

FCC Test Report

Report No.: AGC09477240910FR01

FCC ID	:	2AMZY-CHARGER
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	3 in 1 wireless charger
BRAND NAME	:	Origaudio
MODEL NAME	:	34020
APPLICANT	:	HandStandsPromo LLC
DATE OF ISSUE	:	Nov. 06, 2024
STANDARD(S)	:	FCC Part 15 Subpart C
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov. 06, 2024	Valid	Initial Release

Table of Contents

1. General Information	4
2. Product Information	5
2.1 Product Technical Description	5
2.2 Related Submittal(S) / Grant (S)	6
2.3 Test Methodology	6
2.4 Special Accessories	6
2.5 Equipment Modifications	6
2.6 Antenna Requirement	6
3. Test Environment	7
3.1 Address of The Test Laboratory	7
3.2 Test Facility	7
3.3 Environmental Conditions	
3.4 Measurement Uncertainty	
3.5 List of Equipment Used	9
4.System Test Configuration	
4.1 EUT Configuration	
4.2 EUT Exercise	
4.3 Configuration of Tested System	
4.4 Equipment Used in Tested System	
4.5 Summary of Test Results	
5. Description of Test Modes	
6. Field Strength of Fundamental	14
6.1 Measurement Limits	14
6.2 Measurement Procedure	
6.3 Field Strength Calculation	
6.4 Measurement Setup	
6.5 Measurement Result	
7. 20 dB Bandwidth Measurement	
7.1 Provisions Applicable	
7.2 Measurement Procedure	
7.3 Measurement Setup	
7.4 Measurement Result	
8. AC Power Line Conducted Emission Test	
8.1 Measurement Limits	
8.2 Measurement Setup	
8.3 Preliminary Procedure of Line Conducted Emission Test	
8.4 Final Procedure of Line Conducted Emission Test	
8.5 Measurement Result	
Appendix I: Photographs of Test Setup	
Appendix II: Photographs of Test EUT	

1. General Information

Applicant	HandStandsPromo LLC
Address	1770 South 5350 West Suite 100,Salt Lake City, Utah, 84104, USA
Manufacturer	E-trends Electronic Co., Ltd
Address	No.9 Building, Huixin Industrial Park, Yangwu village, Dalingshan Town, Dongguan, Guangdong.
Factory	E-trends Electronic Co., Ltd
Address	No.9 Building, Huixin Industrial Park, Yangwu village, Dalingshan Town, Dongguan, Guangdong.
Product Designation	3 in 1 wireless charger
Brand Name	Origaudio
Test Model	34020
Series Model(s)	N/A
Difference Description	N/A
Date of receipt of test item	Sep. 25, 2024
Date of Test	Sep. 25, 2024 – Nov. 06, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER -FCC-WPT-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Bibo zhang Prepared By

Bibo Zhang (Project Engineer)

Nov. 06, 2024

Reviewed By

Lin in ·

Calvin Liu (Reviewer)

Nov. 06, 2024

Approved By

Max Zha

Max Zhang Authorized Officer

Nov. 06, 2024

2. Product Information

2.1 Product Technical Description

Equipment Type	WPT System
	WPT Band I: 110.5kHz-205kHz
Operation Frequency Band	WPT Band II: 110.5kHz-205kHz
	WPT Band III: 320kHz-365kHz
Hardware Version	V1.0
Software Version	V1.3
Modulation Type	ASK
Number of channels	3
Field Strength of Fundamental	68.53dBµV/m (Max)
Antenna Designation	Coil Antenna
Antenna Gain	0dBi
Input Rating	Input: DC 5V3A, 9V2A
Output Rating	Output 1: MPP Charger 15W Max Output 2: Qi Charger 5W Max Output 3: Wireless Charging 3W Max.

2.2 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2AMZY-CHARGER, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.3 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

2.4 Special Accessories

Not available for this EUT intended for grant.

2.5 Equipment Modifications

Not available for this EUT intended for grant.

2.6 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to FOLLOW CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20% - 75%
Pressure range (kPa)	86 - 106

3.4 Measurement Uncertainty

The reported uncertainty of measurement y $\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 150kHz	$U_c = \pm 4.2 \text{ dB}$
Uncertainty of Radiated Emission below 30MHz	$U_c = \pm 3.8 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$

3.5 List of Equipment Used

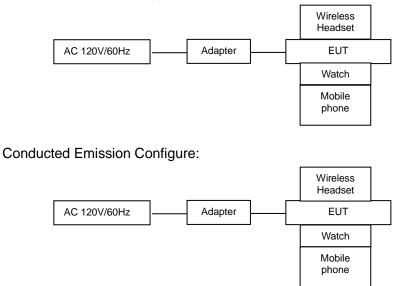
• F	Radiated Spurious Emission& RF Conducted Test						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31
\square	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024-05-24	2025-05-23
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2024-05-24	2025-05-23
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2024-05-28	2025-05-27
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
\square	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2025-06-08

• A	AC Power Line Conducted Emission						
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2024-05-28	2025-05-27
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2025-06-08
\square	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2024-05-28	2025-05-27

• Te	Test Software							
Used	Used Equipment No. Test Equipment Manufacturer Model No. Version Information							
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			
\square	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A			

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

I Test Accessories Come From The Laboratory

			,				
No.	Equipment	Model No.	Manufacturer	Specification Information	Cable		
1	Mobile Phone	MI 10	Xixomi				
2	Watch	L-SWAW101	Lenovo				
3	Wireless Headset	S6S Pro	SANAG				
4	Adapter	Huawei	HW-200440C0 0	Input(AC):100V-240V 50/60Hz 2.4A Output(DC):USB-C(5V/3A;9V/3A;10V/4A;11V/6A; 12V/3A;15V/3A;20V4.4A) USB-A(5V/2A;10V/4A;11V/6A;20V/4.4A)			
	Test Accessories Come From The Manufacturer						

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

4.5 Summary of Test Results

Item	FCC Rules	Description Of Test	Result
1	§15.203	Antenna Equipment	Pass
2	§15.209(a)(f)	Radiated Spurious Emission	Pass
3	§15.215(c)	20dB Bandwidth	Pass
4	§15.205(a)	Restricted Bands of Operation	Pass
5	§15.207	AC Power Line Conducted Emission	Pass

5. Description of Test Modes

- EUT is a desktop charger. For all tests, the EUT was connected to an AC/DC power adapter.
- Worst case orientation of the client devices have been investigated as follow:
 - 1) Xiaomi Phone: Horizontal screen, where the lighting connector of Phone on top.
 - 2) Xiaomi Phone: Horizontal screen with the front camera on the left hand side.
 - 3) Wireless Headphones (2nd coil): Flatbed orientation, 90 degree
 - 4) Apple Watch (Legacy): Landscape orientation with the digital crown/home button at the bottom.
- For the radiated emissions and AC power conducted emissions test, the EUT was tested in desktop position in the following configurations: Standby and While charging with client devices between 20% to 50% state of charge.
- AC power line conducted testing and radiated spurious emission 30MHz to 1GHz was performed on Configuration 1 and 5 at EUT minimum and maximum load respectively only as worse case.
- The following configurations were tested:

No.	Test Descriptions	Test Mode	Client
1	EUT stand alone, standby, powered by AC/DC adapter.	@110.5-205kHz @110.5-205kHz @320.6kHz	None
2		@110.5-205kHz	1 st coil: Xiaomi Phone
3	Direct contact during	@110.5-205kHz	2 nd coil: Wireless Headphones
4	charging/operating between the EUT& WPT Client, EUT is powered	@320.6kHz	3 rd coil: Legacy Apple Watch (Series 4,5)
5	by AC/DC adapter.	@110.5-205kHz @110.5-205kHz @320.6kHz	1 st coil: Xiaomi Phone 2 nd coil: Wireless Headphones 3 rd coil: Legacy Apple Watch (Series 4,5)

6. Field Strength of Fundamental

6.1 Measurement Limits

FCC Part15 C Section 15.209								
ANSI C63.10:2013								
9kHz to 1GHz								
Measurement Dista	nce: 3m							
Frequency	Detector	RBW	VBW	Value				
9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak				
	Peak	1MHz	3MHz	Peak				
Above 1GHZ	Peak	1MHz	10Hz	Average				
	ANSI C63.10:2013 9kHz to 1GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz	ANSI C63.10:2013 9kHz to 1GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak	ANSI C63.10:2013 9kHz to 1GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100kHz Above 1GHz Peak 1MHz	ANSI C63.10:2013 9kHz to 1GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100kHz 300kHz Above 1GHz Peak 1MHz 3MHz				

Limits for frequency below 30MHz

Frequency	Limit (µV /m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Quasi-peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz

Frequency	Limit (dBµV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1GHz	54.00	Average Value
	74.00	Peak Value

Remark:

- 1) Emission level dB μ V= 20 log Emission level μ V/m
- 2) The smaller limit shall apply at the cross point between two frequency bands.
- 3) Distance Is The Distance In Meters Between The Measuring Instrument, Antenna And The Closest Point Of Any Part Of The Device Or System.

6.2 Measurement Procedure

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

6.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

 $\begin{array}{ll} FS = RA + AF + CF - AG - AV \\ where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB/m \\ AG = Amplifier Gain in dB \\ AV = Average Factor in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where $FS = Field Strength in dB\mu V/m$ RR = RA - AG - AV in dB μ V LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB μ V/m.

This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $\begin{array}{ll} RA = 52.0 \ dB\mu V/m \\ AF = 7.4 \ dB/m \\ CF = 1.6 \ dB \\ AG = 29.0 \ dB \\ AV = 5.0 \ dB \\ FS = RR + LF \\ FS = 18 + 9 = 27 \ dB\mu V/m \end{array}$

Level in μ V/m = Common Antilogarithm [(27 dB μ V/m)/20] = 22.4 μ V/m

Magnetic field strength calculation (9 kHz – 30 MHz)

When the limit is in terms of magnetic field, the following equation applies: $H[dB(\mu A/m)] = V[dB(\mu V)] + LC [dB] - GPA [dB] + AFH [dB(S/m)]$

Where,

H is the magnetic field strength (to be compared with the limit),

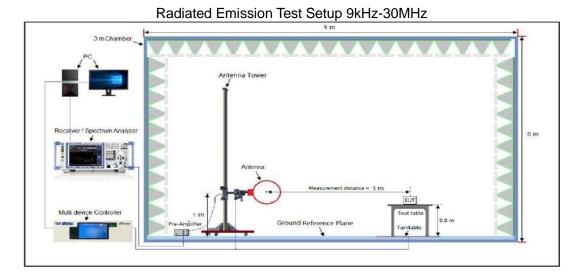
V is the voltage level measured by the receiver or spectrum analyzer,

LC is the cable loss,

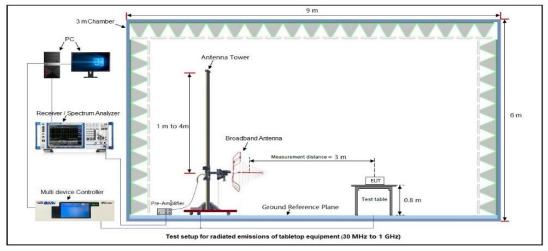
GPA is the gain of the preamplifier (if used), and

AFH is the magnetic antenna factor.

If the "electrical" antenna factor is used instead, the above equation becomes:


 $H[dB(\mu A/m)] = V[dB(\mu V)] + LC [dB] - GPA [dB] + AFE [dB(m-1)] - 51.5 [dB\Omega]$

where AFE is the "electric" antenna factor, as provided by the antenna calibration laboratory.


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

6.4 Measurement Setup

Radiated Emission Test Setup 30MHz-1000MHz

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

6.5 Measurement Result

EUT Name 3 in 1 wireless charger Model Name 34020 **Relative Humidity Temperature** 22.6°C 56.3% Pressure 960hPa **Test Voltage** DC 5V **Test Mode** Mode 5 Antenna Face 132.0 dBuV/m Linit Margin: 72 Munuthan 12.0 0.009 (MHz) 0.150

Electric Field	l Test in Th	e Frequenc	y Range	9kHz-150kHz
-----------------------	--------------	------------	---------	-------------

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	0.0100	7.95	43.60	51.55	127.40	-75.85	peak
2	0.0154	6.82	40.57	47.39	123.67	-76.28	peak
3	0.0492	5.49	33.63	39.12	113.64	-74.52	peak
4	0.0651	5.03	32.87	37.90	111.22	-73.32	peak
5	0.0851	3.76	32.34	36.10	108.91	-72.81	peak
6 *	0.1486	3.38	32.39	35.77	104.10	-68.33	peak

Result: Pass

							kHz			
EUT Name		3 in	1 wireless	charger		Model Nar	ne	340)20	
Temperature						Relative H	umidity	56.	3%	
Pressure	ure 960hPa					Test Voltage			5V	
Test Mode		Mod	le 5			Antenna		Sid	е	
132.0	dBuV	/m								
Ē	_								Limit: Margin:	
_										
-										
-										
-										
70										
72 -										
12	ţ									
	~ <u>*</u>	Ada .								
72 - 0 -		MAMMAN /	My man my	white and the and	e Martina and		4		5	ex a
72 = - - -		MANNA	physocial map	white and a most of	- AM - M	M.	- Martin	whereadth	m. J. Ward Mand	ex ex
- - -	~~~	Mr. Annaly	Wypower my	wh ^{an} ashhanas ^h	- AM M	M Martin	-m Julun	en ^h urren dhe	n Jama Mari	• •
12.0 0.0		Mr. Anna Anna Anna Anna Anna Anna Anna Ann	Wypower my	wh ^{an} ashhanas ^h	алан (МН2)		-my -	en ^{Pring} sen aller		
12.0		Ardymeny	Wypower with work					en Marsen aller		
12.0	09	۹۸۹۵۵۵۷ Mk.	Freq.	Reading	(MH2)			Over		
12.0	09			Reading	(MH2) Correct	Measure-				
12.0	09		Freq.	Reading Level	(MH2) Correct Factor	Measure- ment	Limit	Over	Detector	
12.0	⁰⁹ No.		Freq. MHz	Reading Level dBuV	(MH2) Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB -70.68	Detector	
12.0	09 No.		Freq. MHz 0.0102	Reading Level dBuV 13.06	(MH2) Correct Factor dB 43.49	Measure- ment dBuV/m 56.55	Limit dBuV/m 127.23	Over dB -70.68 -76.92	Detector peak peak	
12.0	⁰⁹ No. 1 2		Freq. MHz 0.0102 0.0297	Reading Level dBuV 13.06 5.36	(MH₂) Correct Factor dB 43.49 35.72	Measure- ment dBuV/m 56.55 41.08	Limit dBuV/m 127.23 118.00	Over dB -70.68 -76.92 -75.33	Detector peak peak peak	
12.0	No.		Freq. MHz 0.0102 0.0297 0.0429	Reading Level dBuV 13.06 5.36 5.35	(MH₂) Correct Factor dB 43.49 35.72 34.14	Measure- ment dBuV/m 56.55 41.08 39.49	Limit dBuV/m 127.23 118.00 114.82	Over dB -70.68 -76.92 -75.33 -74.47	Detector peak peak peak peak	6 2 0.150

Electric Field Test in The Frequency Range 9kHz-150kHz

Result: Pass

	<u></u>						~~	
EUT Name	3 in 1 wireless	charger		Model Na		340)20	
Temperature	22.6°C			Relative H	lumidity	56.3	3%	
Pressure	960hPa			Test Voltage			5V	
Test Mode	Mode 5			Antenna		Fac	Face	
122.0 dBuV/	'm							
							Limit: — Margin: —	
2								
62	3							
	<u> </u>	4	5					
l.	where Wantestrong	4 March March March	5 An airthe a the	alore A. Martin e. e.		6 X		
t.A.	why when him	* Mul-normanna	Numation	whiteAcoloutinum	nin manufacture and a	www.www.	sharing the second	
	why white have been a	and the second second	Nummer Northern Marca Marca Marca Marca Marc	when have been some	nik harron dan dan dan dan dan dan dan dan dan da	ummenter	havminutuhanth	
fun.	unlayed White Astronomy	and the second sec	alun alun dan dan dan dan dan dan dan dan dan da	arahan karakan karakan Karakan karakan k	nih taisend-avertingd	(mar Monora Um	shown miner have been set	
	and your With A stations	* *``~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 Waxma Waxadha	white hard a wind a set	nin manunanda d	www.www.	share with the south of	
2.0	unlupth W. Julium 0.5	* Marin Maharananan I	5 Минининининининининин (мнг)	when have been seen as	144 Marson - Anna Marson 5	kon Monori lan	400.01111111111111111111111111111111111	
2.0 0.150	0.5	Reading	(MH2) Correct	Measure-	5			
2.0	0.5		(MHz)		5	Over		
2.0 0.150	0.5	Reading	(MH2) Correct	Measure-	5			
2.0 0.150	0.5 Mk. Freq.	Reading	(MH ₂) Correct Factor	Measure- ment	5 Limit	Over	30.	
2.0 0.150 No.	0.5 Mk. Freq. MHz	Reading Level dBuV	(MH2) Correct Factor dB	Measure- ment dBuV/m	5 Limit dBuV/m	Over dB -37.56	30. Detector	
2.0 0.150 No. 1	0.5 Mk. Freq. MHz 0.1592	Reading Level dBuV 33.50	(MH2) Correct Factor dB 32.44	Measure- ment dBuV/m 65.94	5 Limit dBuV/m 103.50	Over dB -37.56	30. Detector peak	
2.0 0.150 No. 1 2.0 1 2.0 1 2.0 1 2	Mk. Freq. MHz 0.1592 0.1593	Reading Level dBuV 33.50 33.50	(MH2) Correct Factor dB 32.44 32.44	Measure- ment dBuV/m 65.94 65.94	5 Limit dBuV/m 103.50 103.50	Over dB -37.56 -37.56	30. Detector peak peak	
2.0 0.150 No. 1 2 3	0.1592 0.1593 0.3206 0.5977	Reading Level dBuV 33.50 33.50 28.40	(MH2) Correct Factor dB 32.44 32.44 32.38	Measure- ment dBuV/m 65.94 65.94 60.78	5 Limit dBuV/m 103.50 103.50 97.32	Over dB -37.56 -37.56 -36.54	30. Detector peak peak peak	

Electric Field Test in The Frequency Range 150kHz-30MHz

Result: Pass

UT Name	3 in 1 wireless	charger		Model Na	ne	340	20	
emperature	22.6°C			Relative H	lumidity	56.3	3%	
ressure	960hPa			Test Volta	ge	DC	5V	
est Mode	Mode 5			Antenna		Side	Э	
122.0 dBuV/							Limit: Margin:	
	Valuer Annual Valuer	Udwarda	e S Manaplawaninan	l hannormannar dal	unnan hanna	5 	Noblinanyuliraansu	ikya, chr
	0.5		(MHz)		5	5 	Nordelina mederante	
2.0	0.5	Reading		Measure- ment	5	S M Over	Nedeljeranski kranski	
2.0	0.5	Reading	(MH2) Correct	Measure-	5		Detector	30.00
2.0	0.5 Mk. Freq.	Reading	(MH ₂) Correct Factor	Measure- ment	5 Limit	Over		30.00
2.0 0.150 No. 1	0.5 Mk. Freq. MHz	Reading Level dBuV	(MH2) Correct Factor dB	Measure- ment dBuV/m	5 Limit dBuV/m	Over dB -34.97	Detector	30.00
2.0 0.150 No. 1	0.5 Mk. Freq. MHz 0.1592	Reading Level dBuV 36.09	(MH2) Correct Factor dB 32.44	Measure- ment dBuV/m 68.53	5 Limit dBuV/m 103.50	Over dB -34.97	Detector	30.00
2.0 0.150 No. 1 2 3	0.5 Mk. Freq. MHz 0.1592 0.1593	Reading Level dBuV 36.09 36.09	(MH2) Correct Factor dB 32.44 32.44	Measure- ment dBuV/m 68.53 68.53	5 Limit dBuV/m 103.50 103.50	Over dB -34.97 -34.97	Detector peak peak	30.00
2.0 0.150 No. 1 2 3	0.5 Mk. Freq. MHz 0.1592 0.1593 0.3206	Reading Level dBuV 36.09 36.09 26.70	(MH2) Correct Factor dB 32.44 32.44 32.38	Measure- ment dBuV/m 68.53 68.53 59.08	5 Limit dBuV/m 103.50 103.50 97.32	Over dB -34.97 -34.97 -38.24	Detector peak peak peak	30.00

Electric Field Test in The Frequency Range 150kHz-30MHz

Result: Pass

Notes:

- 1. Quasi-Peak detector is used for frequency below 30MHz.
- 2. Negative value in the margin column shows emission below limit.
- 3. All measurements were made with 0.6m loop antenna at 3m distance. All emissions are below the QP limit.
- 4. Corr. Factor= Antenna Factor (dB/m) + Cable Loss (dB)
- 5. Loop antenna is used for the emission under 30MHz.

	Radia	ated Emissio	on at 30MH	z-1000MHz	lest Res	ult		
EUT Name	3 in 1 wire	eless charger		Model	Name	34	4020	
Temperature	23.2°C			Relativ	e Humidit	t y 58	8.6%	
Pressure	960hPa			Test Vo	Test Voltage		C 5V	
Test Mode	Mode 5			Antenn	na	Н	orizontal	
72.0 dBuV/								
32			entrinen fanger after				imit: — fargin: —	
-8 30.000	40 50 60 7	0 80	(MHz)		200 400	500 600	700 1000.000	
No.	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1	86.2001	16.07	14.06	30.13	40.00	-9.87	peak	
2	197.8926		14.26	32.93	43.50	-10.57	peak	
3	229.2931		14.86	33.92	46.00	-12.08	peak	
4	279.0436		14.90	34.67	46.00	-11.33	peak	
5	440.1963		25.09	35.61	46.00	-10.39	peak	
6	* 896.9964	6.05	31.42	37.47	46.00	-8.53	peak	

Radiated Emission at 30MHz-1000MHz Test Result

Result: Pass

Radiated Emission at JUMHZ-1000MHZ lest Result										
EUT Name		3 in 1 wirel	ess charger		Mode	I Name	3	34020		
Temperature		23.2°C			Relati	Relative Humidity		58.6%		
Pressure	Pressure 960hPa				Test \	Test Voltage			DC 5V	
Test Mode	Test Mode 5			Antenna		١	/ertical			
72.0	dBuV/m									
32	wind					Multi mana		imit: fargin:		
-8 30.00	10 40 No. N		Reading Level	(MH2) Correct Factor	Measure	300 400 - Limit	500 600 Over) 700 100	0.000	
-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
-	1 !	86.2001	20.78	16.06	36.84	40.00	-3.16	QP		
_	2 !	156.4578	21.49	18.20	39.69	43.50	-3.81	QP		
-	3 *	195.1365	22.41	18.05	40.46	43.50	-3.04	QP		
-	4	286.9823	16.35	18.57	34.92	46.00	-11.08	peak		
-	5	443.2943	8.44	25.95	34.39	46.00	-11.61	peak		
-	6	696.8567	8.06	28.04	36.10	46.00	-9.90	peak		
	-			-		-	-			

Radiated Emission at 30MHz-1000MHz Test Result

Result: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Over=Measurement-Limit.

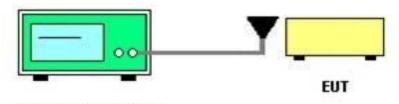
2. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.

3. The "Factor" value can be calculated automatically by software of measurement system.

7. 20 dB Bandwidth Measurement

7.1 Provisions Applicable

N/A

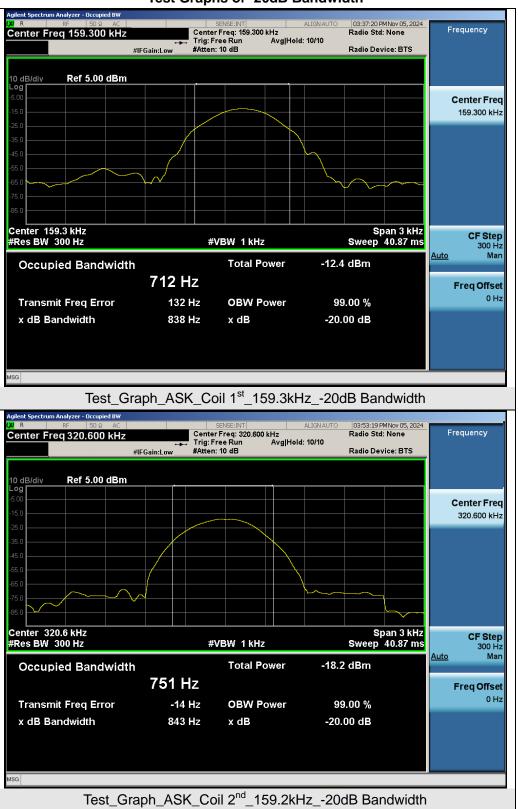

7.2 Measurement Procedure

Set the parameters of SPA as below:

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. Centre frequency = Operation Frequency
- 3. The resolution bandwidth of 300 Hz and the video bandwidth of 1 kHz were used.
- 4. Span: 3kHz, Sweep time: Auto
- 5. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the "N dB down" function of SPA to define the bandwidth.
- 6. Measured the spectrum width with power higher than 20dB below carrier.
- 7. Measured the 99% OBW.
- 8. Record the plots and Reported.

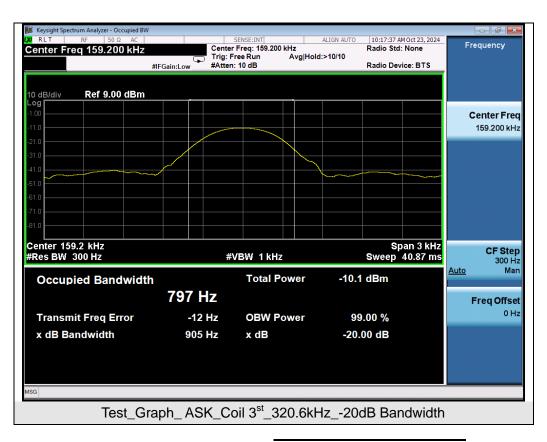
Note: Since the measured signal is CW-like, it is not practical to adjust the RBW according to C63.10, as the measured bandwidth will always follow the RBW, resulting in approximately twice the RBW.

7.3 Measurement Setup



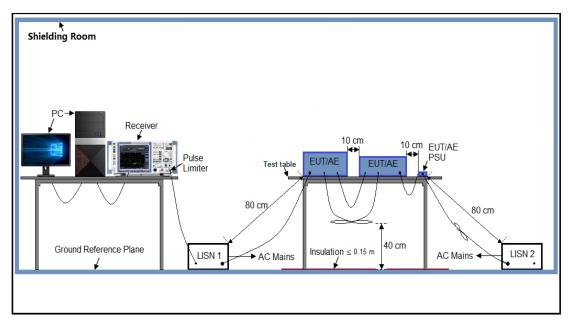
Spectrum Analyzer

7.4 Measurement Result


Test Data of Occupied Bandwidth and -20dB Bandwidth							
Test Mode	Test Frequency (kHz)	Occupied Bandwidth (Hz)	-20dB Bandwidth (Hz)	Limits (Hz)	Pass or Fail		
Mode 2	159.3	712	838	N/A	Pass		
Mode 3	159.2	751	843	N/A	Pass		
Mode 4	320.6	797	905	N/A	Pass		

Test Graphs of -20dB Bandwidth

8. AC Power Line Conducted Emission Test


8.1 Measurement Limits

	Maximum RF Line Voltage			
Frequency Range	Q.P. (dBµV)	Average (dBµV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

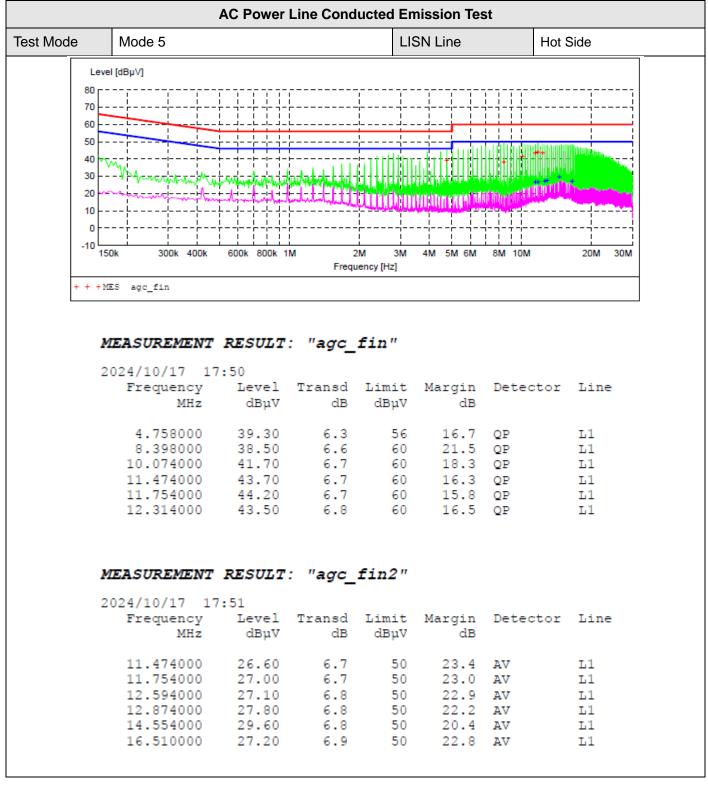
Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

8.2 Measurement Setup

8.3 Preliminary Procedure of Line Conducted Emission Test

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 24V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

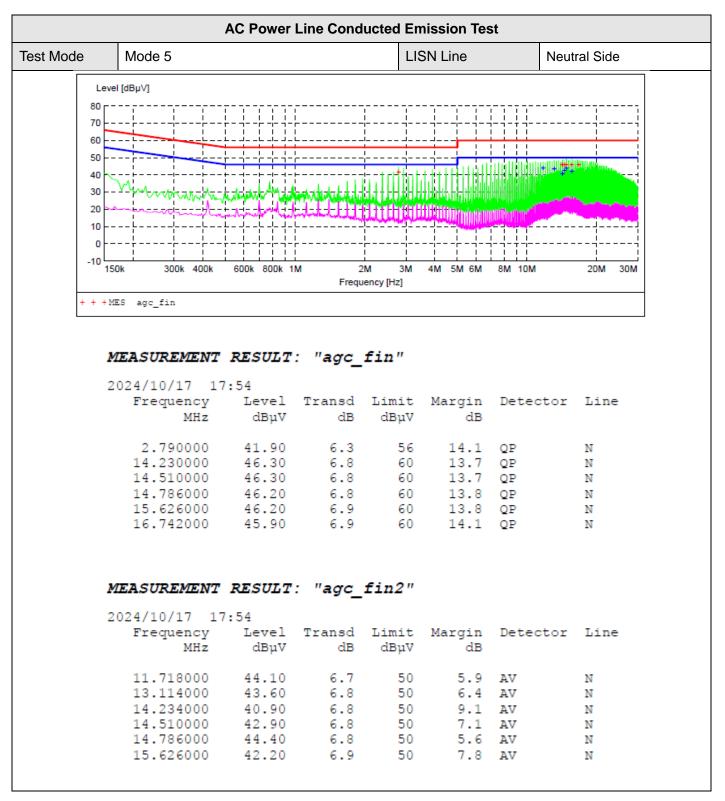

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

8.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less – 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

8.5 Measurement Result


Result: Pass


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com
 Web: http://www.agccert.com/

Result: Pass

Appendix I: Photographs of Test Setup

Refer to the Report No.: AGC09477240910AP01

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC09477240910AP02

-----End of Report-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.