | The EUT provides the following ports: | Enclosure | | Tested datarates | 1 Mbps | | Special software used for testing | yes | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. # 3.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | | |------------------|--------------------------------------|-------------------------------|--| | Sample #ab01 | DE1259001ab01 | The EUT is a part of a boring | | | | | tool. | | | Sample Parameter | | Value | | | Serial No. | XG1452 | | | | HW Version | V7.0.A | | | | SW Version | v.1.0.0 | | | | Comment | | | | | Integral Antenna | Type: Ceramic, Antenna Gain: -25 dBi | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 3.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | | Details
(Manufacturer, Type Model, OUT
Code) | Description | |---|--|-------------| | - | - | - | #### 3.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It
is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | |--------|--|-------------| | - | - | - | #### 3.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | |----------|---------------------|----------------------------------| | S01_ab01 | Sample #ab01, | module integrated in the product | #### 3.6 TEST CHANNELS | | 2.4 GHz ISM | | | |----------------------|-------------------|------|------| | | 2400 - 2483.5 MHz | | | | BT LE Test Channels: | low | mid | high | | Channel: | 0 | 19 | 39 | | Frequency [MHz] | 2402 | 2440 | 2480 | | - | • | | | #### 3.7 PRODUCT LABELLING #### 3.7.1 FCC ID LABEL Please refer to the documentation of the applicant. #### 3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. #### 4 TEST RESULTS # 4.1 TRANSMITTER SPURIOUS RADIATED EMISSIONS Standard FCC Part 15 Subpart C # The test was performed according to: ANSI C63.10 #### 4.1.1 TEST DESCRIPTION The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. #### Step 1: pre measurement - Anechoic chamber - Antenna distance: 3 m - Detector: Peak-Maxhold - Frequency range: 0.009 0.15 MHz and 0.15 30 MHz - Frequency steps: 0.05 kHz and 2.25 kHz - IF-Bandwidth: 0.2 kHz and 9 kHz - Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. # **Step 2:** final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. - Open area test side - Antenna distance: according to the Standard - Detector: Quasi-Peak - Frequency range: 0.009 30 MHz - Frequency steps: measurement at frequencies detected in step 1 - IF-Bandwidth: 0.2 10 kHz - Measuring time / Frequency step: 1 s #### 2. Measurement above 30 MHz and up to 1 GHz #### **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 – 1000 MHz Frequency steps: 30 kHzIF–Bandwidth: 120 kHz - Measuring time / Frequency step: 100 ms - Turntable angle range: -180° to 90° - Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: \pm 45 $^{\circ}$ around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### Step 3: Final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies - IF – Bandwidth: 120 kHz - Measuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by $\pm 22.5^{\circ}$. The elevation angle will slowly vary by \pm 45° EMI receiver settings (for all steps): - Detector: Peak, Average - IF Bandwidth = 1 MHz #### Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies - IF Bandwidth: 1 MHzMeasuring time: 1 s #### 4.1.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ # 4.1.3 TEST PROTOCOL $\begin{array}{lll} \mbox{Ambient temperature:} & 22-24 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1002-1019 \ \mbox{hPa} \\ \mbox{Humidity:} & 35-36 \ \% \end{array}$ BT low Energy Applied duty cycle correction (AV): 0 dB | Ch. | Ch. Center | Spurious | Spurious | Detec- | RBW | Limit | Margin to | Limit | |-----|------------|-------------|----------|--------|-------|----------|------------|-------| | No. | Freq. | Freq. [MHz] | Level | tor | [kHz] | [dBµV/m] | Limit [dB] | Type | | | [MHz] | | [dBµV/m] | | | | | | | 0 | 2402 | - | | - | - | - | | RB | | 19 | 2440 | - | | - | - | - | | RB | | 39 | 2480 | - | | - | - | - | | RB | | 0 | 2402 | - | | - | - | - | | RB | | 19 | 2440 | - | | - | - | - | | RB | | 39 | 2480 | - | | - | - | - | | RB | | 19 | 2440 | - | | - | - | - | | RB | Remark: Please see next sub-clause for the measurement plot. RB = Restricted Band. TEST REPORT REFERENCE: MDE_BIGKA_1704_FCCb Page 12 of 26 # 4.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") # 4.1.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.2 BAND EDGE COMPLIANCE RADIATED Standard FCC Part 15 Subpart C The test was performed according to: ANSI C63.10 #### 4.2.1 TEST DESCRIPTION Please see test description for the test case "Spurious Radiated Emissions" #### 4.2.2 TEST REQUIREMENTS / LIMITS For band edges connected to a restricted band, the limits are specified in Section 15.209(a) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 – 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 – 23.0)@30m | | 1.705 – 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse
linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 – 88 | 100@3m | 3 | 40.0@3m | | 88 – 216 | 150@3m | 3 | 43.5@3m | | 216 – 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ TEST REPORT REFERENCE: MDE_BIGKA_1704_FCCb Page 15 of 26 # 4.2.3 TEST PROTOCOL Ambient temperature: 24 °C Air Pressure: 1002 hPa Humidity: 36 % BT LE GFSK Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq.
[MHz] | Spurious Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|-----------------------------|----------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 39 | 2480 | 2483.5 | 55.0 | PEAK | 1000 | 74.0 | 19.0 | BE | | 39 | 2480 | 2483.5 | 43.0 | AV | 1000 | 54.0 | 11.0 | BE | Remark: Please see next sub-clause for the measurement plot. BE = Band Edge. # 4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") # 4.2.5 TEST EQUIPMENT USED - Radiated Emissions # 5 TEST EQUIPMENT 1 Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|--------------------------|--|--------------------------------------|------------------------|---------------------|--------------------| | 1.1 | NRV-Z1 | Sensor Head A | Rohde & Schwarz | 827753/005 | 2017-05 | 2018-05 | | 1.2 | MFS | Rubidium
Frequency
Normal MFS | Datum GmbH | 002 | 2017-10 | 2018-10 | | 1.3 | Opus10 TPR
(8253.00) | | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2017-04 | 2019-04 | | 1.4 | Anechoic
Chamber | 10.58 x 6.38 x
6.00 m ³ | | none | 2016-05 | 2019-05 | | 1.5 | HL 562 | biconicals | Rohde & Schwarz | 830547/003 | 2015-06 | 2018-06 | | 1.6 | 5HC2700/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942012 | | | | 1.7 | ASP 1.2/1.8-10
kg | Antenna Mast | Maturo GmbH | - | | | | 1.8 | Fully Anechoic
Room | 8.80m x
4.60m x
4.05m (I x w x
h) | Albatross Projects | P26971-647-001-
PRB | 2015-06 | 2018-06 | | 1.9 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2016-02 | 2018-02 | | 1.10 | JS4-18002600-
32-5P | Broadband
Amplifier 18
GHz - 26 GHz | Miteq | 849785 | | | | 1.11 | FSW 43 | Spectrum
Analyzer | Rohde & Schwarz | 103779 | 2016-12 | 2018-12 | | 1.12 | 3160-09 | | EMCO Elektronic
GmbH | 00083069 | | | | 1.13 | WHKX 7.0/18G-
8SS | | Wainwright | 09 | | | | 1.14 | 4HC1600/12750
-1.5-KK | High Pass
Filter | Trilithic | 9942011 | | | | 1.15 | Chroma 6404 | AC Power
Source | Chroma ATE INC. | 64040001304 | | | | 1.16 | JS4-00102600-
42-5A | | Miteq | 619368 | | | | 1.17 | TT 1.5 WI | Turn Table | Maturo GmbH | - | | | | 1.18 | HL 562 Ultralog | Logper.
Antenna | Rohde & Schwarz | 100609 | 2016-04 | 2019-04 | | 1.19 | 3160-10 | | EMCO Elektronic
GmbH | 00086675 | | | | 1.20 | 5HC3500/18000
-1.2-KK | High Pass
Filter | Trilithic | 200035008 | | | | 1.21 | HFH2-Z2 | | Rohde & Schwarz | 829324/006 | 2018-01 | 2021-01 | | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last | Calibration | |---------|-------------------------------------|---|--------------------------------------|--------------------------------|-------------|-------------| | | | | | | Calibration | Due | | | Opus10 THI
(8152.00) | | Lufft Mess- und
Regeltechnik GmbH | 12482 | 2017-03 | 2019-03 | | 1.23 | ESR 7 | EMI Receiver /
Spectrum
Analyzer | Rohde & Schwarz | 101424 | 2016-11 | 2018-11 | | 1.24 | JS4-00101800-
35-5P | Broadband
Amplifier 30
MHz - 18 GHz | Miteq | 896037 | | | | 1.25 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | | | Tilt device
Maturo
(Rohacell) | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/37907
09 | | | | 1.27 | PAS 2.5 - 10 kg | Antenna Mast | Maturo GmbH | - | | | | 1.28 | AM 4.0 | Antenna mast | Maturo GmbH | AM4.0/180/1192
0513 | | | | 1.29 | HF 907 | Double-ridged
horn | Rohde & Schwarz | 102444 | 2015-05 | 2018-05 | The calibration interval is the time interval between "Last Calibration" and "Calibration Due" # 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. # 6.1 LISN R&S ESH3-Z5 (150 KHZ – 30 MHZ) | Frequency | | Corr. | |-----------|---|-------| | MHz | | dB | | 0.15 | | 10.1 | | 5 | | 10.3 | | 7 | | 10.5 | | 10 | | 10.5 | | 12 | | 10.7 | | 14 | | 10.7 | | 16 | | 10.8 | | 18 | | 10.9 | | 20 | | 10.9 | | 22 | - | 11.1 | | 24 | | 11.1 | | 26 | | 11.2 | | 28 | | 11.2 | | 30 | | 11.3 | | | cable | |------------|-----------| | LISN | loss | | insertion | (incl. 10 | | loss | dB | | ESH3- | atten- | | Z 5 | uator) | | dB | dB | | 0.1 | 10.0 | | 0.1 | 10.2 | | 0.2 | 10.3 | | 0.2 | 10.3 | | 0.3 | 10.4 | | 0.3 | 10.4 | | 0.4 | 10.4 | | 0.4 | 10.5 | | 0.4 | 10.5 | | 0.5 | 10.6 | | 0.5 | 10.6 | | 0.5 | 10.7 | | 0.5 | 10.7 | | 0.5 | 10.8 | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. # 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | | I | | |-----------|----------|-------| | | | | | | AF | | | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.01 | 20.45 | -79.6 | | 0.015 | 20.37 | -79.6 | | 0.02 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.03 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.08 | 20.30 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.3 | 20.14 | -79.6 | | 0.49 | 20.12 | -79.6 | | 0.490001 | 20.12 | -39.6 | | 0.5 | 20.11 | -39.6 | | 0.8 | 20.10 | -39.6 | | 1 | 20.09 | -39.6 | | 2 | 20.08 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.02 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -39.4 | | 12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26 | 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | Cable loss 1 (inside chamber) Cable loss 2 (outside chamber) Cable loss 3 (switch chamber) Cable loss 3 (switch chamber) Cable loss 3 (switch chamber) Cable chamber) Cable chamber) Cable chamber) Cable chamber) Corr. (-40 dB/deade) distance decade) Cilimity (meas. distance decade) Corr. (ilimity) Current March decade) March decade) March decade) Corr. (ilimity) Current decade) March dec | 2 (9 KHZ | — 30 MHZ | _) | | | | | |---|-------------------|--------------------|-------------------|---------------|-------------------|--------------------|--------------------| | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 | loss 1
(inside | loss 2
(outside | loss 3
(switch | loss 4
(to | corr.
(-40 dB/ | (meas.
distance | (meas.
distance | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1
0.1 0.1 -80 300 3 0.1 0.1 0.1 | dB | dB | dB | dB | dB | m | m | | 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 <t< td=""><td>0.1</td><td>0.1</td><td>0.1</td><td>0.1</td><td>-80</td><td>300</td><td></td></t<> | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0. | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 -80 300 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40< | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40< | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | | | 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.1 0.1 0.1 -40 30 3 0.1 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 0.1 0.1 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1< | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.2 0.1 -40 30 3 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | | | 0.2 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 3 0.3 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | | | 0.3 0.1 0.2 0.1 -40 30 3 0.3 0.1 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 0.1 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | | | 0.4 0.1 0.3 0.1 -40 30 3 | 0.3 | 0.1 | 0.3 | 0.1 | -40 | 30 | | | | 0.4 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | # Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values # 6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ) $(d_{Limit} = 3 m)$ |
$(d_{Limit} = 3 m)$ | 1) | | |---------------------|-----------|-------| | | AF
R&S | | | Frequency | HL562 | Corr. | | MHz | dB (1/m) | dB | | 30 | 18.6 | 0.6 | | 50 | 6.0 | 0.9 | | 100 | 9.7 | 1.2 | | 150 | 7.9 | 1.6 | | 200 | 7.6 | 1.9 | | 250 | 9.5 | 2.1 | | 300 | 11.0 | 2.3 | | 350 | 12.4 | 2.6 | | 400 | 13.6 | 2.9 | | 450 | 14.7 | 3.1 | | 500 | 15.6 | 3.2 | | 550 | 16.3 | 3.5 | | 600 | 17.2 | 3.5 | | 650 | 18.1 | 3.6 | | 700 | 18.5 | 3.6 | | 750 | 19.1 | 4.1 | | 800 | 19.6 | 4.1 | | 850 | 20.1 | 4.4 | | 900 | 20.8 | 4.7 | | 950 | 21.1 | 4.8 | | 1000 | 21.6 | 4.9 | | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | |----------|----------|---------|-----------|----------|-------------|------------| | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | 3 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | 3 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | 3 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | 3 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | 3 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | 3 | | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | 3 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | 3 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | 3 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 | 0.0 | 3 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | 3 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | | (d | Limit | = | 10 | m) | |----|-------|---|----|----| | | | | | | | 30 18.6 -9.9 50 6.0 -9.6 100 9.7 -9.2 150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | | | | |--|------|------|------| | 100 9.7 -9.2 150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 30 | 18.6 | -9.9 | | 150 7.9 -8.8 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 50 | 6.0 | -9.6 | | 200 7.6 -8.6 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 100 | 9.7 | -9.2 | | 250 9.5 -8.3 300 11.0 -8.1 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 150 | 7.9 | -8.8 | | 300 11.0 -8.1
350 12.4 -7.9
400 13.6 -7.6
450 14.7 -7.4
500 15.6 -7.2
550 16.3 -7.0
600 17.2 -6.9
650 18.1 -6.9
700 18.5 -6.8
750 19.1 -6.3
800 19.6 -6.3
850 20.1 -6.0
900 20.8 -5.8
950 21.1 -5.6 | 200 | 7.6 | -8.6 | | 350 12.4 -7.9 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 250 | 9.5 | -8.3 | | 400 13.6 -7.6 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 300 | 11.0 | -8.1 | | 450 14.7 -7.4 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 350 | 12.4 | -7.9 | | 500 15.6 -7.2 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 400 | 13.6 | -7.6 | | 550 16.3 -7.0 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 450 | 14.7 | -7.4 | | 600 17.2 -6.9 650 18.1 -6.9 700 18.5 -6.8 750 19.1 -6.3 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 500 | 15.6 | -7.2 | | 650 18.1 -6.9
700 18.5 -6.8
750 19.1 -6.3
800 19.6 -6.3
850 20.1 -6.0
900 20.8 -5.8
950 21.1 -5.6 | 550 | 16.3 | -7.0 | | 700 18.5 -6.8
750 19.1 -6.3
800 19.6 -6.3
850 20.1 -6.0
900 20.8 -5.8
950 21.1 -5.6 | 600 | 17.2 | -6.9 | | 750 19.1 -6.3
800 19.6 -6.3
850 20.1 -6.0
900 20.8 -5.8
950 21.1 -5.6 | 650 | 18.1 | -6.9 | | 800 19.6 -6.3 850 20.1 -6.0 900 20.8 -5.8 950 21.1 -5.6 | 700 | 18.5 | -6.8 | | 850 20.1 -6.0
900 20.8 -5.8
950 21.1 -5.6 | 750 | 19.1 | -6.3 | | 900 20.8 -5.8 950 21.1 -5.6 | 800 | 19.6 | -6.3 | | 950 21.1 -5.6 | 850 | 20.1 | -6.0 | | 0.0 | 900 | 20.8 | -5.8 | | 1000 21 / 5 / | 950 | 21.1 | -5.6 | | 1000 21.0 -5.6 | 1000 | 21.6 | -5.6 | | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | |------|------|------|------|-------|----|---| | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | # Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. # 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | | AF
R&S | | |-----------|-----------|-------| | Frequency | HF907 | Corr. | | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | | , | | | | |-----------------|----------|----------------------------|------------|--| | cable
loss 1 | | cable
loss 3
(switch | | | | (relay + | cable | unit, | | | | cable | loss 2 | atten- | cable | | | inside | (outside | uator & | loss 4 (to | | | chamber) | chamber) | pre-amp) | receiver) | | | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | | | | cable | | | |----------|----------|----------|----------|------------|--------| | | | | loss 4 | | | | cable | | | (switch | | | | loss 1 | cable | cable | unit, | | used | | (relay | loss 2 | loss 3 | atten- | cable | for | | inside | (inside | (outside | uator & | loss 5 (to | FCC | | chamber) | chamber) | chamber) | pre-amp) | receiver) | 15.247 | | dB | dB | dB | dB | dB | | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable
loss 1 | cable | cable | cable | cable | cable | |-----------------|--------|--------|----------|----------|-----------| | (relay | loss 2 | loss 3 | loss 4 | loss 5 | loss 6 | | inside | (High | (pre- | (inside | (outside | (to | | chamber) | Pass) | amp) | chamber) | chamber) | receiver) | | dB | dB | dB | dB | dB | dB | | 0.56 | 1.28 | -62.72 | 2.66 |
0.94 | 1.46 | | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | | | | | | | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. #### ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) 6.5 | Frequency | AF
EMCO
3160-09 | Corr. | |-----------|-----------------------|-------| | MHz | dB (1/m) | dB | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 | -22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | 77 (10 01 | 12 20. | 0 0112) | | | |-----------|--------|----------|---------|-----------| | cable | cable | cable | cable | cable | | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. # 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | F | AF
EMCO | 0.0 | |-----------|------------|-------| | Frequency | 3160-10 | Corr. | | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.5 | | | | -15.6 | 3 | 0.5 | | 4.6 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.8 | | | | -15.6 | 3 | 0.5 | | 4.9 | | | | -15.6 | 3 | 0.5 | | 5.0 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.2 | | | | -15.6 | 3 | 0.5 | | 5.3 | | | | -15.6 | 3 | 0.5 | | 5.4 | | | | -15.6 | 3 | 0.5 | | 5.5 | | | | -15.6 | 3 | 0.5 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = -20 * LOG (d_{Limit} / d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. # 7 SETUP DRAWINGS Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. # 8 MEASUREMENT UNCERTAINTIES | Test Case | Parameter | Uncertainty | | |--------------------------------------|--------------------|------------------------|--| | AC Power Line | Power | ± 3.4 dB | | | Field Strength of spurious radiation | Power | ± 5.5 dB | | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | | Conducted Output Power | Power | ± 2.2 dB | | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | | Frequency Stability | Frequency | ± 25 Hz | | | Power Spectral Density | Power | ± 2.2 dB | | # 9 PHOTO REPORT Please see separate photo report.