

Electromagnetic Compatibility Test Report

Tests Performed on a Firefly Integrations, LLC's

CAN bus to BLE and Ethernet BridgeTransceiver, Model Eclipse

Radiometrics Document RP-8824

Product L	Detail:						
FCC IE	FCC ID: 2AN2GECLIPSERVC						
IC: 233	IC: 23328-ECLIPSERVC						
	Equipment type: DXX						
	ower transmitter FCC 1	5.249					
Test Star	, a a, a o,						
	R Title 47, Chapter I, F		2				
	art 15 CFR Title 47: 20						
Canada	a ISED; RSS-210, Issu	e 9: 2016 as required	I for Cate	egory I Equipment			
This re	This report concerns: Original Grant for Certification						
Tests Pe	Tests Performed For: Test Facility:						
Firefly Integrations, LLCRadiometrics Midwest Corporation				•			
	1013 Elroy Dr.			12 Devonwood Avenue			
Middlebury, IN 46540				ville, IL 60446-1349			
			(815) 2	93-0772			
	e(s): (Month-Day-Year)						
Februa	ary 27 thru April 3, 2018						
Docum	ent RP-8824 Revisions):					
Rev.	Issue Date	Affected Sections		Revised By			
0	May 4, 2018						
1	May 15, 2018	2, 4.1, 10, 11.1.3, 1	1.3	Joseph Strzelecki			
2	May 16, 2018	11.3		Joseph Strzelecki			

Table of Contents

1.0ADMINISTRATIVE DATA	
2.0TEST SUMMARY AND RESULTS	3
2.1 RF Exposure Compliance Requirements	3
3.0EQUIPMENT UNDER TEST (EUT) DETAILS	4
3.1 EUT Description	
3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements	4
4.0TESTED SYSTEM DETAILS	4
4.1 Tested System Configuration	4
4.2 Special Accessories	4
4.3 Equipment Modifications	
5.0TEST SPECIFICATIONS	5
6.0TEST PROCEDURE DOCUMENTS	5
7.0RADIOMETRICS' TEST FACILITIES	
8.0DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS	
9.0CERTIFICATION	
10.0TEST EQUIPMENT TABLE	
11.0TEST SECTIONS	7
11.1 Radiated RF Emissions	7
11.1.1 Field Strength Calculation	7
11.1.2 Duty Cycle	8
11.1.3 Radiated Emissions Test Results1	0
11.2 Occupied Bandwidth Data1	
11.3 Peak Output Power1	6
11.3.1 Measurement Instrumentation Uncertainty1	7

Notice: This report must not be reproduced (except in full) without the written approval of Radiometrics Midwest Corporation.

1.0 ADMINISTRATIVE DATA

Equipment Under Test:	
A Firefly Integrations, CAN bus to BLE and Ethe	rnet Bridge
Model: Eclipse Serial Number: none	
This will be referred to as the EUT in this Report	
Date EUT Received at Radiometrics: (Month-Day-Year)	Test Date(s): (Month-Day-Year)
February 26, 2018	February 26 thru April 3, 2018
Test Report Written By:	Test Witnessed By:
Joseph Strzelecki	The tests were not witnessed by Firefly
Senior EMC Engineer	Integrations, LLC
Radiometrics' Personnel Responsible for Test:	Test Report Authorized By
Joseph Strzelecki	Chris W. Carlson
Joseph Strzelecki	Chris W. Carlson
Senior EMC Engineer	Director of Engineering
NARTE EMC-000877-NE	NARTE EMC-000921-NE

2.0 TEST SUMMARY AND RESULTS

The EUT (Equipment Under Test) is a BLE converter, Model Eclipse, manufactured by Firefly Integrations, LLC. The detailed test results are presented in a separate section. The following is a summary of the test results.

Emissions Tests Results						
Environmental Phenomena	Frequency Range	Basic Standard	Test Result			
RF Radiated Emissions	30-25,000 MHz	FCC Part 15.249 RSS-210 & RSS-GEN	Pass			
Occupied Bandwidth Test	Fundamental Freq.	FCC Part 15 RSS-210 & RSS-GEN	Pass			

No AC conducted emissions were performed, since the EUT is for installations in vehicles and will not be connected to AC mains.

Note: The RSS-210 specification is not currently covered in Radiometrics' Scope of Accreditation. This is technically very similar to FCC, CFR 47 Part 15 which is on Radiometrics scope.

2.1 RF Exposure Compliance Requirements

Since the power output is less than 10 mW, the EUT meets the FCC requirement for RF exposure and it is exempt from RSS-102 SAR and RF exposure evaluations. There are no power level adjustments available to the end user. The antenna is permanently attached.

3.0 EQUIPMENT UNDER TEST (EUT) DETAILS

3.1 EUT Description

The EUT is a BLE converter, Model Eclipse, manufactured by Firefly Integrations, LLC. The EUT was in good working condition during the tests, with no known defects.

3.1.1 FCC Section 15.203 & RSS-GEN Antenna Requirements

The antenna is permanently attached to the printed circuit board. Therefore, it meets the 15.203 requirements.

4.0 TESTED SYSTEM DETAILS

4.1 Tested System Configuration

The system was configured for testing in a typical fashion. The EUT was placed on an 80-cm or 150 cm high, nonconductive test stand. The testing was performed in conditions as close as possible to installed conditions. Wiring was consistent with manufacturer's recommendations.

Since the EUT can be mounted upright or flat in a vehicle, it was tested in both orientations on a test stand during the tests. Power was supplied with a new battery.

The identification for all equipment, plus descriptions of all cables used in the tested system, are:

Tested Sy	stem Configuration List
-----------	-------------------------

Item	Description Type*		Manufacturer	Model Number Serial Nun	
1	BLE converter	E	Firefly Integrations, LLC	Eclipse	none

* Type: E = EUT, P = Peripheral, S = Support Equipment; H = Host Computer

List of System Cables

	QTY	Length (m)	Cable Description	Shielded?
	1	1.0	DC Cord to battery	No
ĺ	1	1.8	Ethernet cable to router or termination	No

4.2 Special Accessories

No special accessories were used during the tests in order to achieve compliance.

4.3 Equipment Modifications

No modifications were made to the EUT at Radiometrics' test facility in order to comply with the standards listed in this report.

5.0 TEST SPECIFICATIONS

Document	Date	Title
FCC CFR Title 47	2017	Code of Federal Regulations Title 47, Chapter 1, Federal Communications Commission, Part 15 - Radio Frequency Devices
IC RSS-210 Issue 9	2016	Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands) Category I Equipment
IC RSS-Gen Issue 4	2014	General Requirements and Information for the Certification of Radiocommunication Equipment (RSS-Gen)

6.0 TEST PROCEDURE DOCUMENTS

The tests were performed using the procedures from the following specifications:

Document	Date	Title
ANSI C63.4-2014	2014	Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	2013	American National Standard for Testing Unlicensed Wireless Devices

7.0 RADIOMETRICS' TEST FACILITIES

The results of these tests were obtained at Radiometrics Midwest Corp. in Romeoville, Illinois, USA. Radiometrics is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025: 2005 "General Requirements for the Competence of Calibration and Testing Laboratories". Radiometrics' Lab Code is 121191 and Certification Number is 1495.01. Radiometrics' scope of accreditation includes all of the test methods listed herein. A copy of the accreditation can be accessed on our web site (www.radiomet.com). Radiometrics accreditation status can be verified at A2LA's web site (www.a2la2.org).

The following is a list of shielded enclosures located in Romeoville, Illinois used during the tests:

- Chamber E: Is a custom made anechoic chamber that measures 52' L X 30' W X 18' H. The walls and ceiling are fully lined with RF absorber. Pro-shield of Collinsville, Oklahoma manufactured the chamber. The floor has a 9' x 9' section of microwave absorber for testing above 1 GHz.
- Test Station F: Is an area that measures 10' D X 12' W X 10' H. The floor and back wall are metal shielded. This area is used for conducted emissions measurements.

A separate ten-foot long, brass plated, steel ground rod attached via a 6-inch copper braid grounds each of the above chambers. Each enclosure is also equipped with low-pass power line filters.

The FCC has accepted these sites as test site number US1065. The FCC test site Registration Number is 732175. Details of the site characteristics are on file with the Industry Canada as site number IC 3124A-01.

A complete list of the test equipment is provided herein. The calibration due dates are indicated on the equipment list. The equipment is calibrated in accordance to ANSI/NCSL Z540-1 with traceability to the National Institute of Standards and Technology (NIST).

8.0 DEVIATIONS AND EXCLUSIONS FROM THE TEST SPECIFICATIONS

There were no deviations or exclusions from the test specifications.

9.0 CERTIFICATION

Radiometrics Midwest Corporation certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specification and the data contained herein was taken with calibrated test equipment. The results relate only to the EUT listed herein.

10.0 TEST EQUIPMENT TABLE

					Frequency	Cal	
RMC ID	Manufacturer	Description	Model No.	Serial No.	Range	Period	Cal Date
AMP-05	RMC/Celeritek	Pre-amplifier	MW110G	1001	1.0-12GHz	12 Mo.	01/17/18
AMP-20	Avantek	Pre-amplifier	SF8-0652	15221	8-18GHz	12 Mo	04/11/17
AMP-22	Anritsu	Pre-amplifier	MH648A	M23969	0.1-1200MHz	12 Mo.	01/17/18
AMP-59	Amplitech	Pre-amplifier	APTMP44	AMP-59	18-26 GHz	12 Mo.	01/04/18
ANT-04	Tensor	Biconical Antenna	4104	2246	20-250MHz	24 Mo.	05/16/16
ANT-06	EMCO	Log-Periodic Ant.	3146	1248	200-1000MHz	24 Mo.	12/05/17
ANT-13	EMCO	Horn Antenna	3115	2502	1.0-18GHz	24 Mo.	12/28/16
ANT-48	RMC	Std Gain Horn	HW2020	1001	18-26 GHz	36 Mo.	12/15/15
ANT-66	ETS-Lindgren	Horn Antenna	3115	62580	1.0-18GHz	24 Mo.	02/15/17
CAB-106A	Teledyne	Coaxial Cable	N/A	1090	DC-2 GHz	24 Mo.	04/21/16
CAB-1090	Teledyne	Coaxial Cable	N/A	1090	DC-18 GHz	24 Mo.	04/19/16
CAB-160B	Teledyne	Coaxial Cable	N/A	1090	DC-18 GHz	24 Mo.	04/21/16
							03/31/16
HPF-06	Mini-Circuits	High Pass Filter	VHF-3800+	31035	3-11 GHz	24 Mo.	04/04/18
				33330A00135			
REC-20	HP / Agilent	Spectrum Analyzer	85460A/84562A	3410A00178	30Hz-6GHz	24 Mo.	07/13/16
REC-21	Agilent	Spectrum Analyzer	E7405A	MY45118341	9Hz-26.5 GHz	24 Mo.	01/06/18
REC-43	Adventest	Spectrum Analyzer	U3772	150800305	9Hz-43GHz	24 Mo.	04/19/17
THM-02	Fluke	Temp/Humid Meter	971	93490471	N/A	24 Mo.	10/17/17

Note: All calibrated equipment is subject to periodic checks.

All tests were performed with equipment that was in its valid calibration period.

Software Company	Test Software Name	Version	Applicable Tests
Radiometrics	REREC11D	01.05.16	RF Radiated Emissions (FCC Part 15 & EN 55011/22)
Agilent	PSA/ESA-E/L/EMC	2.4.0.42	Bandwidth and screen shots

11.0 TEST SECTIONS

11.1 Radiated RF Emissions

Radiated emission measurements were performed with linearly polarized broadband antennas. The results obtained with these antennas can be correlated with results obtained with a tuned dipole antenna. The radiated emission measurements were performed with a spectrum analyzer. The bandwidth used from 150 kHz to 30 MHz is 9 or 10 kHz and the bandwidth from 30 MHz to 1000 MHz is 100 or 120 kHz. Above 1 GHz, a 1 MHz bandwidth is used. A 10 dB linearity check is performed prior to start of testing in order to determine if an overload condition exists. A harmonic mixer was used from 18 to 25 GHz. Figure 4 herein lists the details of the test equipment used during radiated emissions tests.

In addition, a high pass filter was used to reduce the fundamental emission. High pass filters were not needed above 10 GHz, since the preamplifiers attenuated the fundamental emission.

The EUT was rotated through three orthogonal axis as per 5.10.1 of ANSI C63.10 during the radiated tests.

Final radiated emissions measurements were performed inside of an anechoic chamber at a test distance of 3 meters. The anechoic chamber is designated as Chamber E. This Chamber meets the Site Attenuation requirements of ANSI C63.4 and CISPR 16-1. Chamber E is located at 12 East Devonwood Ave. Romeoville, Illinois EMI test lab.

The entire frequency range from 30 to 25,000 MHz was slowly scanned with particular attention paid to those frequency ranges which appeared high. Measurements were performed using two antenna polarizations, (vertical and horizontal). The worst case emissions were recorded. All measurements may be performed using either the peak, average or quasi-peak detector functions. If the peak detector data exceeds or is marginally close to the limits, the measurements are repeated using a quasi-peak detector or average function as required by the specification for final determination of compliance.

The detected emission levels were maximized by rotating the EUT, adjusting the positions of all cables, and by scanning the measurement antenna from 1 to 4 meters above the ground.

11.1.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and by subtracting the Amplifier Gain from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG + HPF + PKA Where: FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain HPF = High pass Filter Loss PKA = Peak to Average Factor (This is only used for average measurements above 1 GHz)

The Peak to average factor is used when average measurements are required. It is calculated by the highest duty cycle in percent over any 100mS transmission.

Note: The actual FCC limits are in uV/m. The data in the results table coverted the limits to dBuV/m. 100 uV/m = 40.0 dBuV/m 150 uV/m = 43.5 dBuV/m 200 uV/m = 46.0 dBuV/m500 uV/m = 54.0 dBuV/m

RP-8824 Rev. 2

11.1.2 Duty Cycle

The Peak to average factor is calculated by the highest duty cycle in percent over any 100mS transmission. The transmitter sends the data in 256.7 microsecond pulses. At most, there are 77 of these transmissions in any 100 mSec. 0.2567 milliseconds x 77 = 19.77 milliseconds. The transmitter operates for a maximum duration of 19.77 ms in any 100 ms interval for a 19.77% maximum duty cycle.

20 Log*(19.77 mSec/100mSec) = -14.1 dB Peak to Average correction factor.

In accordance to 7.5 of ANSI C63.10 the following procedures were used.

a) The EUT was set to the "worst-case" pulse ON time.

b) The RF output was Coupled to the input of a spectrum analyzer by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display.

c) The center frequency of the spectrum analyzer was set to the center of the RF signal.

d) The spectrum analyzer was set for ZERO SPAN.

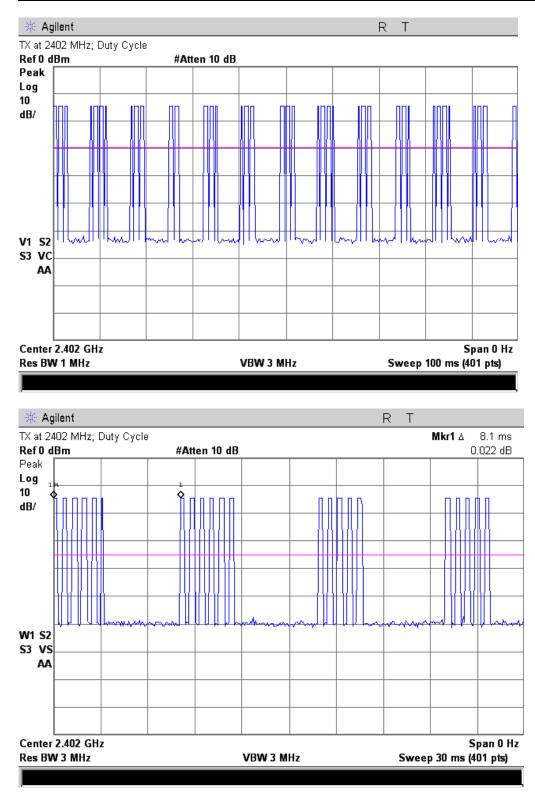
e) The sweep time was of the analyzer was set to 100 ms and other times to show the duty cycle.

f) Since the pulse train has a period that exceeds 100 ms, or as an alternative to step f), then:

1) The trigger on the spectrum analyzer was set to capture the greatest amount of pulse "ON time" over 100 ms.

2) The 100 ms period that contains the maximum "on time" was found.

3) The duty cycle was determined by dividing the total maximum "ON time" by 100 ms (tON/100 ms).


h) The duty cycle correction factor was used applying Equation (10) of ANSI C63.10 to the duty cycle determined in the preceding steps.

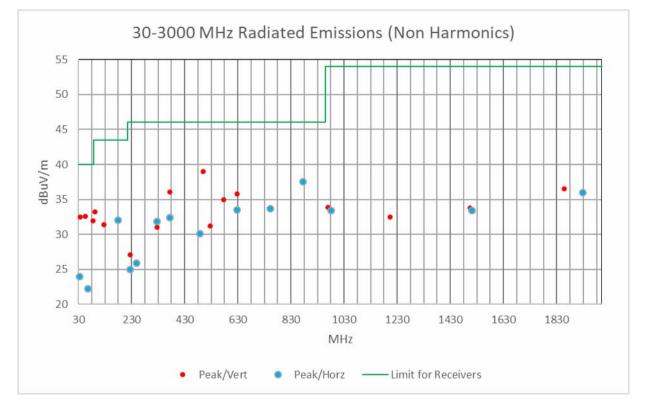
	· • •
	C1 – Width
	C1 –Width 256.703µs
	€ 1
Chi 10.0mV Μ 50.0μs Chi λ -6.0m	√ 29 Mar 2018 10:40:04

The width of each pulse is 256.7 uSec.

Radiometrics Midwest Corporation

Testing of the Firefly Integrations, LLC, Model Eclipse, CAN bus to BLE and Ethernet Bridge

There are, at most, 6 pulses in every pulse train. The pulse trains are separated by 8.1 mSec. There are 12 full pulse trains, with 5 additional pulses for a total of 77 pulses.


11.1.3 Radiated Emissions Test Results

Test Date	03/23 & 26/2018
Test Distance	3 Meters
Specification	FCC Part 15 Subpart C & RSS-210 Section B.10
Abbreviations	Pol = Antenna Polarization; $V = Vertical; H = Horizontal; P = peak; Q = QP$

All emissions except Fundamental and Harmonics; Emissions in Transmit Mode

	Meter	i unuai	Incintai		Cable &	Dist.		III WOUC	Margin	
Freq.	Reading		Ant.	Ant	Amp	Fact	EUT	Limit	Under	
MHz	dBuV	Dect.	Pol.	Factor	Factors	dB	dBuV/m	dBuV/m	Limit dB	Note
34.3	12.3	P	Н	11.2	0.5	0.0	24.0	40.0	16.0	
64.8	11.2	Р	Н	10.3	0.7	0.0	22.2	40.0	17.8	
158.6	17.0	Q	Н	14.3	1.1	0.0	32.4	43.5	11.1	
180.1	11.6	Р	Н	19.3	1.1	0.0	32.0	43.5	11.5	
224.9	13.2	Р	Н	10.6	1.2	0.0	25.0	46.0	21.0	
249.8	13.0	Р	Н	11.6	1.3	0.0	25.9	46.0	20.1	
325.3	16.1	Р	Н	14.2	1.5	0.0	31.8	46.0	14.2	
375.2	15.8	Р	Н	15.0	1.6	0.0	32.4	46.0	13.6	
487.7	10.5	Р	Н	17.7	1.9	0.0	30.1	46.0	15.9	
626.3	12.3	Р	Н	19.1	2.1	0.0	33.5	46.0	12.5	
751.3	11.2	Р	Н	20.1	2.4	0.0	33.7	46.0	12.3	
876.3	12.5	Р	Н	22.4	2.6	0.0	37.5	46.0	8.5	
981.3	8.0	Р	H	22.7	2.7	0.0	33.4	54.0	20.6	
1512.5	41.4	Р	H	25.1	-33.1	0.0	33.4	74.0	40.6	1
1927.5	41.6	Р	H	27.2	-32.8	0.0	36.0	74.0	38.0	1
2197.5	40.7	Р	Н	27.7	-32.5	0.0	35.9	74.0	38.1	1
2517.5	40.8	Р	Н	28.5	-32.1	0.0	37.2	74.0	36.8	1
2947.5	42.4	Р	Н	29.8	-31.6	0.0	40.6	74.0	33.4	1
36.0	20.4	Р	V	11.6	0.5	0.0	32.5	40.0	7.5	
43.3	22.1	Q	V	12.6	0.5	0.0	35.2	40.0	4.8	
50.6	20.0	Q	V	12.7	0.6	0.0	33.3	40.0	6.7	
56.7	19.8	Р	V	12.2	0.6	0.0	32.6	40.0	7.4	
85.9	21.3	Р	V	9.8	0.8	0.0	31.9	40.0	8.1	
92.3	21.4	Р	V	11.0	0.8	0.0	33.2	43.5	10.3	
125.0	15.9	Р	V	14.6	0.9	0.0	31.4	43.5	12.1	
158.6	24.1	Q	V	14.3	1.1	0.0	39.5	43.5	4.0	
165.0	22.2	Q	V	15.8	1.1	0.0	39.1	43.5	4.4	
224.9	15.3	Р	V	10.6	1.2	0.0	27.1	46.0	18.9	
325.3	15.3	Р	V	14.2	1.5	0.0	31.0	46.0	15.0	
375.2	19.5	Р	V	15.0	1.6	0.0	36.1	46.0	9.9	
499.7	18.3	Р	V	18.8	1.9	0.0	39.0	46.0	7.0	
526.3	12.2	Р	V	17.0	2.0	0.0	31.2	46.0	14.8	
576.3	14.3	Р	V	18.6	2.1	0.0	35.0	46.0	11.0	
626.3	14.6	Р	V	19.1	2.1	0.0	35.8	46.0	10.2	
751.3	11.3	Р	V	20.1	2.4	0.0	33.8	46.0	12.2	
970.0	8.9	Р	V	22.3	2.7	0.0	33.9	54.0	20.1	
1202.5	40.8	Р	V	24.9	-33.2	0.0	32.5	74.0	41.5	1
1505.0	41.8	Р	V	25.1	-33.1	0.0	33.8	74.0	40.2	1
1857.5	42.4	Р	V	26.9	-32.8	0.0	36.5	74.0	37.5	1
2177.5	41.2	Р	V	27.6	-32.6	0.0	36.2	74.0	37.8	1
2962.5	42.3	Р	V	29.9	-31.6	0.0	40.6	74.0	33.4	1

Note 1: Peak Reading under the Average limit, therefore no Average reading is required. Judgment: Passed by at least 4.0 dB

Radiated emissions in a graphical format. The above chart is the same data as the previous table.

Radiometrics Midwest Corporation

Testing of the Firefly Integrations, LLC, Model Eclipse, CAN bus to BLE and Ethernet Bridge

i unua	undammental and Harmonic Emissions FCC 15.249, Three axis tested															
		Spectrum Analyzer Readings							EUT	Peak	Ave	Peak	Ave	Margin		
hrm	Тx		Peak		Ave	e Peak Ave			Corr.	Emission	Tot. FS		Limit		Under	
		Ve	ertical Polarization		Hori	Horizontal Polarization			Freq							
#	Freq	Х	Y	ΖN	1ax	Х	Y	Z	Max	Fact.	MHz	dBu	V/m	dBu	V/m	Limit
1	2402	58.1	68.3	65.8	54.2	68.9	61.9	65.3	54.8	32.5	2402.0	101.4	87.3	114	94	6.7
BE	2402	12.1	22.3	19.8	8.2	22.9	15.9	19.3	8.8	32.5	2400.0	55.4	41.3	74	54	12.7
2	2402	39.0	45.8	41.6	31.7	49.8	40.4	44.5	35.7	5.9	4804.0	55.7	41.6	74	54	12.4
3	2402	41.6	43.9	42.9	29.8	42.4	41.2	45.9	31.8	10.2	7206.0	56.1	42.0	74	54	12.0
4	2402	39.8	41.2	38.7	27.1	38.8	36.7	38.5	24.7	15.3	9608.0	56.5	42.4	74	54	11.6
1	2440	58.7	65.7	64.3	51.6	68.2	62.3	66.1	54.1	32.5	2440.0	100.7	86.6	114	94	7.4
2	2440	40.3	49.7	41.6	35.6	44.5	40.2	45.0	30.9	5.9	4880.0	55.6	41.5	74	54	12.5
3	2440	40.9	42.1	41.5	28.0	40.9	39.8	44.7	30.6	10.6	7320.0	55.3	41.2	74	54	12.8
4	2440	39.7	38.4	38.0	25.6	40.8	38.2	38.5	26.7	15.9	9760.0	56.7	42.6	74	54	11.4
1	2480	59.0	67.3	64.8	53.2	68.0	59.6	64.2	53.9	32.5	2480.0	100.5	86.4	114	94	7.6
BE	2480	11.6	19.9	17.4	5.8	20.6	12.2	16.8	6.5	32.5	2483.5	53.1	39.0	74	54	15.0
2	2480	40.0	48.8	41.4	34.7	47.6	39.9	44.5	33.5	6.3	4960.0	55.1	41.0	74	54	13.0
3	2480	40.9	41.2	40.3	27.1	41.0	40.6	45.1	31.0	11.0	7440.0	56.1	42.0	74	54	12.0
4	2480	38.0	38.2	41.0	26.9	40.6	38.2	38.6	26.5	16.6	9920.0	57.6	43.5	74	54	10.5
	Column numbers (see below for explanations)															
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Fundammental and Harmonic Emissions FCC 15.249; Three axis tested

Column #1. hrm = Harmonic; BE = Band Edge emissions

Column #2. Frequency of Transmitter.

Column #3. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #4. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #5. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #6. Average Reading based on peak reading reduced by the Duty cycle correction

Column #7. Uncorrected readings from the spectrum analyzer with First Axis Rotation.

Column #8. Uncorrected readings from the spectrum analyzer with Second Axis Rotation.

Column #9. Uncorrected readings from the spectrum analyzer with Third Axis Rotation.

Column #10. Average Reading based on peak reading reduced by the Duty cycle correction

Column #11. Corr. Factors = Cable Loss - Preamp Gain + Antenna Factor

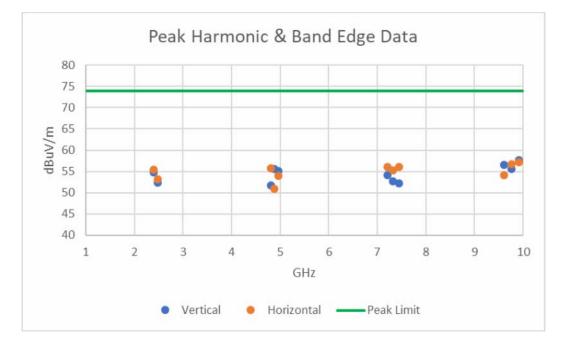
Column #12. Frequency of Tested Emission

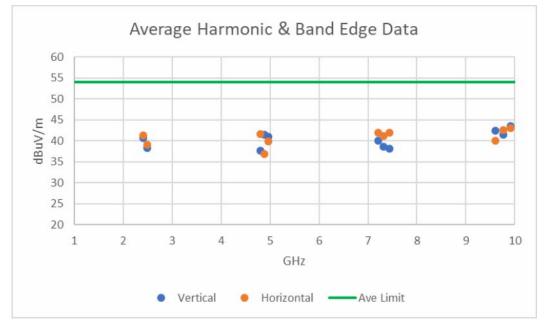
Column #13. Highest peak field strength at listed frequency.

Column #14. Highest Average field strength at listed frequency.

Column #15. Peak Limit. (Fundamental limit is 15.249, Harmonics are 15.209)

Column #16. Average Limit. (Fundamental limit is 15.249, Harmonics are 15.209)

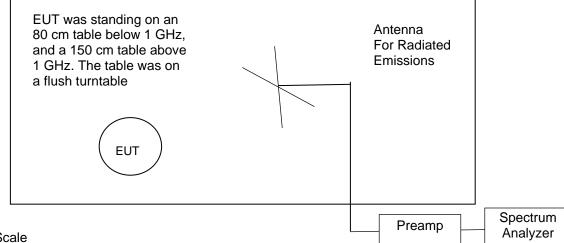

Column #17. The margin (last column) is the worst case margin under the peak or average limits for that row.


Overall Judgment: Passed by 6.7 dB

No other Emissions were detected from 30 to 25,000 MHz within 10 dB of the limits.

Radiometrics Midwest Corporation

Testing of the Firefly Integrations, LLC, Model Eclipse, CAN bus to BLE and Ethernet Bridge



Radiated emissions in a graphical format. The above charts are the same data as the previous table.

Figure 1. Drawing of Radiated Emissions Setup

Chamber E, anechoic

Notes:

- Not to Scale
- Antenna height varied 1-4 meters
- Distance from antenna to tested system is 3 meters

	Receive	Pre-	Spectrum	High Pass
Frequency Range	Antenna	Amplifier	Analyzer	Filter
30 to 200 MHz	ANT-04	Internal	REC-21	None*
200 to 1000 MHz	ANT-06	Internal	REC-21	None*
1 to 10 GHz	ANT-66	AMP-05	REC-21	HPF-06
10 to 18 GHz	ANT-66	AMP-20	REC-21	None*
18 to 25 GHz	ANT-48	AMP-59	REC-21	None*

* A high pass filter was not needed since the fundamental frequency was outside of the amplifier's pass band.

11.2 Occupied Bandwidth Data

The occupied bandwidth of the RF output was measured using a spectrum analyzer. The bandwidth was measured using the peak detector function and a narrow resolution bandwidth.

A broadband antenna was used to receive the modulated signal. The spectrum analyzer was set to the MAX HOLD mode to record the worst case of the modulation. The spectrum analyzer display was digitized and plotted. A limit was drawn on the plots based on the level of the modulated carrier. The plots of the occupied bandwidth for the EUT are supplied on the following page.

Channel MHz	99% EBW MHz
2402	1.06
2440	1.06
2480	1.06

Judgement: Pass

Figure 2. Occupied Bandwidth Plots

11.3 Peak Output Power

The FCC 15.249 and RSS-210 do not require direct connect peak power measurement, but this is used for RF exposure calculations.

The EUT antenna port was connected to the Spectrum analyzer via a low loss coaxial cable. The power output test method from ANSI C63.10 section 6.10.2.1 c) was used for this test. The spectrum analyzer was set to the following settings:

Span = 25 MHz RBW = 3 MHz VBW = 3 MHz Sweep = auto Detector function = peak Trace = max hold

Tested by: Joseph Strzelecki, Richard Tichgelaar Test Date: March 5, 2018

Frequency	Reading	Cable Loss	Output	Power
(MHz)	(dBm)	(dB)	dBm	mWatts
2402	3.4	0.7	4.1	2.57
2440	3.1	0.7	3.8	2.38
2480	3.0	0.7	3.7	2.36

Judgement: None; The data is used for RF exposure calculations only.

11.3.1 Measurement Instrumentation Uncertainty

Measurement	Uncertainty
Radiated Emissions, E-field, 3 meters, 30 to 200 MHz	3.3 dB
Radiated Emissions, E-field, 3 meters, 200 to 1000 MHz	4.9 dB
Radiated Emissions, E-field, 3 meters, 1 to 18 GHz	4.8 dB
Radiated Emissions, E-field, 3 meters, 18 to 26 GHz	5.3 dB
99% Occupied Bandwidth using REC-43	1% of frequency span
Temperature THM-02	0.6 Deg C

The uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2 in accordance with CISPR 16-4-2.