

# FCC Part 15E Measurement and Test Report

For

Shenzhen Gauss Technology Co., Ltd

6th-7th Floor, 3th Building, 2th South District, Honghualing Industry

Park, Liuxian Avenue 1213, Xili Town, Nanshan, Shenzhen, P. R China

FCC ID: 2AN2I-005

| FCC Rule(s):                                                                                                                                        | FCC Part 15E                                       |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|--|--|
| Product Description:                                                                                                                                | Wireless Video Transmission System                 |         |  |  |
| Tested Model:                                                                                                                                       | Cosmo600                                           |         |  |  |
| Report No.:                                                                                                                                         | <u>STR180783401</u>                                |         |  |  |
| Sample Receipt Date:                                                                                                                                | <u>2018-07-27</u>                                  |         |  |  |
| Tested Date:                                                                                                                                        | 2018-07-28 to 2018-08-13                           |         |  |  |
| Issued Date:                                                                                                                                        | <u>2018-08-15</u>                                  |         |  |  |
| Tested By:                                                                                                                                          | Mike Shi / Engineer Mike Sh                        |         |  |  |
| Reviewed By:                                                                                                                                        | Mike Shi / Engineer<br>Silin Chen / EMC Manager    | 09 Co., |  |  |
| Approved & Authorized By:                                                                                                                           | Jandy So / PSQ Manager                             | ta.     |  |  |
| Prepared By:                                                                                                                                        | Approved                                           |         |  |  |
| Shenzhen SEM Test Technology Co., Ltd.<br>1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,<br>Bao'an District, Shenzhen, P.R.C. (518101) |                                                    |         |  |  |
|                                                                                                                                                     | Fax.: +86-755-33663309 Website: www.semtest.com.cn |         |  |  |

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM.Test Technology Co., Ltd.



### TABLE OF CONTENTS

| 1. GENERAL INFORMATION                                                             |    |
|------------------------------------------------------------------------------------|----|
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                             |    |
| 1.2 TEST STANDARDS                                                                 |    |
| 1.3 TEST METHODOLOGY                                                               | 4  |
| 1.4 TABLE FOR PARAMETERS OF TEST SOFTWARE SETTING<br>1.5 EUT OPERATING DURING TEST |    |
| 1.6 TEST FACILITY                                                                  |    |
| 1.7 EUT SETUP AND TEST MODE                                                        |    |
| 1.8 Measurement Uncertainty                                                        |    |
| 1.9 TEST EQUIPMENT LIST AND DETAILS                                                | 7  |
| 2. SUMMARY OF TEST RESULTS                                                         |    |
| 3. RF EXPOSURE                                                                     | 9  |
| 3.1 Standard Applicable                                                            |    |
| 3.2 Test Result                                                                    | 9  |
| 4. ANTENNA REQUIREMENT                                                             |    |
| 4.1 Standard Applicable                                                            |    |
| 4.2 EVALUATION INFORMATION                                                         |    |
| 5. POWER SPECTRAL DENSITY                                                          |    |
| 5.1 Standard Applicable                                                            |    |
| 5.2 Test Procedure                                                                 |    |
| 5.3 SUMMARY OF TEST RESULTS/PLOTS                                                  |    |
| 6. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH                                       |    |
| 6.1 STANDARD APPLICABLE                                                            |    |
| 6.2 Test Procedure<br>6.3 Summary of Test Results/Plots                            |    |
|                                                                                    |    |
| 7. MAXIMUM CONDUCTED OUTPUT POWER                                                  |    |
| 7.1 STANDARD APPLICABLE                                                            |    |
| 7.2 TEST PROCEDURE<br>7.3 SUMMARY OF TEST RESULTS/PLOTS                            |    |
|                                                                                    |    |
| 8. RADIATED SPURIOUS EMISSIONS                                                     |    |
| 8.1 Standard Applicable                                                            |    |
| 8.2 TEST PROCEDURE<br>8.3 TEST RECEIVER SETUP                                      |    |
| 8.4 Corrected Amplitude & Margin Calculation                                       |    |
| 8.5 SUMMARY OF TEST RESULTS/PLOTS                                                  |    |
| 9. FREQUENCY STABILITY                                                             | 52 |
| 9.1 Standard Applicable                                                            |    |
| 9.2 Test Procedure                                                                 |    |
| 9.3 SUMMARY OF TEST RESULTS/PLOTS                                                  |    |



### **1. GENERAL INFORMATION**

#### **1.1 Product Description for Equipment Under Test (EUT)**

| Client Information       |                                                  |
|--------------------------|--------------------------------------------------|
| Applicant:               | Shenzhen Gauss Technology Co., Ltd               |
| Address of applicant:    | 6th-7th Floor, 3th Building, 2th South District, |
|                          | Honghualing Industry Park, Liuxian Avenue 1213,  |
|                          | Xili Town, Nanshan, Shenzhen, P. R China         |
| Manufacturer:            | Shenzhen Gauss Technology Co., Ltd               |
| Address of manufacturer: | 6th-7th Floor, 3th Building, 2th South District, |
| Address of manufacturer. |                                                  |
|                          | Honghualing Industry Park, Liuxian Avenue 1213,  |
|                          | Xili Town, Nanshan, Shenzhen, P. R China         |

| General Description of EUT |                                    |  |
|----------------------------|------------------------------------|--|
| Product Name:              | Wireless Video Transmission System |  |
| Trade Name:                | 1                                  |  |
| Model No.:                 | Cosmo600                           |  |
| Adding Model(s):           | Cosmo1500                          |  |
| Rated Voltage:             | DC7-36V                            |  |
| Power Adapter Model:       | /                                  |  |
|                            |                                    |  |

Note: The test data is gathered from a production sample, provided by the manufacturer. The appearance of others models listed in the report is different from main-test model Cosmo600 but the circuit and the electronic construction do not change, declared by the manufacturer.

| Technical Characteristics of EUT               |                            |  |
|------------------------------------------------|----------------------------|--|
| Wi-Fi(5G/5.8G)                                 |                            |  |
| Support Standards:                             | 802.11n(HT40)              |  |
| Frequency Range:                               | 5190-5230MHz, 5745-5825MHz |  |
| RF Output Power:                               | 15.09dBm (Conducted)       |  |
| Type of Modulation:                            | OFDM, 16-QAM               |  |
| Data Rate:                                     | 6-54Mbps, up to 600Mbps    |  |
| Channel Separation:                            | 5MHz                       |  |
| Type of Antenna:                               | External Antenna           |  |
| Antenna Gain:                                  | Antenna Type 1: 5dBi       |  |
|                                                | Antenna Type 2: 2.57dBi    |  |
| Wi-Fi(5G/5.8G) Only support 802.11n(HT40) mode |                            |  |

#### **1.2 Test Standards**

The tests were performed according to following standards:

FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices. KDB789033 D02 v02r01: GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

**Maintenance of compliance** is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

#### **1.3 Test Methodology**

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB789033 D02 v02r01 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

#### **1.4 Table for parameters of Test Software setting**

The test utility software used during testing was "RPTA1-71W.M4300.01.GD.2015Sep1". During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

| Mode                 |            | Test Frequency (MHz) |      |      |      |      |      |      |      |      |
|----------------------|------------|----------------------|------|------|------|------|------|------|------|------|
| Mada                 | NCB: 40MHz |                      |      |      |      |      |      |      |      |      |
| Mode                 | 5190       | 5230                 | 5270 | 5310 | 5510 | 5550 | 5670 | 5710 | 5755 | 5795 |
| 802.11n-HT40<br>MCS0 | 10         | 10                   | /    | /    | /    | /    | /    | /    | 10   | 10   |



#### **1.5 EUT Operating during test**

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under WIN XP were executed.

#### **1.6 Test Facility**

#### FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

#### Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

#### **1.7 EUT Setup and Test Mode**

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

| Test Mode List | t            |                                            |
|----------------|--------------|--------------------------------------------|
| Test Mode      | Description  | Remark                                     |
| TM1            | 802.11n-HT40 | 5190MHz,5230MHz, 5745MHz,5785MHz, 5825 MHz |

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

| Test Conditions   |           |  |
|-------------------|-----------|--|
| Temperature:      | 22~25 °C  |  |
| Relative humidity | 50~55 %.  |  |
| ATM Pressure:     | 1019 mbar |  |

| EUT Cable List and Details |            |                     |                        |
|----------------------------|------------|---------------------|------------------------|
| Cable Description          | Length (m) | Shielded/Unshielded | With / Without Ferrite |
| /                          | /          | /                   | /                      |

#### Special Cable List and Details

| 1                 |            |                     |                        |
|-------------------|------------|---------------------|------------------------|
| Cable Description | Length (m) | Shielded/Unshielded | With / Without Ferrite |
| /                 | /          | /                   | /                      |



| Auxiliary Equipment List and Details |                  |       |               |  |
|--------------------------------------|------------------|-------|---------------|--|
| Description                          | Manufacturer     | Model | Serial Number |  |
|                                      | Shenzhen HongBo  |       |               |  |
| Battery                              | Power Technology | /     | /             |  |
|                                      | Co.,LTD          |       |               |  |

## 1.8 Measurement Uncertainty

| Measurement uncertainty        |            |                    |
|--------------------------------|------------|--------------------|
| Parameter                      | Conditions | Uncertainty        |
| RF Output Power                | Conducted  | $\pm 0.42$ dB      |
| Occupied Bandwidth             | Conducted  | $\pm 1.5\%$        |
| Power Spectral Density         | Conducted  | ±1.8dB             |
| Conducted Spurious Emission    | Conducted  | ±2.17dB            |
| Conducted Emissions            | Conducted  | 9-150kHz ±3.74dB   |
| Conducted Emissions            |            | 0.15-30MHz ±3.34dB |
|                                |            | 30-200MHz ±4.52dB  |
| Transmittan Spanious Emissions |            | 0.2-1GHz ±5.56dB   |
| Transmitter Spurious Emissions | Radiated   | 1-6GHz ±3.84dB     |
|                                |            | 6-18GHz ±3.92dB    |



### **1.9 Test Equipment List and Details**

| No.       | Description          | Manufacturer              | Model                 | Serial No.             | Cal Date   | Due Date   |  |
|-----------|----------------------|---------------------------|-----------------------|------------------------|------------|------------|--|
| SEMT 1072 | Spectrum             | Anilant                   | E4407D                | <b>MX</b> 41 4 40 4 00 | 2019 05 22 | 2010 05 21 |  |
| SEMT-1072 | Analyzer             | Agilent                   | E4407B                | MY41440400             | 2018-05-22 | 2019-05-21 |  |
| SEMT-1031 | Spectrum             | Rohde &                   | FSP30                 | 836079/035             | 2018-05-22 | 2019-05-21 |  |
| SEM1-1051 | Analyzer             | Schwarz                   | F3F30                 | 830079/033             | 2018-03-22 | 2019-03-21 |  |
| SEMT-1007 | EMI Test             | Rohde &                   | ESVB                  | 825471/005             | 2018-05-22 | 2019-05-21 |  |
| SEM1-1007 | Receiver             | Schwarz                   | ESVD                  | 823471/003             | 2018-03-22 | 2019-03-21 |  |
| SEMT-1008 | Amplifier            | Agilent                   | 8447F                 | 3113A06717             | 2018-05-22 | 2019-05-21 |  |
| SEMT-1043 | Amplifier            | C&D                       | PAP-1G18              | 2002                   | 2018-05-22 | 2019-05-21 |  |
| SEMT-1011 | Broadband<br>Antenna | Schwarz beck              | VULB9163              | 9163-333               | 2017-06-08 | 2020-06-07 |  |
| SEMT-1042 | Horn Antenna         | ETS                       | 3117                  | 00086197               | 2017-06-08 | 2020-06-07 |  |
| SEMT-1121 | Horn Antenna         | Schwarzbeck               | BBHA 9170             | BBHA9170582            | 2017-06-08 | 2020-06-07 |  |
| SEMT-1069 | Loop Antenna         | Schwarz beck              | FMZB 1516             | 9773                   | 2017-06-08 | 2020-06-07 |  |
| SEMT 1001 | EMI Test             | Rohde &                   | ECDI                  | 101.014                |            | 2019-05-21 |  |
| SEMT-1001 | Receiver             | Schwarz                   | ESPI                  | 101611                 | 2018-05-22 | 2019-03-21 |  |
| SEMT-1003 | L.I.S.N              | Schwarz beck              | NSLK8126              | 8126-224               | 2018-05-22 | 2019-05-21 |  |
| SEMT-1002 | Pulse Limiter        | Rohde &<br>Schwarz        | ESH3-Z2               | 100911                 | 2018-05-22 | 2019-05-21 |  |
| SEMT-1168 | Pre-amplifier        | Direction<br>Systems Inc. | PAP-0126              | 14141-12838            | 2017-08-15 | 2018-08-14 |  |
| SEMT-1169 | Pre-amplifier        | Direction<br>Systems Inc. | PAP-2640              | 14145-14153            | 2018-05-22 | 2019-05-21 |  |
| SEMT-1163 | Spectrum<br>Analyzer | Rohde &<br>Schwarz        | FSP40                 | 100612                 | 2018-05-22 | 2019-05-21 |  |
| SEMT-1170 | DRG Horn<br>Antenna  | A.H.<br>SYSTEMS           | SAS-574               | 571                    | 2018-05-22 | 2019-05-21 |  |
| SEMT-1166 | Power Limiter        | Agilent                   | N9356B                | MY45450376             | 2018-05-22 | 2019-05-21 |  |
| SEMT-1048 | RF Limiter           | ATTEN                     | AT-BSF-2400~2500      | /                      | 2018-05-22 | 2019-05-21 |  |
| SEMT-1076 | RF Switcher          | Top Precision             | RCS03-A2              | /                      | 2018-05-22 | 2019-05-21 |  |
| SEMT-C001 | Cable                | Zheng DI                  | LL142-07-07-10M(A)    | /                      | 2018-03-19 | 2019-03-18 |  |
| SEMT-C002 | Cable                | Zheng DI                  | ZT40-2.92J-2.92J-6M   | /                      | 2018-03-19 | 2019-03-18 |  |
| SEMT-C003 | Cable                | Zheng DI                  | ZT40-2.92J-2.92J-2.5M | /                      | 2018-03-19 | 2019-03-18 |  |
| SEMT-C004 | Cable                | Zheng DI                  | 2M0RFC                | /                      | 2018-03-19 | 2019-03-18 |  |
| SEMT-C005 | Cable                | Zheng DI                  | 1M0RFC                | /                      | 2018-03-19 | 2019-03-18 |  |
| SEMT-C006 | Cable                | Zheng DI                  | 1M0RFC                | /                      | 2018-03-19 | 2019-03-18 |  |

### 2. SUMMARY OF TEST RESULTS

| FCC Rules                        | Description of Test Item                     | Result    |
|----------------------------------|----------------------------------------------|-----------|
| § 15.203; § 15.405               | Antenna Requirement                          | Compliant |
| § 15.207; § 15.407(b)(6)         | Conducted Emission                           | N/A       |
| § 15.407(a)(1),(2)               | Power Spectral Density                       | Compliant |
| § 15.407(e)                      | Emission Bandwidth and Occupied<br>Bandwidth | Compliant |
| § 15.407(a)(1),(2)               | Maximum Conducted Output Power               | Compliant |
| § 15.407(b)(1),(2),(3)           | Conducted Spurious Emission                  | Compliant |
| § 15.205; § 15.407(b)(1),(2),(3) | Radiated Emission                            | Compliant |
| § 15.407(g)                      | Frequency Stability                          | Compliant |
| § 15.407(h)                      | Dynamic Frequency Selection (DFS)            | N/A       |

N/A: not applicable



### 3. RF Exposure

#### **3.1 Standard Applicable**

According to § 1.1307 and § 2.1093, the mobile transmitter must comply the RF exposure requirements.

#### **3.2 Test Result**

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.



### 4. Antenna Requirement

#### 4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### **4.2 Evaluation Information**

This product has a SMA-reverse antenna, fulfill the requirement of this section.



### **5.** Power Spectral Density

#### 5.1 Standard Applicable

Section 15.407(a) Power limits:

#### (1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 5.2 Test Procedure

According to 789033 D02 v01r02 section F, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and



integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW  $\geq 1/T$ , where T is defined in section II.B.l.a).

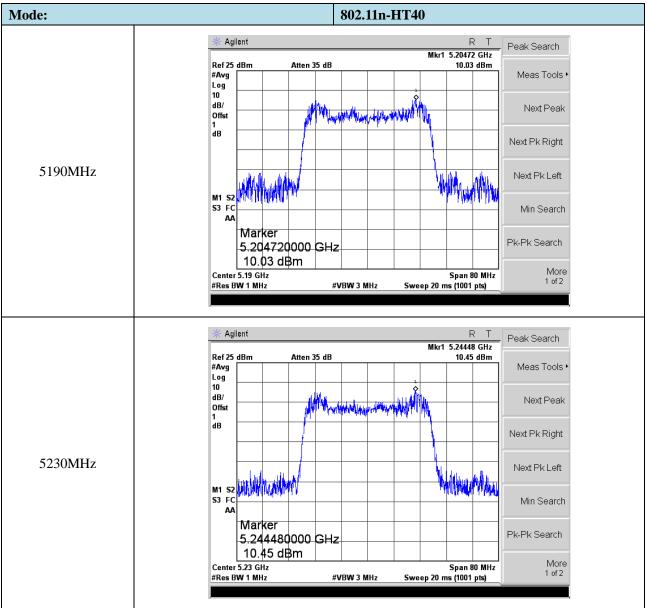
b) Set VBW  $\geq$  3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

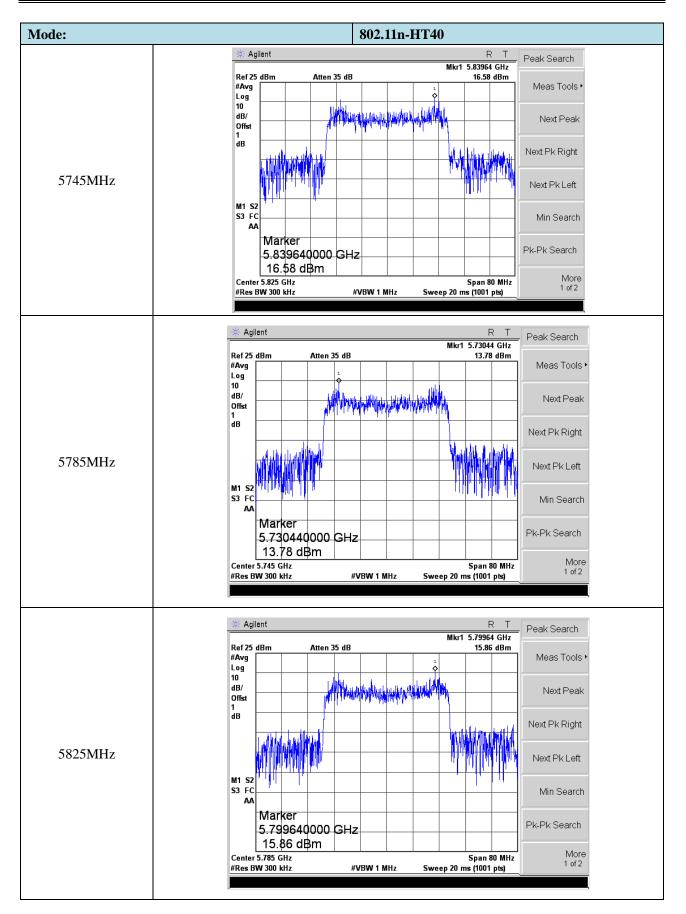
d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

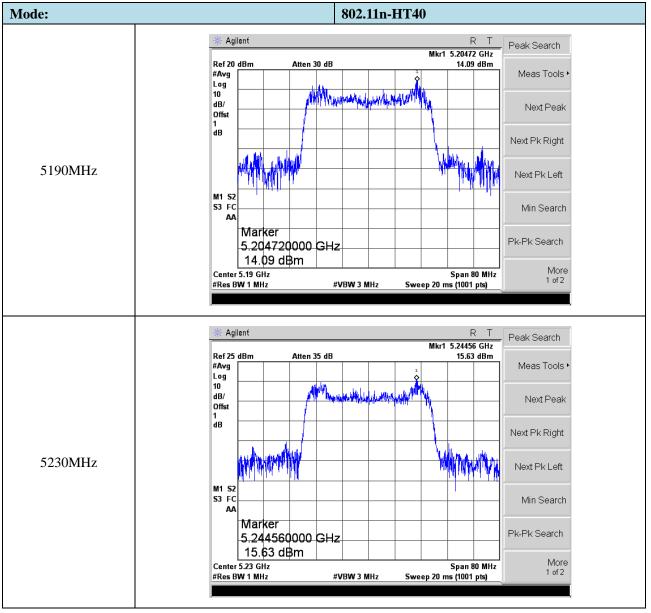

#### **5.3 Summary of Test Results/Plots**

| U-NII-1:5150-5250MHz |       |                                   | 802.11n-HT40 |         |  |  |
|----------------------|-------|-----------------------------------|--------------|---------|--|--|
| Test Channel         |       | Power Spectral Density<br>dBm/MHz |              |         |  |  |
| MHz                  | ANT 0 | ANT 1                             | Total        | dBm/MHz |  |  |
| 5190                 | 10.03 | 14.09                             | 15.53        | 17      |  |  |
| 5230                 | 10.45 | 15.63                             | 16.78        | 17      |  |  |

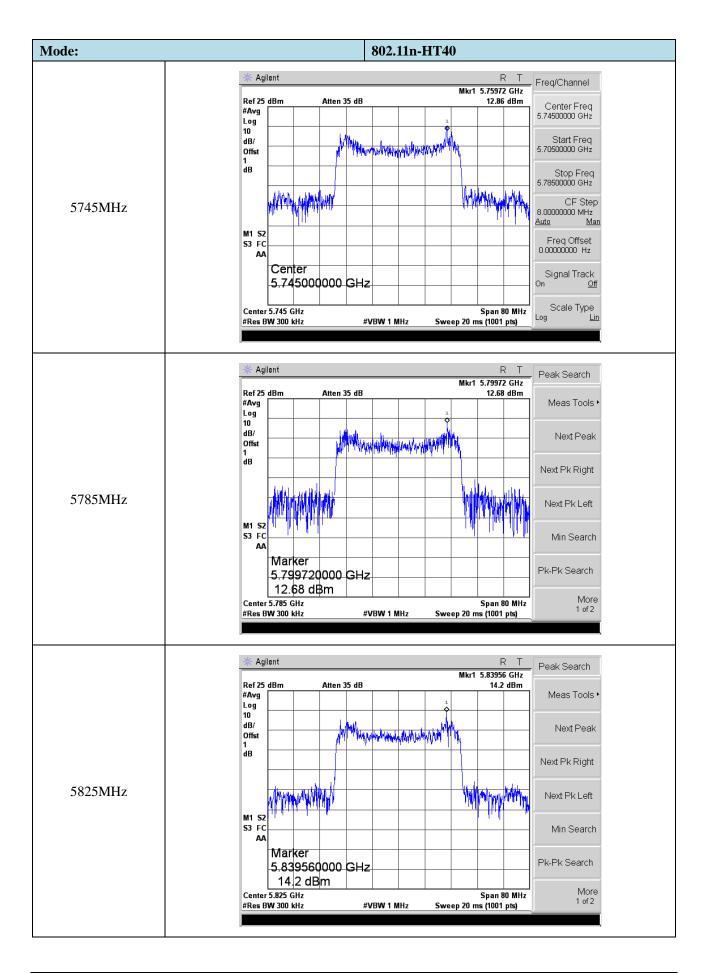

| U-NII-3: 5725-5850MHz |                                                              |                         |            |            | 802.11n-HT40 |            |            |            |  |  |
|-----------------------|--------------------------------------------------------------|-------------------------|------------|------------|--------------|------------|------------|------------|--|--|
| Test                  |                                                              | Power Spectral Density* |            |            |              |            |            |            |  |  |
| Test<br>Channel       |                                                              |                         |            | ANT 1      |              |            | Limit      |            |  |  |
| Channel               | dBm/300kHz                                                   | Factor                  | dBm/500kHz | dBm/300kHz | Factor       | dBm/500kHz | dBm/500kHz | dBm/500kHz |  |  |
| 5745                  | 16.58                                                        | 2.22                    | 18.80      | 12.86      | 2.22         | 15.08      | 20.34      | 30         |  |  |
| 5785                  | 13.78                                                        | 2.22                    | 16.00      | 12.68      | 2.22         | 14.90      | 18.50      | 30         |  |  |
| 5825                  | 15.86                                                        | 2.22                    | 18.08      | 14.20      | 2.22         | 16.42      | 20.34      | 30         |  |  |
| *Note: Ma             | *Note: Maximum PSD=PSD(dBm/510kHz)+10log(500kHz/300kHz)=2.22 |                         |            |            |              |            |            |            |  |  |












#### ANT1









### 6. Emission Bandwidth and Occupied Bandwidth

#### 6.1 Standard Applicable

According to 15.407 (a) and (e)

#### (1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

#### **6.2 Test Procedure**

According to 789033 D02 v01r02 section C&D, the following is the measurement procedure.

- 1. Emission Bandwidth (EBW)
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.



e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW)  $\geq$  3  $\times$  RBW.

c) Detector = Peak.

d) Trace mode = max hold.

- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

#### D. 99 Percent Occupied Bandwidth

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 v01r02 General UNII Test Procedures New Rules v01 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW  $\geq$  3 RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

#### 6.3 Summary of Test Results/Plots



| U-NII-1:5150-5250MHz |                          |        |               |       |  |  |  |  |
|----------------------|--------------------------|--------|---------------|-------|--|--|--|--|
| Test Mode            | Test Channel 26 dB Bandw |        | 99% Bandwidth | Limit |  |  |  |  |
|                      | MHz                      | MHz    | MHz           | MHz   |  |  |  |  |
| ANT0                 | 5190                     | 38.895 | 37.1159       | Pass  |  |  |  |  |
|                      | 5230                     | 38.880 | 37.1659       | Pass  |  |  |  |  |
| A N/T 1              | 5190                     | 38.496 | 37.2662       | Pass  |  |  |  |  |
| ANT1                 | 5230                     | 38.660 | 36.8275       | Pass  |  |  |  |  |

#### U-NII-3:5725-5850MHz **Test Channel** 6 dB Bandwidth 99% Bandwidth Limit **Test Mode** MHz MHz MHz MHz 5745 35.473 37.1612 $\geq 500$ ANT0 5785 34.584 37.3770 $\geq 500$ 5825 35.644 37.5317 $\geq 500$ 5745 34.210 37.3456 $\geq 500$ ANT1 5785 34.059 37.4112 ≥500 5825 32.632 37.2145 $\geq 500$



#### ANT0

| Mode:   | 802.11n-HT                                                                                                                                             | -40                                                                                                                                                                                                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | a∰ Agilent                                                                                                                                             | R T Freq/Channel                                                                                                                                                                                                                                     |
|         | Ch Freq 5.19 GHz<br>Occupied Bandwidth                                                                                                                 | Trig Free Center Freq<br>5.19000000 GHz                                                                                                                                                                                                              |
|         | Center 5.190000000 GHz                                                                                                                                 | Start Freq<br>5.1500000 GHz                                                                                                                                                                                                                          |
|         | Ref 25 dBm Atten 35 dB<br>#Peak<br>Log<br>OV/ M/Juguetouteuretureturetureturetureturetureturetu                                                        | Stop Freq                                                                                                                                                                                                                                            |
| 5190MHz |                                                                                                                                                        | CF Step<br>Mutrinium Witny<br>Auto Man                                                                                                                                                                                                               |
|         | Center 5.19 GHz                                                                                                                                        | Span 80 MHz                                                                                                                                                                                                                                          |
|         |                                                                                                                                                        | weep 10 ms (1001 pts)<br>3W % Pwr 99.00 %<br>x dB -26.00 dB Signal Track<br>On <u>Off</u>                                                                                                                                                            |
|         | Transmit Freq Error 2.914 kHz<br>× dB Bandwidth 38.895 MHz                                                                                             | Scale Type<br><sub>Log</sub> <u>Lin</u>                                                                                                                                                                                                              |
|         |                                                                                                                                                        |                                                                                                                                                                                                                                                      |
|         | Agilent     Ch Freg 5.23 GHz Occupied Bandwidth     X dB -26.00 dB Ref 25 dBm Atten 35 dB                                                              | R T Meas Setup<br>Trig Free Avg Number<br>10<br>On Off<br>Exp Repeat                                                                                                                                                                                 |
| 5230MHz | Ch Freq 5.23 GHz<br>Occupied Bandwidth<br>x dB -26.00 dB                                                                                               | Trig Free Avg Number<br>0n Off<br>Avg Mode<br>Exp Repeat<br>Max Hold                                                                                                                                                                                 |
| 5230MHz | Ch Freq 5.23 GHz<br>Occupied Bandwidth<br>X dB -26.00 dB<br>Ref 25 dBm Atten 35 dB<br>#Peak<br>Log<br>10<br>dB/<br>Offst<br>1<br>dB<br>Center 5.23 GHz | Trig       Free       Avg Number         10       0n       0ff         Avg Mode       Exp       Repeat         Max Hold       0n       0ff         Ccc BW % Pwr       99.00 %       0BW Spar         Span 80 MHz       80.0000000 MHz       0BW Spar |
| 5230MHz | Ch Freq         5.23 GHz           Occupied Bandwidth         X dB -26.00 dB           Ref 25 dBm         Atten 35 dB           #Peak                  | Trig     Free       Avg Number     10       On     Off       Avg Mode     Exp       Repeat     Max Hold       On     Off       Occ BW % Pwr     99.00 %       OBW Spar                                                                               |



R Т

Span 80 MHz

99.00 %

Free Frig

Freq/Channel

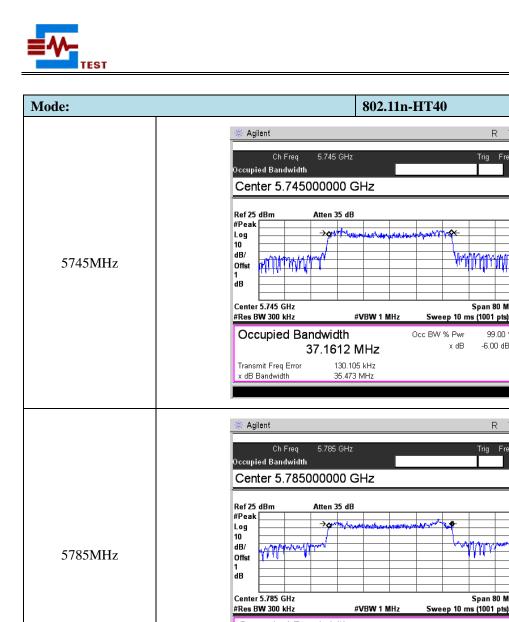
Center Freq

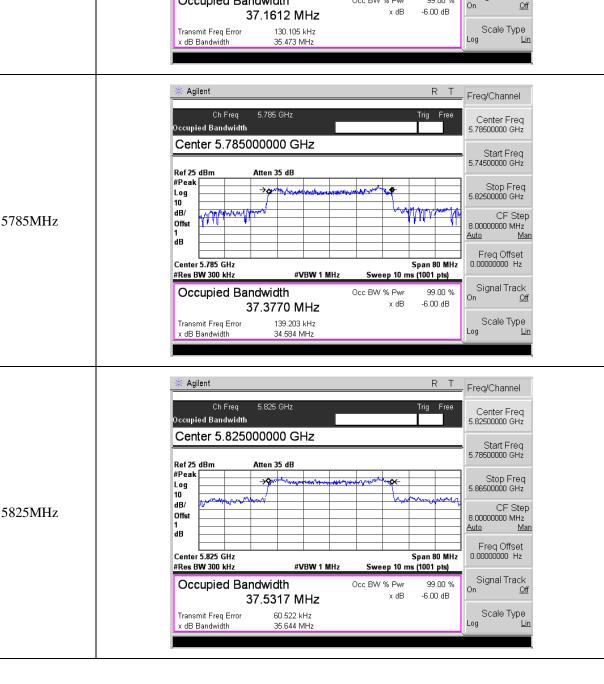
5.74500000 GHz

Start Freq 5.70500000 GHz

Stop Freq 5.7850000 GHz

8.0000000 MHz Man


Freq Offset

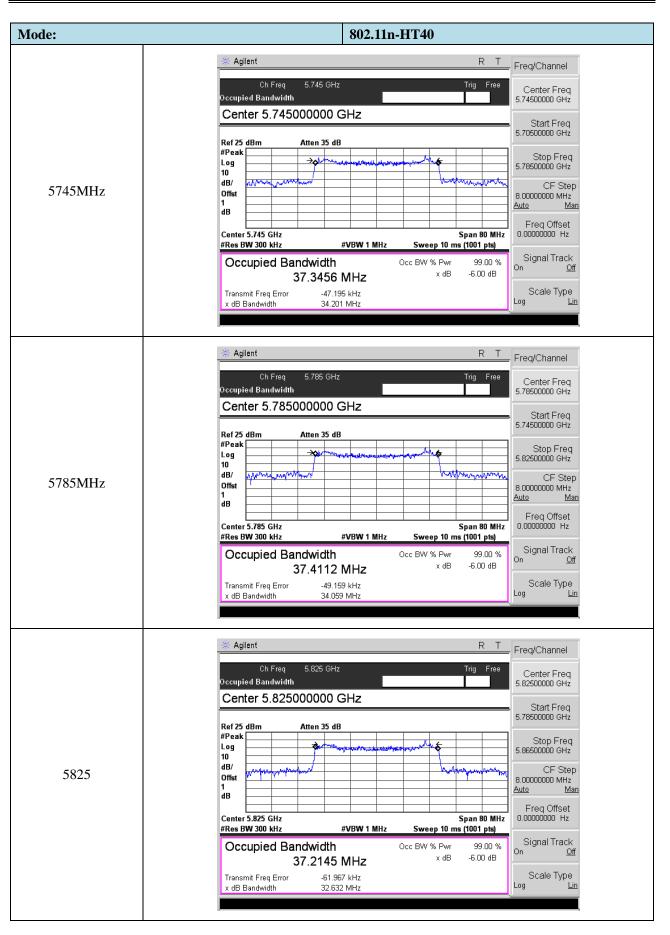

Signal Track

0.00000000 Hz

<u>Auto</u>

CF Step








#### ANT1

| Mode:      | 802.11n-HT40                                                                                                                                                          |                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|            | ¥ Agilent F                                                                                                                                                           | T Freq/Channel                     |
|            | Ch Freq 5.19 GHz Trig Occupied Bandwidth Center 5.190000000 GHz                                                                                                       | Free Center Freq<br>5.19000000 GHz |
|            | Ref 25 dBm Atten 35 dB                                                                                                                                                | Start Freq<br>5.15000000 GHz       |
|            | #Peak                                                                                                                                                                 | Stop Freq<br>5.23000000 GHz        |
| 5190MHz    | Offst 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                              | 8.0000000 MHz<br><u>Auto Man</u>   |
|            | Center 5.19 GHz Span 8<br>#Res BW 300 kHz #VBW 1 MHz Sweep 10 ms (1001                                                                                                | pts)                               |
|            | Occupied Bandwidth         Occ BW % Pwr         99           37.2662 MHz         x dB         -26.00           Transmit Freq Error         -15.951 kHz         -26.00 | 0 dB On Off<br>Scale Type          |
|            | x dB Bandwidth 38.496 MHz                                                                                                                                             | Log <u>Lin</u>                     |
|            |                                                                                                                                                                       | T Freq/Channel                     |
|            | Ch Freq 5.23 GHz Trig Occupied Bandwidth Center 5.230000000 GHz                                                                                                       | Free Center Freq<br>5.23000000 GHz |
|            | Ref 25 dBm Atten 35 dB                                                                                                                                                | Start Freq<br>5.19000000 GHz       |
| 5020N (III |                                                                                                                                                                       | Stop Freq<br>5.27000000 GHz        |
| 5230MHz    | Offst 1<br>dB                                                                                                                                                         | A <sup>m</sup> (m)q<br>Auto Man    |
|            | Center 5.23 GHz         Span 8           #Res BW 300 kHz         #VBW 1 MHz         Sweep 10 ms (1001           Occupied Bandwidth         Occ BW % Pwr         99    | pts)<br>00 % Signal Track          |
|            | <b>36.8275 MHz</b> × dB -26.00<br>Transmit Freq Error 8.200 kHz                                                                                                       | D dB Scale Type                    |
|            | 36.8275 MHz × dB -26.00                                                                                                                                               | 0 dB                               |







### 7. Maximum Conducted Output Power

#### 7.1 Standard Applicable

According to 15.407(a) Power limits:

#### (1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

#### 7.2 Test Procedure

According to KDB789033 D02 v01r02 section E, the following is the measurement procedure.

(i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW  $\geq$  3 MHz.

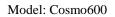
(iv) Number of points in sweep  $\geq 2$  Span / RBW. (This ensures that bin-to-bin spacing is  $\leq$  RBW/2, so that narrowband signals are not lost between frequency bins.)



(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle  $\ge$  98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

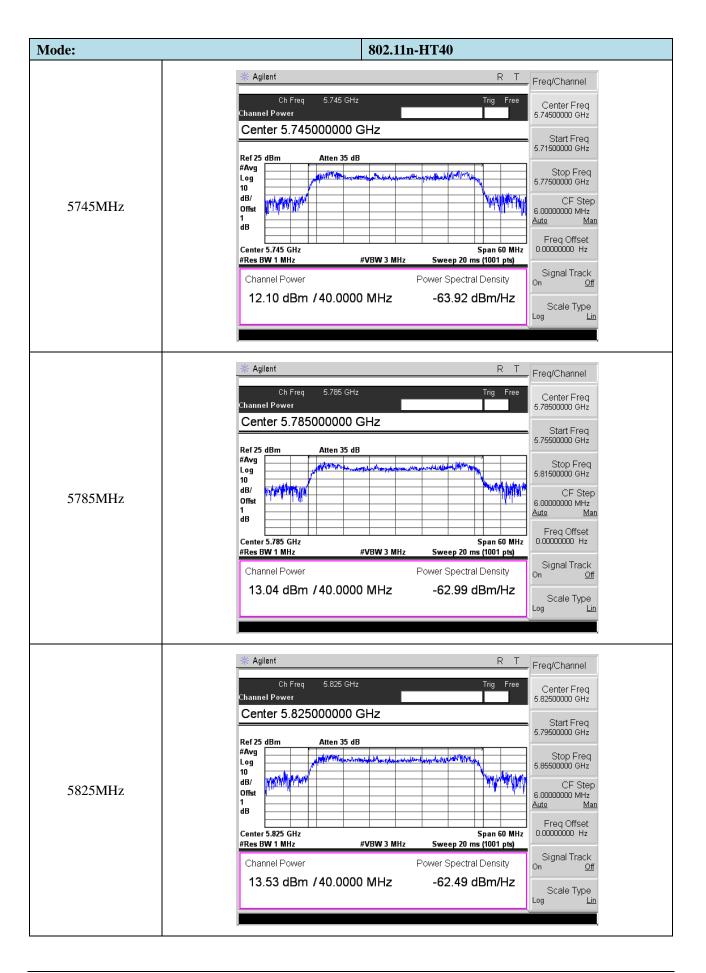

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

#### 7.3 Summary of Test Results/Plots

| U-NII-1:5150-5250MHz |              |              |              |              |              |             |  |  |  |
|----------------------|--------------|--------------|--------------|--------------|--------------|-------------|--|--|--|
| <b>F</b>             | ANT0         |              | AN           | T1           | Total        | Limit       |  |  |  |
| Frequency<br>MHz     | Output Power | Limit<br>mW |  |  |  |
| IVITIZ               | dBm          | mW           | dBm          | mW           | mW           | 111 VV      |  |  |  |
| 5190                 | 6.50         | 4.47         | 10.07        | 10.16        | 14.63        | 250         |  |  |  |
| 5230                 | 6.46         | 4.43         | 10.13        | 10.30        | 14.73        | 250         |  |  |  |

| U-NII-3:5725-5850MHz |              |              |              |              |              |       |  |  |  |
|----------------------|--------------|--------------|--------------|--------------|--------------|-------|--|--|--|
| Fraguanay            | AN           | UT0          | AN           | T1           | Total        |       |  |  |  |
| Frequency<br>MHz     | Output Power | Limit |  |  |  |
| MITZ                 | dBm mW       |              | dBm          | dBm mW       |              | mW    |  |  |  |
| 5745                 | 12.10        | 16.22        | 10.45        | 11.09        | 27.31        | 1000  |  |  |  |
| 5785                 | 13.04        | 20.14        | 9.90         | 9.77         | 29.91        | 1000  |  |  |  |
| 5825                 | 13.53        | 22.54        | 9.87         | 9.71         | 32.25        | 1000  |  |  |  |

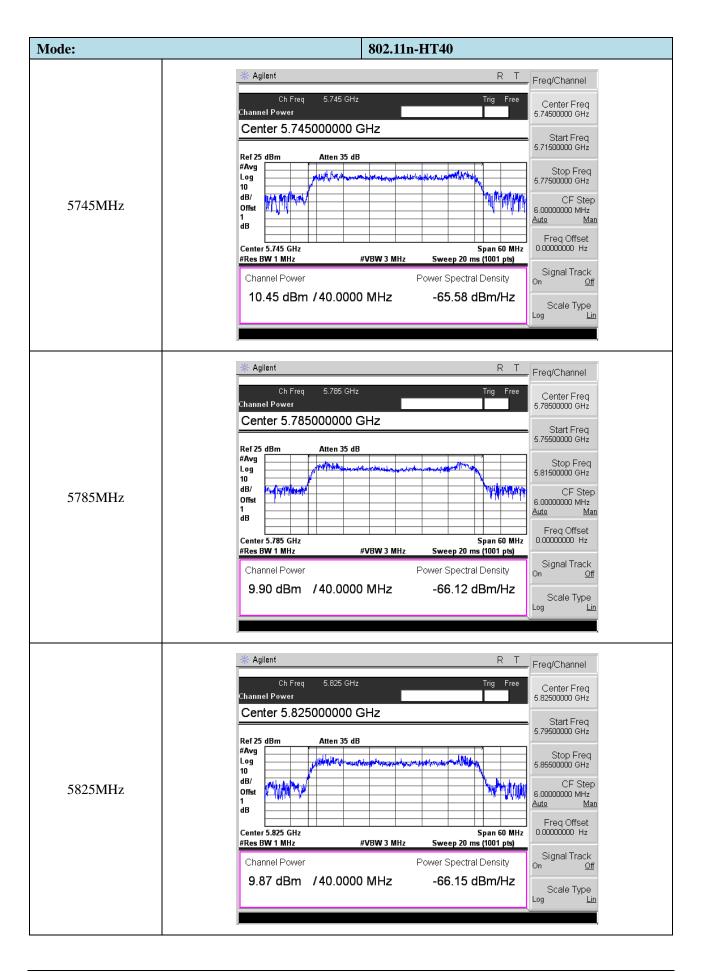





### ANT0

| Mode:   | 802.11n-HT40                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | * Agilent                                                  | R T Freq/Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | Ch Freq 5.19 GHz<br>Channel Power                          | Trig Free<br>Center Freq<br>5.1900000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | Center 5.190000000 GHz                                     | Start Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | Ref 15 dBm Atten 25 dB<br>#Avg                             | 5.16000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                                                            | 5.22000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5190MHz | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      | CF Step<br>6.00000000 MHz<br>Auto Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | dB                                                         | Span 60 MHz 0.00000000 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | #Res BW 1 MHz #VBW 3 MHz Sweep 20                          | ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Channel Power Power Spectr<br>6.50 dBm /40.0000 MHz -69.52 | dBm/Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                            | Scale Type<br>Log <u>Lin</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5230MHz | Channel Power Power Spectr                                 | R     T       Trig     Free       Center     Freq       Start     Freq       Start     Start       Start     Freq       Start     Start       Start     Freq       Start     Freq       Start     Start       Start     Freq       Start     Start       Start     Freq       Start     Start       Start     Freq       Start     Start       Start     Start       Start     Freq       Start     Start       Start     Start   < |










| Mode:   | 802.11n-HT40                                                        |                                               |
|---------|---------------------------------------------------------------------|-----------------------------------------------|
|         | i∰ Agilent                                                          | R T Freq/Channel                              |
|         | Ch Freq 5.19 GHz                                                    | Free Center Freq<br>5.19000000 GHz            |
|         | <br>Ref 25 dBm Atten 35 dB                                          | Start Freq<br>5.16000000 GHz                  |
|         | #Avg<br>Log<br>10                                                   | Stop Freq<br>5.22000000 GHz                   |
| 5190MHz | dB/<br>Offst 1000000000000000000000000000000000000                  | CF Step<br>6.00000000 MHz<br><u>Auto Man</u>  |
|         |                                                                     | Freq Offset<br>0.000000000 Hz<br>1001 pts)    |
|         | Channel Power Power Spectral D<br>10.07 dBm / 40.0000 MHz -65.96 dB | <u>on</u>                                     |
|         | 10.07 dBit 740.0000 MHz -83.96 dB                                   | Scale Type<br>Log Lin                         |
|         | ,<br>≱ Agilent                                                      | Freq/Channel                                  |
|         | Ch Freq 5.23 GHz<br>Channel Power                                   | Free Center Freq<br>5.23000000 GHz            |
|         | Center 5.230000000 GHz                                              | Start Freq<br>5.2000000 GHz                   |
|         | Ref 25 dBm Atten 35 dB<br>#Avg<br>Log<br>10                         | Stop Freq<br>5.26000000 GHz                   |
| 5230MHz | dB/<br>Offst<br>1<br>dB                                             | CF Step<br>6.0000000 MHz<br><u>Auto Man</u>   |
|         |                                                                     | Ereq Offset<br>0.00000000 Hz<br>0.00000000 Hz |
|         |                                                                     |                                               |
|         | Channel Power Power Spectral D<br>10.13 dBm / 40.0000 MHz -65.89 dB | . <u>on</u>                                   |







### 8. Radiated Spurious Emissions

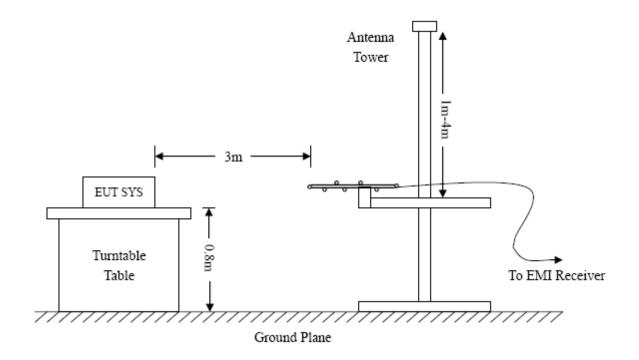
#### 8.1 Standard Applicable

According to \$15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in \$15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in \$15.207.

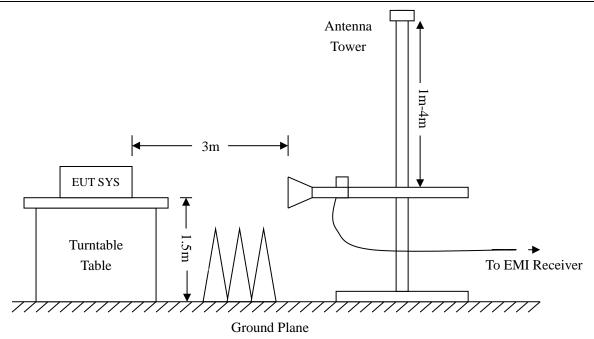
According to \$15.407(b)(7), The provisions of \$15.205 apply to intentional radiators operating under this section. 789033 D02 v02r01 General UNII Test Procedures New Rules v02

If radiated measurements are performed, field strength is then converted to EIRP as follows:

 $EIRP = ((E*d)^2) / 30$ 


where:

- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.


#### 8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.







#### 8.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector: RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector: RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

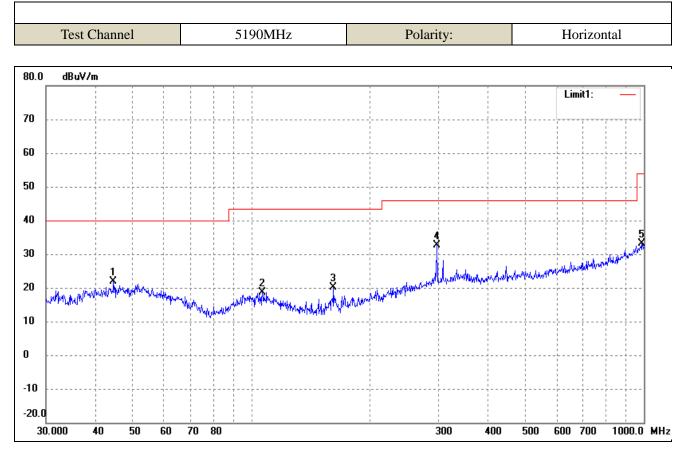
#### 8.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

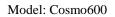
Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss – Ampl. Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of  $-6dB\mu V$  means the emission is  $6dB\mu V$  below the maximum limit. The equation for margin calculation is as follows:

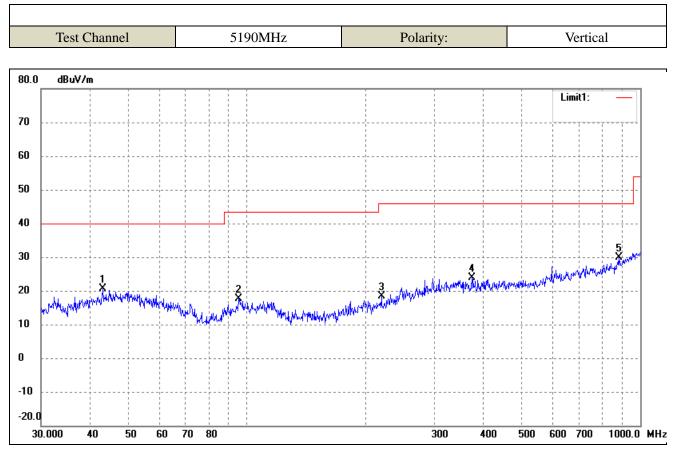
Margin = Corr. Ampl. – FCC Part 15 Limit


#### 8.5 Summary of Test Results/Plots

Note: 1. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

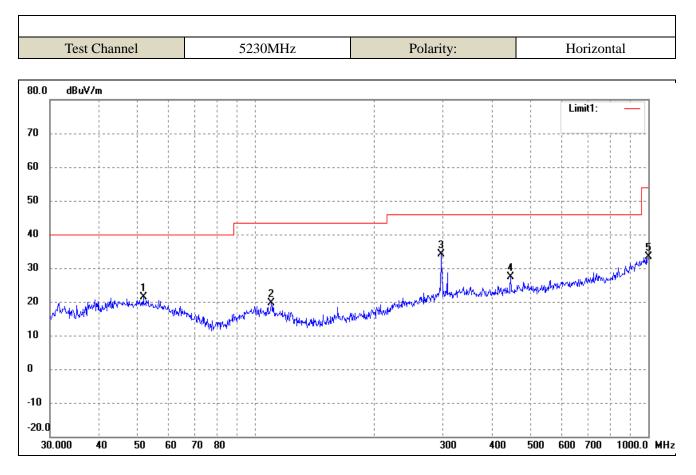

2. Testing is carried out with frequency rang 9kHz to 40GHz, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be recorded in the test report.




- Spurious Emission From 30 MHz to 1 GHz
- ➢ Worst case at MIMO
- Antenna Type 1

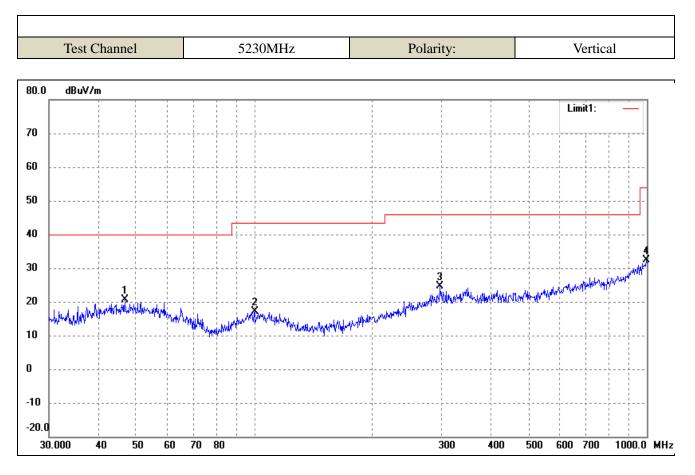


| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 44.5868   | 34.78    | -13.00  | 21.78    | 40.00    | -18.22 | 233    | 100    | peak   |
| 2   | 106.7587  | 32.69    | -14.00  | 18.69    | 43.50    | -24.81 | 253    | 100    | peak   |
| 3   | 162.0414  | 36.04    | -15.92  | 20.12    | 43.50    | -23.38 | 71     | 100    | peak   |
| 4   | 297.2241  | 40.22    | -7.47   | 32.75    | 46.00    | -13.25 | 121    | 100    | peak   |
| 5   | 986.0717  | 29.40    | 3.82    | 33.22    | 54.00    | -20.78 | 295    | 100    | peak   |

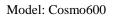




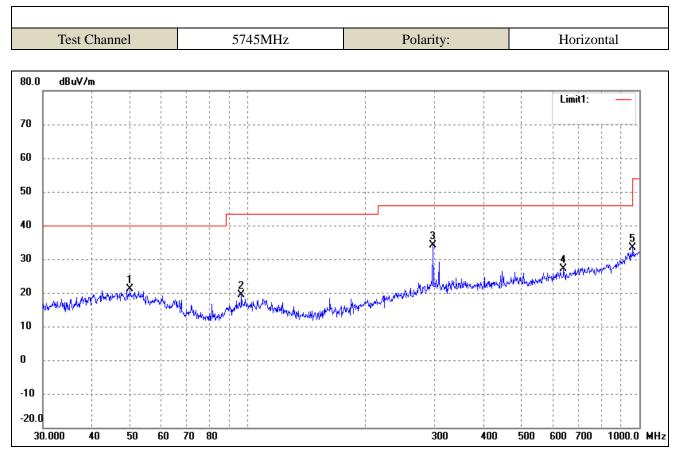




| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 43.0505   | 33.89    | -13.16  | 20.73    | 40.00    | -19.27 | 128    | 100    | peak   |
| 2   | 95.4270   | 32.87    | -15.14  | 17.73    | 43.50    | -25.77 | 108    | 100    | peak   |
| 3   | 219.8449  | 29.64    | -11.32  | 18.32    | 46.00    | -27.68 | 74     | 100    | peak   |
| 4   | 373.3112  | 30.87    | -6.89   | 23.98    | 46.00    | -22.02 | 100    | 100    | peak   |
| 5   | 881.4067  | 29.30    | 0.62    | 29.92    | 46.00    | -16.08 | 140    | 100    | peak   |





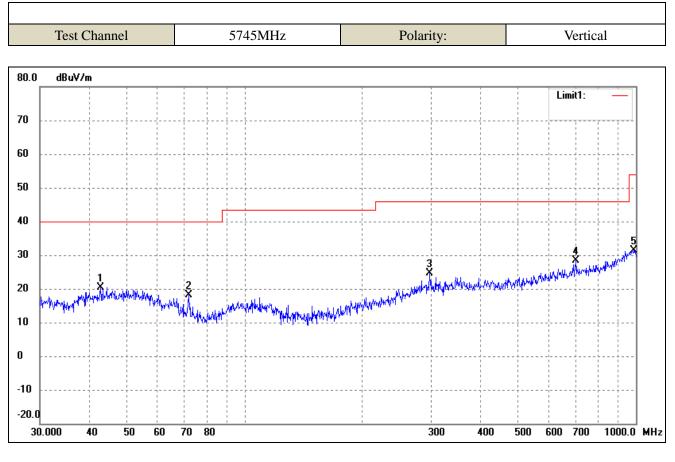

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 51.8430   | 34.29    | -12.81  | 21.48    | 40.00    | -18.52 | 90     | 100    | peak   |
| 2   | 109.7960  | 33.56    | -13.92  | 19.64    | 43.50    | -23.86 | 171    | 100    | peak   |
| 3   | 297.2241  | 41.70    | -7.47   | 34.23    | 46.00    | -11.77 | 75     | 100    | peak   |
| 4   | 446.4141  | 33.73    | -6.44   | 27.29    | 46.00    | -18.71 | 147    | 100    | peak   |
| 5   | 1000.0000 | 29.31    | 4.04    | 33.35    | 54.00    | -20.65 | 354    | 100    | peak   |





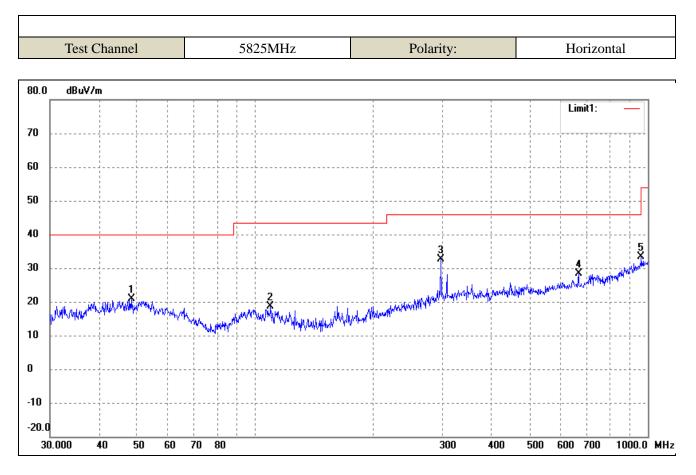

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 46.8303   | 33.43    | -12.85  | 20.58    | 40.00    | -19.42 | 317    | 100    | peak   |
| 2   | 100.2286  | 31.54    | -14.45  | 17.09    | 43.50    | -26.41 | 323    | 100    | peak   |
| 3   | 297.2241  | 32.03    | -7.47   | 24.56    | 46.00    | -21.44 | 55     | 100    | peak   |
| 4   | 996.4996  | 28.38    | 3.98    | 32.36    | 54.00    | -21.64 | 181    | 100    | peak   |







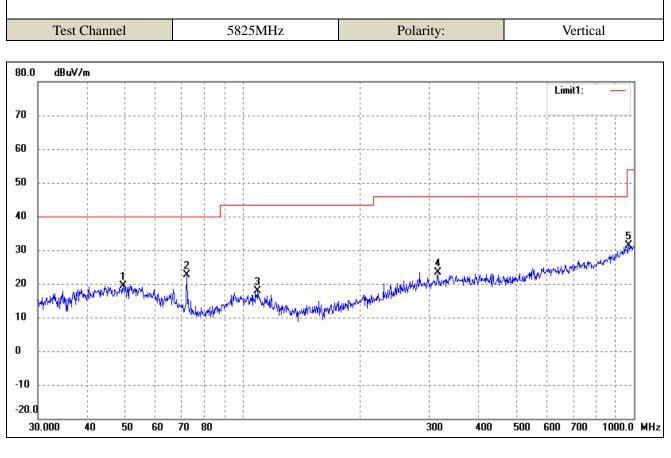

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 50.0566   | 34.07    | -12.93  | 21.14    | 40.00    | -18.86 | 110    | 100    | peak   |
| 2   | 96.4362   | 34.41    | -14.99  | 19.42    | 43.50    | -24.08 | 341    | 100    | peak   |
| 3   | 297.2241  | 41.48    | -7.47   | 34.01    | 46.00    | -11.99 | 74     | 100    | peak   |
| 4   | 640.6110  | 30.61    | -3.52   | 27.09    | 46.00    | -18.91 | 246    | 100    | peak   |
| 5   | 962.1623  | 30.24    | 3.14    | 33.38    | 54.00    | -20.62 | 199    | 100    | peak   |







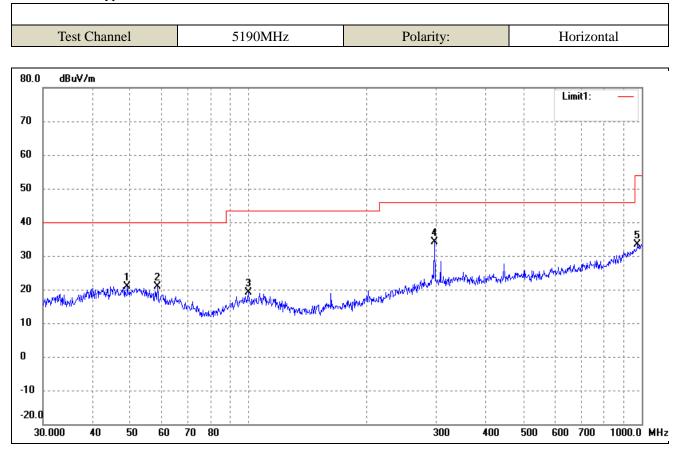

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 42.8998   | 33.66    | -13.18  | 20.48    | 40.00    | -19.52 | 331    | 100    | peak   |
| 2   | 72.0843   | 36.03    | -17.78  | 18.25    | 40.00    | -21.75 | 217    | 100    | peak   |
| 3   | 297.2241  | 32.04    | -7.47   | 24.57    | 46.00    | -21.43 | 69     | 100    | peak   |
| 4   | 701.7610  | 30.98    | -2.59   | 28.39    | 46.00    | -17.61 | 332    | 100    | peak   |
| 5   | 986.0717  | 27.65    | 3.82    | 31.47    | 54.00    | -22.53 | 182    | 100    | peak   |






| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 48.3318   | 33.61    | -12.79  | 20.82    | 40.00    | -19.18 | 175    | 100    | peak   |
| 2   | 109.4116  | 32.48    | -13.93  | 18.55    | 43.50    | -24.95 | 116    | 100    | peak   |
| 3   | 297.2241  | 40.19    | -7.47   | 32.72    | 46.00    | -13.28 | 74     | 100    | peak   |
| 4   | 665.8035  | 31.44    | -3.18   | 28.26    | 46.00    | -17.74 | 264    | 100    | peak   |
| 5   | 962.1623  | 30.17    | 3.14    | 33.31    | 54.00    | -20.69 | 93     | 100    | peak   |

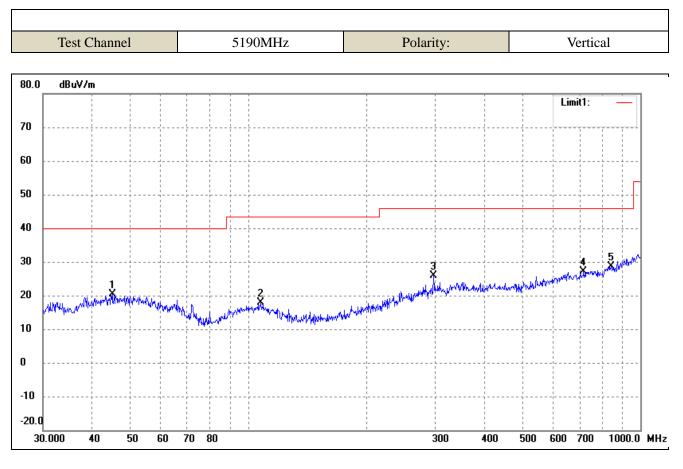






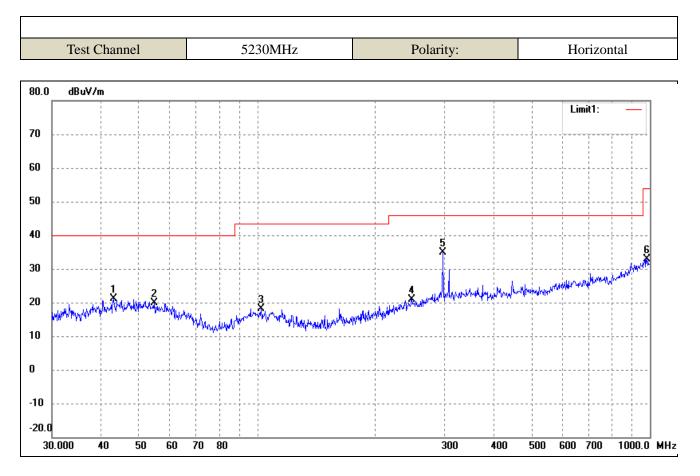

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 49.5328   | 32.33    | -12.89  | 19.44    | 40.00    | -20.56 | 251    | 100    | peak   |
| 2   | 72.0843   | 40.43    | -17.78  | 22.65    | 40.00    | -17.35 | 282    | 100    | peak   |
| 3   | 109.4116  | 31.78    | -13.93  | 17.85    | 43.50    | -25.65 | 92     | 100    | peak   |
| 4   | 315.4808  | 30.61    | -7.15   | 23.46    | 46.00    | -22.54 | 289    | 100    | peak   |
| 5   | 968.9338  | 28.21    | 3.25    | 31.46    | 54.00    | -22.54 | 110    | 100    | peak   |




#### > Antenna Type 2



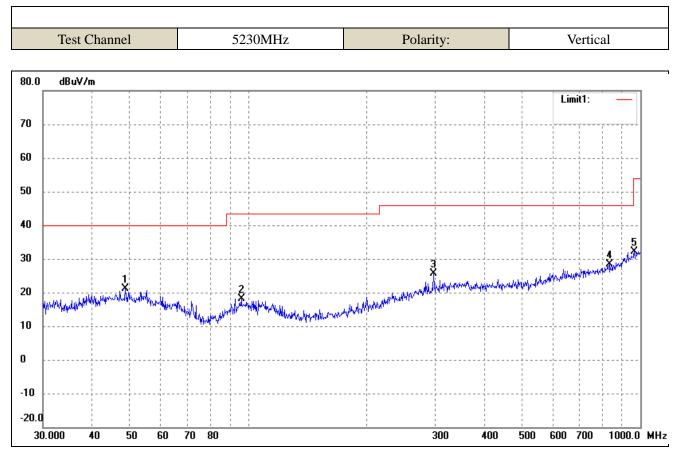
| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 49.1866   | 33.74    | -12.86  | 20.88    | 40.00    | -19.12 | 62     | 100    | peak   |
| 2   | 58.6126   | 35.19    | -14.33  | 20.86    | 40.00    | -19.14 | 126    | 100    | peak   |
| 3   | 99.8777   | 33.61    | -14.48  | 19.13    | 43.50    | -24.37 | 86     | 100    | peak   |
| 4   | 297.2241  | 41.62    | -7.47   | 34.15    | 46.00    | -11.85 | 286    | 100    | peak   |
| 5   | 975.7529  | 29.77    | 3.53    | 33.30    | 54.00    | -20.70 | 99     | 100    | peak   |



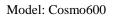




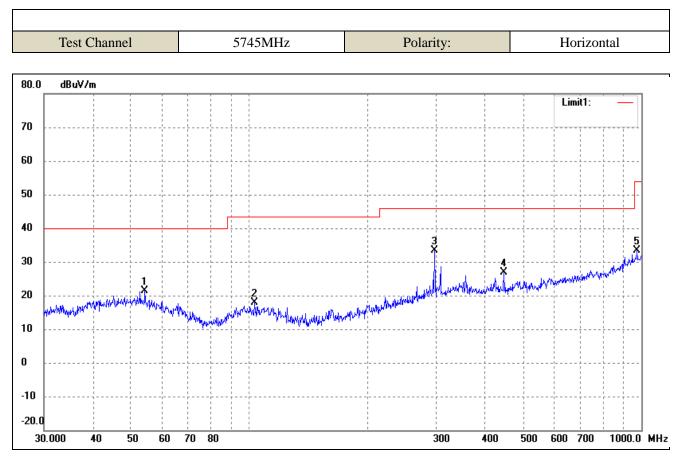

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 45.0583   | 33.36    | -12.97  | 20.39    | 40.00    | -19.61 | 94     | 100    | peak   |
| 2   | 107.8877  | 31.75    | -13.97  | 17.78    | 43.50    | -25.72 | 100    | 100    | peak   |
| 3   | 297.2241  | 33.27    | -7.47   | 25.80    | 46.00    | -20.20 | 51     | 100    | peak   |
| 4   | 716.6820  | 29.48    | -2.40   | 27.08    | 46.00    | -18.92 | 127    | 100    | peak   |
| 5   | 842.1296  | 28.88    | -0.33   | 28.55    | 46.00    | -17.45 | 119    | 100    | peak   |







| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 43.0505   | 34.25    | -13.16  | 21.09    | 40.00    | -18.91 | 246    | 100    | peak   |
| 2   | 54.6429   | 33.10    | -13.12  | 19.98    | 40.00    | -20.02 | 291    | 100    | peak   |
| 3   | 102.3597  | 32.46    | -14.26  | 18.20    | 43.50    | -25.30 | 88     | 100    | peak   |
| 4   | 247.6819  | 30.81    | -9.82   | 20.99    | 46.00    | -25.01 | 248    | 100    | peak   |
| 5   | 297.2241  | 42.38    | -7.47   | 34.91    | 46.00    | -11.09 | 140    | 100    | peak   |
| 6   | 982.6200  | 29.20    | 3.77    | 32.97    | 54.00    | -21.03 | 158    | 100    | peak   |







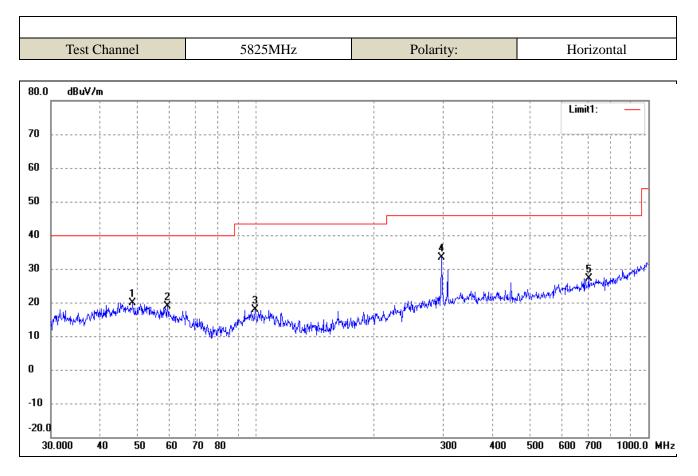

| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 48.6719   | 33.84    | -12.82  | 21.02    | 40.00    | -18.98 | 69     | 100    | peak   |
| 2   | 96.0986   | 33.23    | -15.04  | 18.19    | 43.50    | -25.31 | 158    | 100    | peak   |
| 3   | 297.2241  | 33.18    | -7.47   | 25.71    | 46.00    | -20.29 | 117    | 100    | peak   |
| 4   | 833.3171  | 28.96    | -0.59   | 28.37    | 46.00    | -17.63 | 91     | 100    | peak   |
| 5   | 965.5421  | 29.05    | 3.20    | 32.25    | 54.00    | -21.75 | 320    | 100    | peak   |







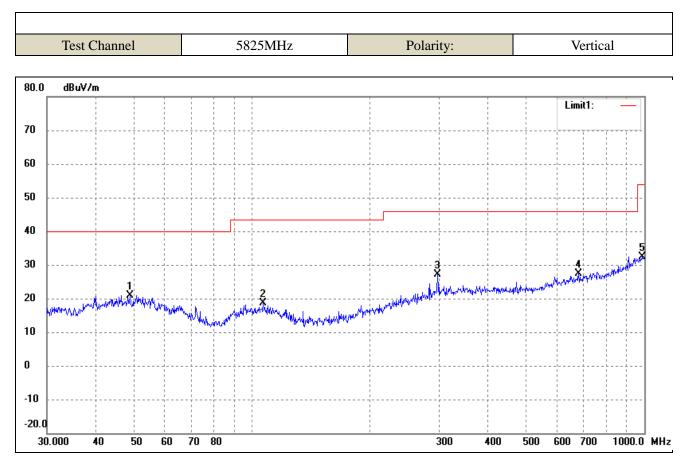
| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 54.2610   | 34.43    | -13.05  | 21.38    | 40.00    | -18.62 | 186    | 100    | peak   |
| 2   | 103.0800  | 32.13    | -14.21  | 17.92    | 43.50    | -25.58 | 126    | 100    | peak   |
| 3   | 297.2241  | 40.83    | -7.47   | 33.36    | 46.00    | -12.64 | 92     | 100    | peak   |
| 4   | 446.4141  | 33.42    | -6.44   | 26.98    | 46.00    | -19.02 | 92     | 100    | peak   |
| 5   | 975.7529  | 29.78    | 3.53    | 33.31    | 54.00    | -20.69 | 227    | 100    | peak   |








| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 42.6000   | 33.40    | -13.22  | 20.18    | 40.00    | -19.82 | 50     | 100    | peak   |
| 2   | 108.6470  | 32.09    | -13.95  | 18.14    | 43.50    | -25.36 | 96     | 100    | peak   |
| 3   | 297.2241  | 31.59    | -7.47   | 24.12    | 46.00    | -21.88 | 124    | 100    | peak   |
| 4   | 625.0780  | 29.65    | -3.76   | 25.89    | 46.00    | -20.11 | 137    | 100    | peak   |
| 5   | 1000.0000 | 27.91    | 4.04    | 31.95    | 54.00    | -22.05 | 279    | 100    | peak   |






| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 48.5016   | 32.71    | -12.81  | 19.90    | 40.00    | -20.10 | 236    | 100    | peak   |
| 2   | 59.4405   | 33.28    | -14.50  | 18.78    | 40.00    | -21.22 | 140    | 100    | peak   |
| 3   | 99.5281   | 32.34    | -14.53  | 17.81    | 43.50    | -25.69 | 70     | 100    | peak   |
| 4   | 297.2241  | 40.74    | -7.47   | 33.27    | 46.00    | -12.73 | 145    | 100    | peak   |
| 5   | 704.2261  | 29.81    | -2.56   | 27.25    | 46.00    | -18.75 | 157    | 100    | peak   |







| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 48.8429   | 33.78    | -12.83  | 20.95    | 40.00    | -19.05 | 64     | 100    | peak   |
| 2   | 106.7587  | 32.64    | -14.00  | 18.64    | 43.50    | -24.86 | 158    | 100    | peak   |
| 3   | 297.2241  | 34.52    | -7.47   | 27.05    | 46.00    | -18.95 | 90     | 100    | peak   |
| 4   | 679.9600  | 30.22    | -2.93   | 27.29    | 46.00    | -18.71 | 338    | 100    | peak   |
| 5   | 986.0717  | 28.53    | 3.82    | 32.35    | 54.00    | -21.65 | 85     | 100    | peak   |



- Spurious Emission above 1GHz
- ➢ Worst case at MIMO
- Antenna Type 1
- Harmonics And Spurious Emissions

| Frequency<br>MHz | Detector | Meter<br>Reading<br>dBuV | Direction<br>Degree | Polar<br>H / V | Antenna<br>Loss<br>dB | Cable loss<br>dB | Amplifier<br>dB | Correction<br>Amplitude<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB |
|------------------|----------|--------------------------|---------------------|----------------|-----------------------|------------------|-----------------|-----------------------------------|-----------------|--------------|
|                  |          |                          |                     | Low            | Channel (5            | 5180MHz)         |                 |                                   |                 |              |
| 10380            | РК       | 51.7                     | 360                 | V              | 40.7                  | 8.9              | 39.6            | 62.9                              | 74              | -11.1        |
| 10380            | PK       | 49.2                     | 360                 | Н              | 40.7                  | 8.9              | 39.6            | 57.9                              | 74              | -16.1        |
| 10380            | AV       | 37.0                     | 360                 | V              | 40.7                  | 8.9              | 39.6            | 46.7                              | 54              | -7.3         |
| 10380            | AV       | 36.0                     | 360                 | Н              | 40.7                  | 8.9              | 39.6            | 45.2                              | 54              | -8.8         |
|                  |          |                          |                     | High           | Channel (5            | 5230MHz)         |                 |                                   |                 |              |
| 10460            | PK       | 52.8                     | 360                 | V              | 40.7                  | 10.5             | 39.6            | 65.0                              | 74              | -9.0         |
| 10460            | РК       | 52.0                     | 360                 | Н              | 40.7                  | 10.5             | 39.6            | 64.5                              | 74              | -9.5         |
| 10460            | AV       | 36.8                     | 360                 | V              | 40.7                  | 10.5             | 39.6            | 49.7                              | 54              | -4.3         |
| 10460            | AV       | 35.1                     | 360                 | Н              | 40.7                  | 10.5             | 39.6            | 47.1                              | 54              | -6.9         |

| Teat CII                                 | Test Segment | Result  | Limit   |  |  |  |  |
|------------------------------------------|--------------|---------|---------|--|--|--|--|
| Test CH.                                 | MHz          | dBm/MHz | dBm/MHz |  |  |  |  |
| Lowest                                   | Below 5150   | -44.22  | -27     |  |  |  |  |
| Highest                                  | Above 5350   | -45.12  | -27     |  |  |  |  |
| Note: the data just list the worst cases |              |         |         |  |  |  |  |



# ► For the frequency band 5.725-5.850GHz

| Frequency<br>MHz | Detector | Meter<br>Reading<br>dBuV | Direction<br>Degree | Polar<br>H / V | Antenna<br>Loss<br>dB | Cable loss<br>dB | Amplifier<br>dB | Correction<br>Amplitude<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB |
|------------------|----------|--------------------------|---------------------|----------------|-----------------------|------------------|-----------------|-----------------------------------|-----------------|--------------|
|                  |          |                          |                     | Low            | Channel (5            | 5725MHz)         |                 |                                   |                 |              |
| 11490            | PK       | 49.3                     | 155                 | V              | 38.9                  | 11.2             | 40.1            | 58.4                              | 74              | -15.6        |
| 11490            | PK       | 51.0                     | 171                 | Н              | 38.9                  | 11.2             | 40.1            | 61.6                              | 74              | -12.4        |
| 11490            | AV       | 37.3                     | 151                 | V              | 38.9                  | 11.2             | 40.1            | 46.8                              | 54              | -7.2         |
| 11490            | AV       | 38.9                     | 216                 | Н              | 38.9                  | 11.2             | 40.1            | 49.4                              | 54              | -4.6         |
|                  |          |                          |                     | High           | Channel (5            | 5825MHz)         |                 |                                   |                 |              |
| 11650            | PK       | 48.9                     | 158                 | V              | 38.9                  | 11.5             | 40.1            | 59.4                              | 74              | -14.6        |
| 11650            | PK       | 49.4                     | 308                 | Н              | 38.9                  | 11.5             | 40.1            | 58.8                              | 74              | -15.2        |
| 11650            | AV       | 37.4                     | 285                 | V              | 38.9                  | 11.5             | 40.1            | 47.4                              | 54              | -6.6         |
| 11650            | AV       | 40.6                     | 246                 | Н              | 38.9                  | 11.5             | 40.1            | 51.3                              | 54              | -2.7         |

# Harmonics And Spurious Emissions

| Test CII                                 | Test Segment | Result  | Limit   |  |  |  |
|------------------------------------------|--------------|---------|---------|--|--|--|
| Test CH.                                 | MHz          | dBm/MHz | dBm/MHz |  |  |  |
| Lowest                                   | Below 5715   | -39.65  | -27     |  |  |  |
| Lowest                                   | 5715 to 5725 | -27.24  | -17     |  |  |  |
| II. sha st                               | 5850 to 5860 | -28.31  | -17     |  |  |  |
| Highest                                  | Above 5860   | -36.56  | -27     |  |  |  |
| Note: the data just list the worst cases |              |         |         |  |  |  |



### Antenna Type 2

# Harmonics And Spurious Emissions

| Frequency<br>MHz | Detector | Meter<br>Reading<br>dBuV | Direction<br>Degree | Polar<br>H / V | Antenna<br>Loss<br>dB | Cable loss<br>dB | Amplifier<br>dB | Correction<br>Amplitude<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB |
|------------------|----------|--------------------------|---------------------|----------------|-----------------------|------------------|-----------------|-----------------------------------|-----------------|--------------|
|                  |          |                          |                     | Low            | Channel (5            | 5180MHz)         |                 |                                   |                 |              |
| 10380            | РК       | 52.6                     | 360                 | V              | 40.7                  | 8.9              | 39.6            | 62.5                              | 74              | -11.5        |
| 10380            | РК       | 48.8                     | 360                 | Н              | 40.7                  | 8.9              | 39.6            | 59.1                              | 74              | -14.9        |
| 10380            | AV       | 36.7                     | 360                 | V              | 40.7                  | 8.9              | 39.6            | 46.4                              | 54              | -7.6         |
| 10380            | AV       | 37.4                     | 360                 | Н              | 40.7                  | 8.9              | 39.6            | 48.9                              | 54              | -5.1         |
|                  |          |                          |                     | High           | Channel (S            | 5230MHz)         |                 |                                   |                 |              |
| 10460            | РК       | 53.4                     | 360                 | V              | 40.7                  | 10.5             | 39.6            | 64.4                              | 74              | -9.6         |
| 10460            | РК       | 52.4                     | 360                 | Н              | 40.7                  | 10.5             | 39.6            | 63.1                              | 74              | -10.9        |
| 10460            | AV       | 38.0                     | 360                 | V              | 40.7                  | 10.5             | 39.6            | 48.2                              | 54              | -5.8         |
| 10460            | AV       | 34.9                     | 360                 | Н              | 40.7                  | 10.5             | 39.6            | 46.5                              | 54              | -7.5         |

| Test CII                                 | Test Segment | Result  | Limit   |  |  |  |  |
|------------------------------------------|--------------|---------|---------|--|--|--|--|
| Test CH.                                 | MHz          | dBm/MHz | dBm/MHz |  |  |  |  |
| Lowest                                   | Below 5150   | -45.20  | -27     |  |  |  |  |
| Highest                                  | Above 5350   | -44.91  | -27     |  |  |  |  |
| Note: the data just list the worst cases |              |         |         |  |  |  |  |



# ► For the frequency band 5.725-5.850GHz

| Frequency<br>MHz | Detector | Meter<br>Reading<br>dBuV | Direction<br>Degree | Polar<br>H / V | Antenna<br>Loss<br>dB | Cable loss<br>dB | Amplifier<br>dB | Correction<br>Amplitude<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB |
|------------------|----------|--------------------------|---------------------|----------------|-----------------------|------------------|-----------------|-----------------------------------|-----------------|--------------|
|                  |          |                          |                     | Low            | Channel (5            | 725MHz)          |                 |                                   |                 |              |
| 11490            | PK       | 50.8                     | 125                 | V              | 38.9                  | 11.2             | 40.1            | 61.7                              | 74              | -12.3        |
| 11490            | PK       | 51.7                     | 138                 | Н              | 38.9                  | 11.2             | 40.1            | 60.6                              | 74              | -13.4        |
| 11490            | AV       | 38.4                     | 221                 | V              | 38.9                  | 11.2             | 40.1            | 47.4                              | 54              | -6.6         |
| 11490            | AV       | 39.5                     | 105                 | Н              | 38.9                  | 11.2             | 40.1            | 50.8                              | 54              | -3.2         |
|                  |          |                          |                     | High           | Channel (5            | 5825MHz)         |                 |                                   |                 |              |
| 11650            | PK       | 49.1                     | 62                  | V              | 38.9                  | 11.5             | 40.1            | 60.8                              | 74              | -13.2        |
| 11650            | PK       | 50.1                     | 250                 | Н              | 38.9                  | 11.5             | 40.1            | 61.1                              | 74              | -12.9        |
| 11650            | AV       | 37.8                     | 221                 | V              | 38.9                  | 11.5             | 40.1            | 48.3                              | 54              | -5.7         |
| 11650            | AV       | 40.4                     | 158                 | Н              | 38.9                  | 11.5             | 40.1            | 50.4                              | 54              | -3.6         |

#### Harmonics And Spurious Emissions

| Test CII                                 | Test Segment | Result  | Limit   |  |  |  |
|------------------------------------------|--------------|---------|---------|--|--|--|
| Test CH.                                 | MHz          | dBm/MHz | dBm/MHz |  |  |  |
| Lowest                                   | Below 5715   | -35.85  | -27     |  |  |  |
| Lowest                                   | 5715 to 5725 | -26.12  | -17     |  |  |  |
| II: -14                                  | 5850 to 5860 | -27.52  | -17     |  |  |  |
| Highest                                  | Above 5860   | -36.88  | -27     |  |  |  |
| Note: the data just list the worst cases |              |         |         |  |  |  |



# 9. Frequency Stability

### 9.1 Standard Applicable

According to §15.407(g), Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

#### 9.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

#### 9.3 Summary of Test Results/Plots

| U-NII-1:5150-5250MHz worst case at frequency 5190MHz |            |          |              |           |  |  |
|------------------------------------------------------|------------|----------|--------------|-----------|--|--|
| Voltage(%)                                           | Power(VDC) | TEMP(°C) | Freq.Dev(Hz) | Deviation |  |  |
| 100%                                                 |            | -30      | 124          | 0.0240    |  |  |
| 100%                                                 |            | -20      | 128          | 0.0247    |  |  |
| 100%                                                 |            | -10      | 156          | 0.0301    |  |  |
| 100%                                                 |            | 0        | 135          | 0.0260    |  |  |
| 100%                                                 | 14.8V      | +10      | 135          | 0.0260    |  |  |
| 100%                                                 |            | +20      | 160          | 0.0308    |  |  |
| 100%                                                 |            | +30      | 127          | 0.0245    |  |  |
| 100%                                                 |            | +40      | 175          | 0.0337    |  |  |
| 100%                                                 |            | +50      | 147          | 0.0284    |  |  |
| Low Battery power                                    | 7          | +20      | 124          | 0.0240    |  |  |
| High Battery power                                   | 36         | +20      | 128          | 0.0247    |  |  |



| U-NII-1:5725-5850MHz worst case at frequency 5745MHz |            |          |              |           |  |  |  |
|------------------------------------------------------|------------|----------|--------------|-----------|--|--|--|
| Voltage(%)                                           | Power(VDC) | TEMP(°C) | Freq.Dev(Hz) | Deviation |  |  |  |
| 100%                                                 |            | -30      | 127          | 0.0222    |  |  |  |
| 100%                                                 |            | -20      | 149          | 0.0259    |  |  |  |
| 100%                                                 |            | -10      | 182          | 0.0317    |  |  |  |
| 100%                                                 |            | 0        | 143          | 0.0249    |  |  |  |
| 100%                                                 | 14.8V      | +10      | 154          | 0.0267    |  |  |  |
| 100%                                                 |            | +20      | 156          | 0.0271    |  |  |  |
| 100%                                                 |            | +30      | 126          | 0.0219    |  |  |  |
| 100%                                                 |            | +40      | 156          | 0.0272    |  |  |  |
| 100%                                                 |            | +50      | 160          | 0.0279    |  |  |  |
| Low Battery power                                    | 7          | +20      | 127          | 0.0222    |  |  |  |
| High Battery power                                   | 36         | +20      | 149          | 0.0259    |  |  |  |

\*\*\*\*\* END OF REPORT \*\*\*\*\*