

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 3

TEST REPORT

For

Robotic Vacuum Cleaner

MODEL NUMBER: V10VIV

REPORT NUMBER: 4791308892-5

FCC ID: 2AN2O-V10VIV02

IC: 23317-V10VIV02

HVIN: V10VIV-FNF8

ISSUE DATE: Jun. 26, 2024

Prepared for

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Report No.: 4791308892-5 Page 2 of 155

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	06/25/2024	Initial Issue	

Page 3 of 155

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.2.3.1	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.5	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.12 & Clause 11.13	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

TABLE OF CONTENTS

1.	APP	LICANT INFORMATION	5
2.	TEST	Г METHODOLOGY	6
3.	FACI	ILITIES AND ACCREDITATION	6
4.	CALI	IBRATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQU	IPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	CHANNEL LIST	9
	5.3.	MAXIMUM POWER	9
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	12
	5.8.	DESCRIPTION OF TEST SETUP	13
	5.9.	MEASURING INSTRUMENT AND SOFTWARE USED	15
6.	ANT	ENNA PORT TEST RESULTS	18
	6.1.	ON TIME AND DUTY CYCLE	18
	6.2.	6 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	21
	6.3.	CONDUCTED OUTPUT POWER	35
	6.4.	POWER SPECTRAL DENSITY	37
	6.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	45
7.	RAD	IATED TEST RESULTS	71
	7.1.	LIMITS AND PROCEDURE	71
	7.2.	TEST ENVIRONMENT	79
	7.3.	RESTRICTED BANDEDGE	79
	7.4.	SPURIOUS EMISSIONS	96
8.	AC P	POWER LINE CONDUCTED EMISSIONS	152
9.	ANTI	ENNA REQUIREMENTS	155

Page 5 of 155

1. APPLICANT INFORMATION

Applicant Information

Company Name: Beijing Roborock Technology Co., Ltd.

Address: Room 1001, Floor 10, Building 3, Yard 17, Anju Road,

Changping District, Beijing, P.R. China

Manufacturer Information

Company Name: Beijing Roborock Technology Co., Ltd.

Address: Room 1001, Floor 10, Building 3, Yard 17, Anju Road,

Changping District, Beijing, P.R. China

EUT Description

Product Name: Robotic Vacuum Cleaner

Model Name: V10VIV

HVIN: V10VIV-FNF8
Sample Number: 7250745-S002
Data of Receipt Sample: May. 28, 2024

Test Date: May. 29, 2024~ Jun. 24, 2024

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3	Pass			

Prepared By:	Checked By:
Jammy Huang	kebo. zhurz
Fanny Huang	Kebo Zhang
Engineer Project Associate	Senior Project Engineer
Approved Du	
Approved By:	
Stophenono	

Stephen Guo

Operations Manager

Page 6 of 155

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 3 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment
	· · ·
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

Page 7 of 155

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Uncertainty	
3.62 dB	
2.2 dB	
4.00 dB	
5.78 dB (1 GHz ~ 18 GHz)	
5.23 dB (18 GHz ~ 26 GHz)	
±0.028%	
±0.0196%	
±0.686 dB	
±0.743 dB	
±1.328 dB	
±0.746 dB (9 kHz ~ 1 GHz)	
±1.328dB (1 GHz ~ 26 GHz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 8 of 155

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Robotic Vacuum Cleaner			
Model	V10VIV			
HVIN	V10VIV-FNF8			

Frequency Range:	2412 MHz to 2462 MHz
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Radio Technology:	IEEE 802.11b/g/n HT20/n HT40
Normal Test Voltage:	AC 120V, 60 Hz

5.2. CHANNEL LIST

Channel List for 802.11B/G/N(20 MHz)							
Channel ' Channel ' Channel ' Channel ' ' ' Channel ' ' Channel ' ' Channel ' ' ' Channel ' ' ' ' ' Channel ' ' ' ' ' ' ' ' '						Frequency (MHz)	
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452		

Channel List for 802.11N(40 MHz)							
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)						Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

5.3. MAXIMUM POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)					
b	2412 ~ 2462	1-11[11]	18.10					
g	2412 ~ 2462	1-11[11]	14.81					
n HT20	2412 ~ 2462	1-11[11]	14.31					
n HT40	2422 ~ 2452	3-9[7]	14.37					

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	L CH LICHION CNANNEN	24 12 NICZ, 2437 NICZ, 2462 NICZ
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band										
Test Software			ADB							
	Transmit		Test Channel							
Modulation Mode	Antenna Number	١	NCB: 20MHz			NCB: 40MHz				
Wiode		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9			
802.11B	1	default	default	default						
802.11G	1	default	default	default	/					
802.11N HT20	1	default	default	default						
802.11N HT40	1		/		default	default	default			

Page 11 of 155

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	PCB Antenna	2.11

Note: This data is provided by customer and our lab isn't responsible for this data.

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11B	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11G	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N HT20	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.
IEEE 802.11N HT40	⊠1TX, 1RX	Antenna1 can be used as transmitting/receiving antenna independently.

Page 12 of 155

5.7. THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

802.11B mode: 1 Mbps 802.11G mode: 6 Mbps 802.11N HT20 mode: MCS0 802.11N HT40 mode: MCS0

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Page 13 of 155

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

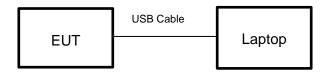
Item	Equipment	Brand Name	Model Name	Description
1	Laptop	ThinkPad	E590	/

I/O PORT

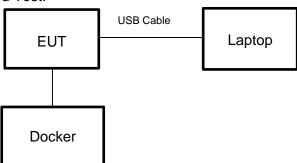
Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB	100cm Length	/

ACCESSORY

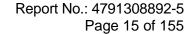
Item	Accessory	Brand Name	Model Name	Description
1	Empty Wash Fill Dock 1	roborock	EWFD26LRR	Input: 120V~ 60Hz Output: 20V= 1.5A
2	Empty Wash Fill Dock 2	roborock	EWFD30LRR	Input: 120V~ 60Hz Output: 20V= 1.5A



TEST SETUP


The EUT can work in an engineer mode with a software through a laptop.

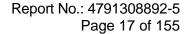
SETUP DIAGRAM FOR TESTS


For Antenna Port test and Radiated Test:

For Conducted Emission Test and Radiated Test:

Note: The EUT can transmit independently and be charged with a docker.

5.9. MEASURING INSTRUMENT AND SOFTWARE USED


3.3. MEAGONING INGTROMENT AND GOT TWARE GOED										
R&S TS 8997 Test System										
Equipment		Ма	Manufacturer		Model No.		Serial No.	Last (Cal.	Due. Date
Power sensor, Power M	1eter		R&S	3	OSP1	20	100921	Mar.25,	2024	Mar.24,2025
Vector Signal Genera	tor		R&S	3	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator			R&S	6	SMB10	A00	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer			R&S	8	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
					Softwa	re				
Description			N	<i>M</i> anuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em	Rol	hde &	Schwar	Z	EMC	32		10.60.10
	Tonsend RF Test System									
Equipment	Man	ufac	cturer	Mod	del No.	S	Serial No.	Last Cal.		Due. Date
Wideband Radio Communication Tester		R&S	5	CMW500			155523 Oct.12,		2023	Oct.11, 2024
Wireless Connectivity Tester		R&S	3	CMW270		120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	K	eysi	ght	N9030A		MY	MY55410512 Oct.12,		2023	Oct.11, 2024
MXG Vector Signal Generator	K	eysi	ght	N5182B		MY	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	K	eysi	ght	N5172B		MY56200301		Oct.12,	2023	Oct.11, 2024
DC power supply	K	eysi	ght	E3642A		MY55159130		Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SA	NMC	DOD	SG-8	0-CC-2	2088		Oct.12, 2023		Oct.11, 2024
Attenuator	A	Aglient		84	195B	28	14a12853	Oct.12, 2023		Oct.11, 2024
RF Control Unit	То	nscend JS0		JS0	806-2	23E	380620666	Mar.25,	2024	Mar.24,2025
					Softwa	re				
Description		Mar	nufact	turer	Name Ve			Version		
Tonsend SRD Test System Tonsend			onser	nd	JS1120-3 RF Test System V3.2.22				V3.2.22	

Page 16 of 155

	Conducted Emissions										
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date						
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024						
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024						
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024						
	Software										
	Description		Manufacturer	Name	Version						
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1						

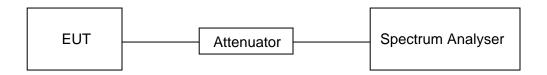
Radiated Emissions									
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date				
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024				
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024				
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024				
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024				
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024				
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024				
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024				
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024				
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024				
Loop antenna	Schwarzbeck	1519B	80000	Dec.14, 2021	Dec.13, 2024				
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024				
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024				
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024				
	Software								
]	Description		Manufacturer	Name	Version				
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1				

Other Instrument Equipment Manufacturer Model No. Serial No. Last Cal. Due Date Temperature **OMEGA** ITHX-SD-5 18470007 Oct.21, 2023 Oct.20, 2024 humidity probe Barometer N/A Oct.19, 2023 Yiyi Baro Oct.18, 2024 Agilent 8495B 2814a12853 Attenuator Oct.12, 2023 Oct.11, 2024

Page 18 of 155

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE


LIMITS

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz

TEST RESULTS TABLE

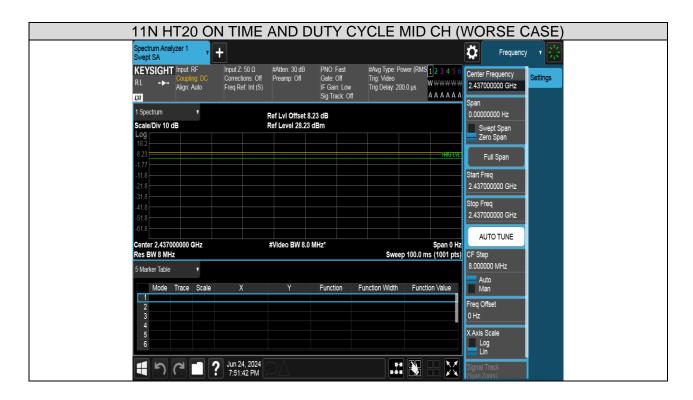
Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (kHz)	Final VBW (kHz)
11B	100	100	1	100%	0	0.01	0.01
11G	100	100	1	100%	0	0.01	0.01
802.11N HT20	100	100	1	100%	0	0.01	0.01
802.11N HT40	100	100	1	100%	0	0.01	0.01

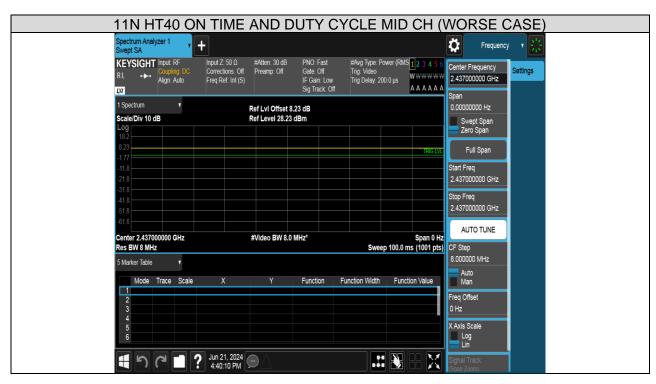
Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle (Linear)

3) Where: T is On Time (transmit duration)

4) If the duty cycle is above 98%, the Final VBW is 10Hz.




TEST GRAPHS

Page 21 of 155

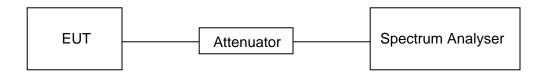
6.2. 6 dB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 47 CFR 15.247(a)(2) ISED RSS-247 5.2 (a)	6dB Bandwidth	>= 500kHz	2400-2483.5	
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.


Connect the EUT to the spectrum analyser and use the following settings:

Connect the Lot to the spectrum analyser and use the following settings.			
Center Frequency	The centre frequency of the channel under test		
Detector	Peak		
RBW	For 6 dB Bandwidth: 100 kHz For 99% Occupied Bandwidth: 1% to 5% of the occupied bandwidth		
IV/RW/	For 6 dB Bandwidth: ≥3 × RBW For 99% Occupied Bandwidth: ≥3 × RBW		
Trace	Max hold		
Sweep	Auto couple		

- a) Use the 99% power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

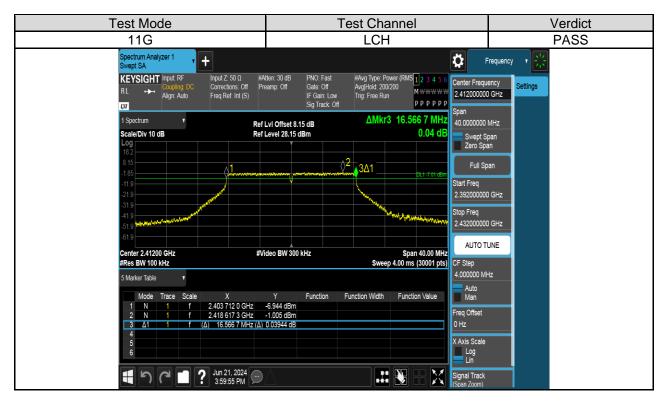
TEST ENVIRONMENT

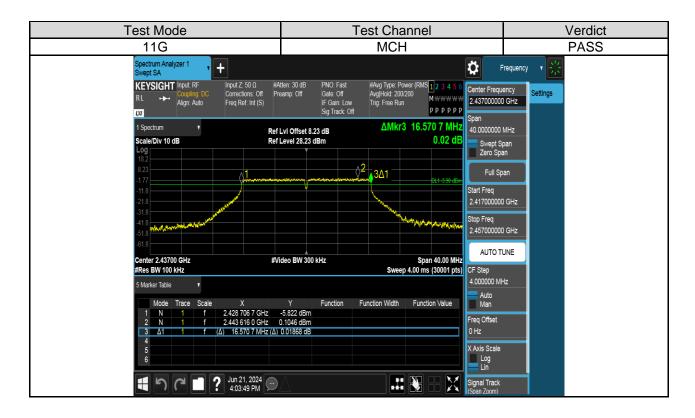
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz

TEST RESULTS TABLE

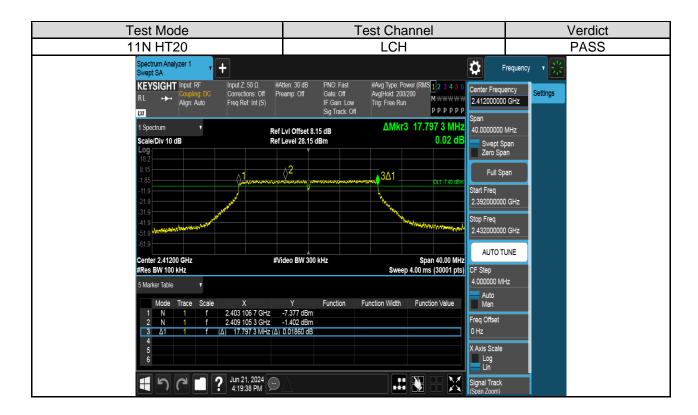
Test Mode	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	LCH	9.0560	13.495	Pass
11B	MCH	9.0533	13.401	Pass
	HCH	9.0453	13.423	Pass
11G	LCH	16.5667	16.605	Pass
	MCH	16.5707	16.595	Pass
	HCH	16.5413	16.612	Pass
11N HT20	LCH	17.7973	17.766	Pass
	MCH	17.7240	17.739	Pass
	HCH	17.7933	17.771	Pass
11N HT40	LCH	36.3973	36.292	Pass
	MCH	36.4320	36.254	Pass
	HCH	36.4507	36.299	Pass

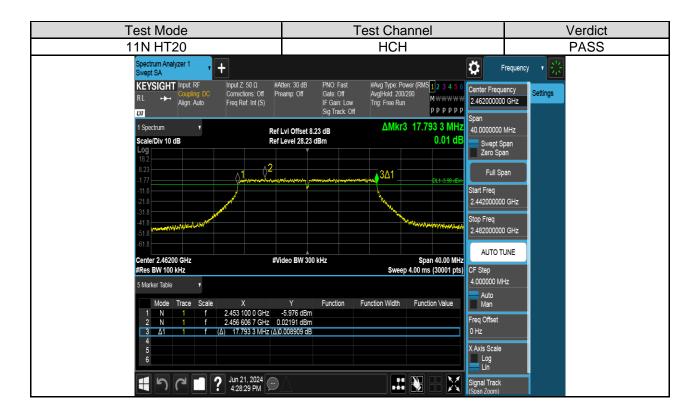
TEST GRAPHS

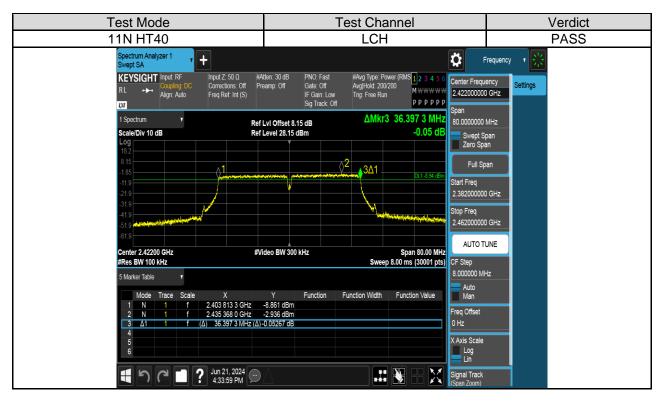

6dB Bandwdith



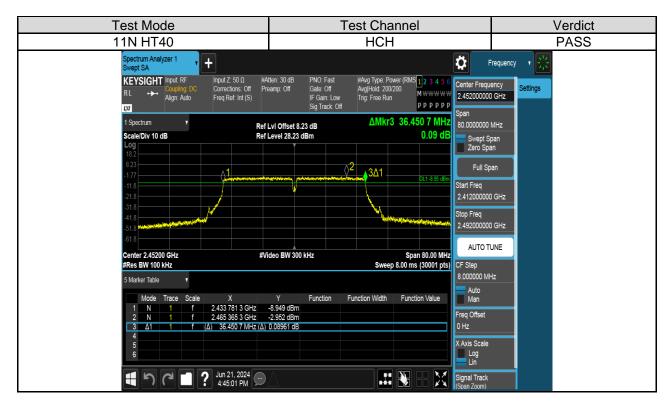




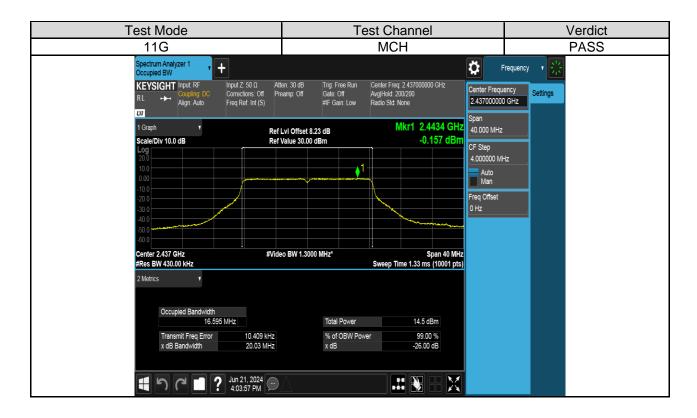


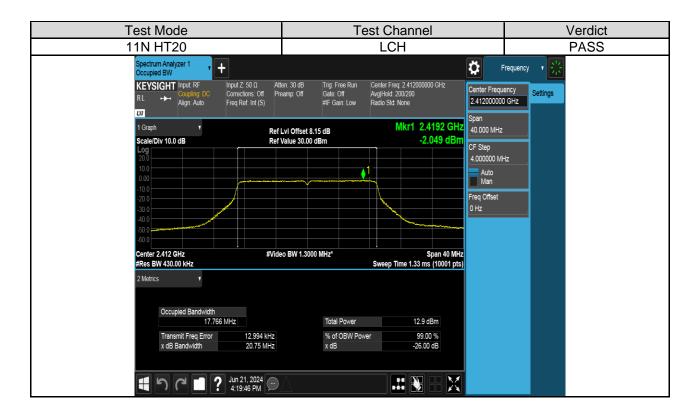


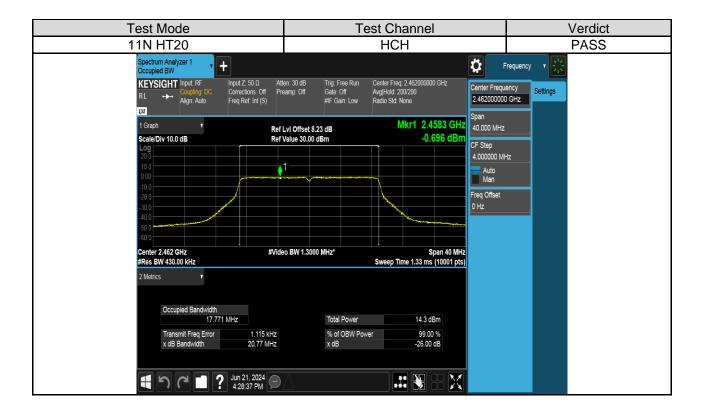


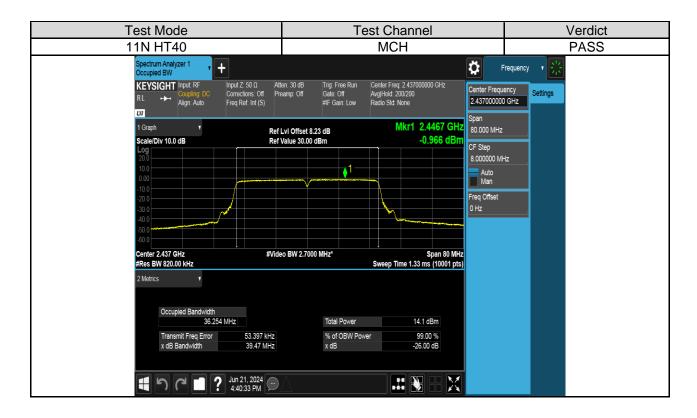



99% Bandwidth









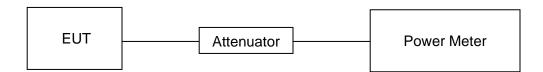


6.3. CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247(b)(3) ISED RSS-247 5.4 (d) RSS-Gen Clause 6.12	Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

AVG Detector used for AVG result.

TEST SETUP

Page 36 of 155

TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz

TEST RESULTS TABLE

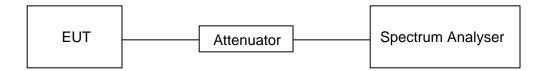
Test Mode	Test Channel	Measurement Output Power (AV)	10log(1/x) Factor	Maximum Conducted Output Power (AV)	LIMIT
		dBm	dBm	dBm	dBm
	LCH	16.71	0	16.71	30
11B	MCH	18.00	0	18.00	30
	HCH	18.10	0	18.10	30
11G	LCH	13.36	0	13.36	30
	MCH	14.54	0	14.54	30
	HCH	14.81	0	14.81	30
11N HT20	LCH	12.94	0	12.94	30
	MCH	14.05	0	14.05	30
	HCH	14.31	0	14.31	30
11N HT40	LCH	13.75	0	13.75	30
	MCH	14.08	0	14.08	30
	HCH	14.37	0	14.37	30

6.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz	2400-2483.5

TEST PROCEDURE


Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

oottii igo.		
Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

Report No.: 4791308892-5

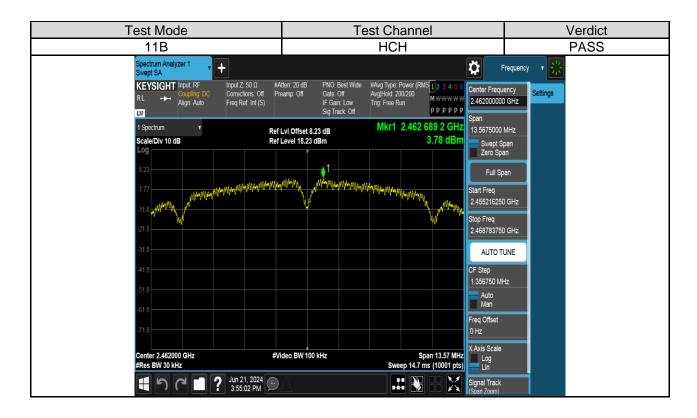
Page 38 of 155

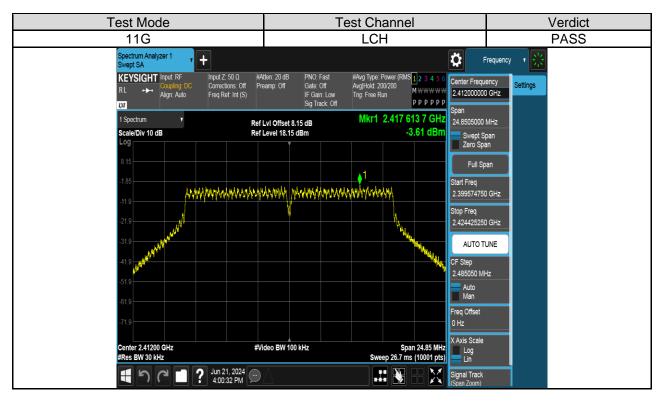
TEST ENVIRONMENT

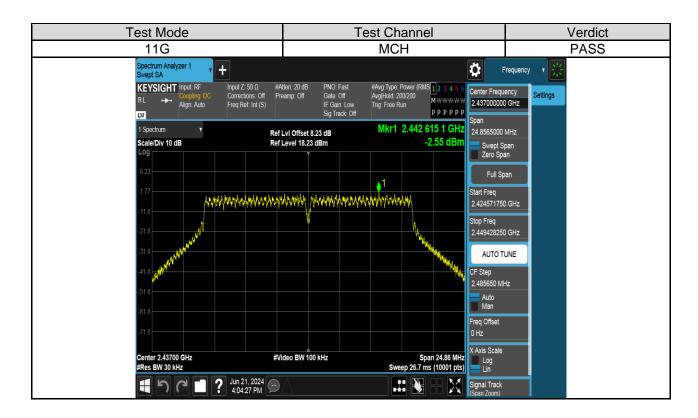
Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz

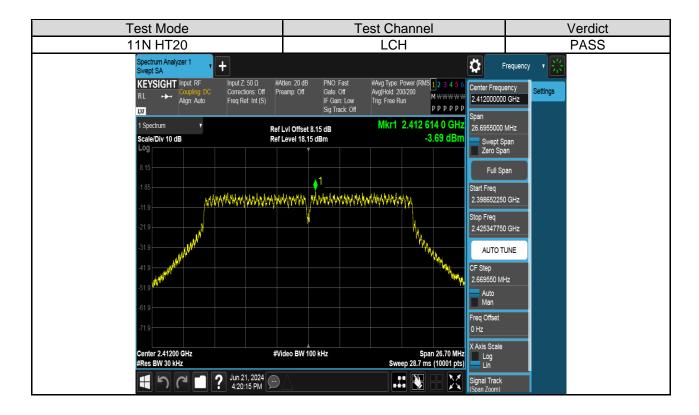

TEST RESULTS TABLE

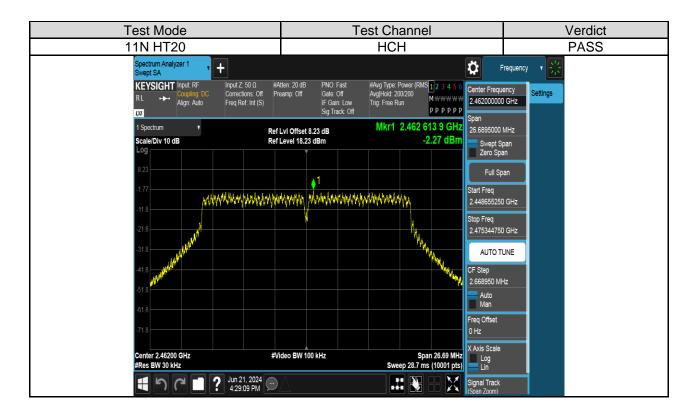
Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	2.31	Pass
11B	MCH	3.62	Pass
	HCH	3.78	Pass
	LCH	-3.61	Pass
11G	MCH	-2.55	Pass
	HCH	-2.29	Pass
	LCH	-3.69	Pass
11N HT20	MCH	-2.51	Pass
	HCH	-2.27	Pass
11N HT40	LCH	-5.95	Pass
	MCH	-5.77	Pass
	HCH	-5.63	Pass

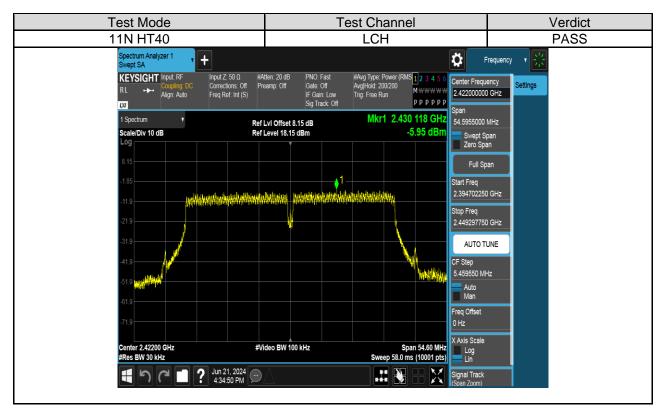


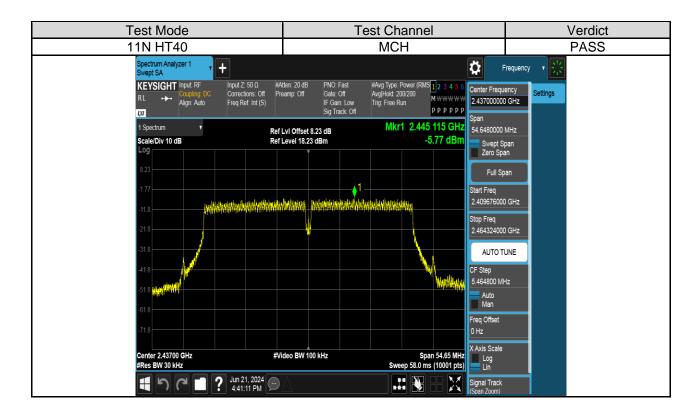

TEST GRAPHS

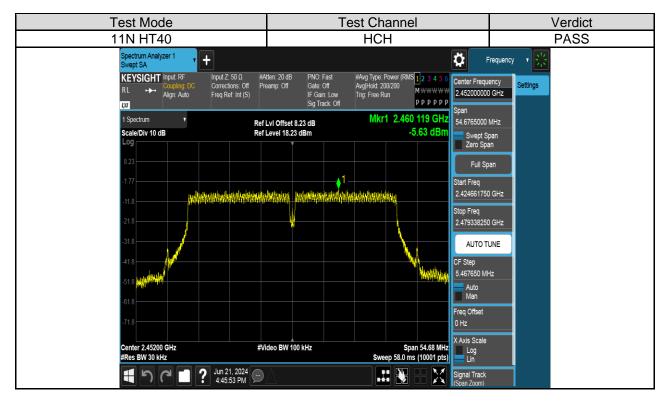












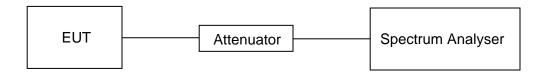
6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
FCC §15.247 (d) RSS-247 Clause 5.5 RSS-GEN Clause 6.13	Conducted Bandedge and Spurious Emissions	30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

Report No.: 4791308892-5

Page 46 of 155

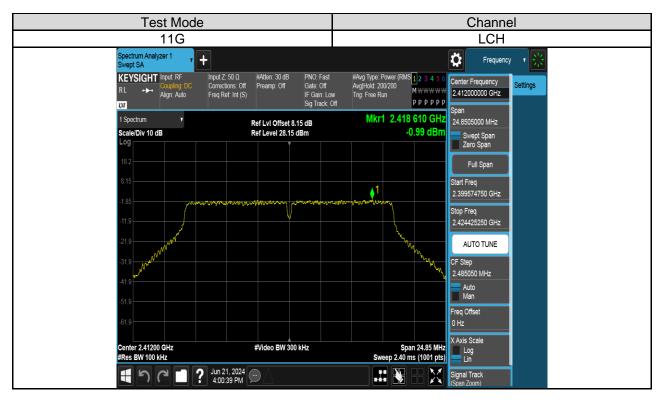
TEST ENVIRONMENT

Temperature	22°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	AC 120 V, 60 Hz

PART 1: REFERENCE LEVEL MEASUREMENT

TEST RESULTS TABLE

Test Mode	Test Channel	Result[dBm]
	LCH	7.45
11B	MCH	8.79
	HCH	8.87
	LCH	-0.99
11G	MCH	0.31
	HCH	0.32
	LCH	-1.24
11N HT20	MCH	-0.03
	HCH	0.31
	LCH	-3.11
11N HT40	MCH	-3.22
	HCH	-2.91


TEST GRAPHS

