Maximum Permissive Exposure

FCC ID: 2AN2F-17CF102-01
EUT: 10.1" Cloud Picture Frame
M/N: CF101; CF102; CF103; CF105; CF106; CF107; CF108; CF109

1. According to FCC CFR $47 \S 1.1310$, the criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b).

Table 1 Limits for Maximum Permissible Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time (Minutes)	
(A) Limits for Occupational / Control Exposures (f= frequency)					
$30-300$	61.4	0.163	1.0	6	
$300-1500$	---	---	$\mathrm{f} / 300$	6	
$1500-100,000$	---	---	5.0	6	
(B) Limits for General Population / Uncontrolled Exposures (f = frequency)					
$30-300$	27.5	0.073	0.2	30	
$300-1500$	---	---	$\mathrm{f} / 1500$	30	
$1500-100,000$	---	---	1.0	30	

2. MPE Calculation

Guangdong GADMEI Intelligent Technology Co., Ltd. declares that the product described above has been evaluated and found to comply with the RF exposure limits for humans, as specified based on ANSI/FCC recommendation.
RF Exposure Calculations: $\mathrm{S}=(\mathrm{P} * \mathrm{G}) /\left(4 * \pi * \mathrm{r}^{\wedge} 2\right)$ or $\mathrm{r}=\sqrt{(\mathrm{P} * \mathrm{G}) /(4 * \pi * S)}$
2.1. Estimation Result

Mode	CH	Frequency (MHz)	PK Output power (dBm)	Output power (mW)	antenna Gain (dBi)	antenna Gain $($ linear $)$	MPE $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
	CH 1	2412	13.77	23.823	1.92	1.556	0.007378
	CH 6	2437	13.8	23.988	1.92	1.556	0.007429
	CH 11	2462	13.6	22.909	1.92	1.556	0.007095
11 g	CH 1	2412	12.51	17.824	1.92	1.556	0.005520
	$\mathrm{CH6}$	2437	12.58	18.113	1.92	1.556	0.005610
	$\mathrm{CH11}$	2462	12.39	17.338	1.92	1.556	0.005370
11n HT20	$\mathrm{CH1}$	2412	13.03	20.091	1.92	1.556	0.006222
	CH 6	2437	13.06	20.230	1.92	1.556	0.006265
	CH 11	2462	12.84	19.231	1.92	1.556	0.005956

Based on safety distance (r) $\mathbf{2 0} \mathbf{c m}$, the antenna gain (G) is $\mathbf{1 . 5 5 6}$ Numerical, and the highest power output (P) is $\mathbf{2 3 . 9 8 8} \mathbf{m W}$, the power density (S) is $\mathbf{0 . 0 0 7 4 2 9 m W} / \mathbf{c m}^{2}$.

