FCC TEST REPORT

For

Shenzhen HongBoWeiZhi Technology Co., Ltd.

OTT TV BOX

Model No.: ABOX A1

Additional Model No.: Please refer to page 6

Prepared for Address	:	Shenzhen HongBoWeiZhi Technology Co., Ltd. 806, D Building, Bantian International Center, Huancheng South Road #5, Bantian Street, Longgang District, Shenzhen, Guangdong, China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an
		District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	April 10, 2017
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	April 10, 2017~July 12, 2017
Date of Report	:	August 10, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 57

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

	FCC TEST REPORT
FCC (CFR 47 PART 15 C(15.247): 2015
Report Reference No::	LCS170410096AE
Date of Issue:	August 10, 2017
Testing Laboratory Name: :	Shenzhen LCS Compliance Testing Laboratory Ltd.
	 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □
Applicant's Name :	Shenzhen HongBoWeiZhi Technology Co., Ltd.
Address :	806, D Building, Bantian International Center, Huancheng South Road #5, Bantian Street, Longgang District, Shenzhen, Guangdong, China
Test Specification	
Standard:	FCC CFR 47 PART 15 C(15.247): 2015
Test Report Form No :	LCSEMC-1.0
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF:	Dated 2011-03
This publication may be reproduced in Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance	g Laboratory Ltd. All rights reserved. In whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not g from the reader's interpretation of the reproduced material due to its
EUT Description :	ΟΤΤ ΤΥ ΒΟΧ
Trade Mark:	N/A
Model/ Type reference: :	ABOX A1
Ratings:	Charging parameter: AC Input: 100~240V, 50/60Hz, 0.3A; Output: DC 5V, 2A
Result:	Positive

Compiled by:

linda He

Linda He/ File administrators

Supervised by:

Approved by:

(Jaimo Lia

Glin Lu/ Technique principal

Cash

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 57

	SHENZHEN LCS	COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AMYS-ABOX
--	--------------	------------------------------------	--------------------

FCC -- TEST REPORT

Report No.: LCS170410096AE

Test Report No. :	LCS170410096AE	August 10, 2017 Date of issue		
EUT	: OTT TV BOX			
Type / Model	: ABOX A1			
Applicant	: Shenzhen HongBoWei	Zhi Technology Co., Ltd.		
	806, D Building, Bantiar	International Center, Huancheng South		
Address	: Road #5, Bantian Street	t, Longgang District, Shenzhen,		
	Guangdong, China	Guangdong, China		
Telephone				
Fax	: /			
Manufacturer	-	Zhi Technology Co., Ltd.		
Address		t, Longgang District, Shenzhen,		
Telephone	:/			
Fax	: /			
Factory	: Shenzhen HongBoWei	Zhi Technology Co., Ltd.		
	806, D Building, Bantiar	International Center, Huancheng South		
Address	: Road #5, Bantian Street	t, Longgang District, Shenzhen,		
	Guangdong, China			
Telephone	: /			
Fax	: /			

Test Result	Positive
The test report merely corresponds to the test sam	nple.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX Report No.: LCS170410096AE

Revision History

Revision	Issue Date	Revisions	Revised By
000	August 10, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS 1.3. EXTERNAL I/O CABLE	6 6
1.4. DESCRIPTION OF TEST FACILITY 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY 1.6. MEASUREMENT UNCERTAINTY 1.7. DESCRIPTION OF THE MEASUREMENTY	7 7
1.7. DESCRIPTION OF TEST MODES	
2. TEST METHODOLOGY	
2.2. EUT Exercise	9
2.3. GENERAL TEST PROCEDURES	9
3. SYSTEM TEST CONFIGURATION	. 10
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. Equipment Modifications	. 10
3.6. TEST SETUP	10
4. SUMMARY OF TEST RESULTS	. 11
4. SUMMARY OF TEST RESULTS	. 11 . 12
 4. SUMMARY OF TEST RESULTS 5. TEST RESULT 5.1. ON TIME AND DUTY CYCLE 	. 11 . 12 . 12
 4. SUMMARY OF TEST RESULTS 5. TEST RESULT 5.1. ON TIME AND DUTY CYCLE 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 	. 11 . 12 . 12 . 14
 4. SUMMARY OF TEST RESULTS 5. TEST RESULT 5.1. ON TIME AND DUTY CYCLE 	. 11 . 12 . 12 . 14 . 16
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT	.11 .12 .12 .14 .16 .20 .24
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 	.11 .12 .12 .14 .16 .20 .24 .36
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. POWER LINE CONDUCTED EMISSIONS 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 	.11 .12 .12 .14 .16 .20 .24 .36 .45 .48
 4. SUMMARY OF TEST RESULTS	.11 .12 .12 .14 .16 .20 .24 .36 .45 .48
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. POWER LINE CONDUCTED EMISSIONS 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 	.11 .12 .12 .14 .16 .20 .24 .36 .45 .48 .54
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. POWER LINE CONDUCTED EMISSIONS 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 5.9. ANTENNA REQUIREMENTS. 	.11 .12 .12 .14 .16 .20 .24 .36 .45 .48 .54 .54
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. POWER LINE CONDUCTED EMISSIONS 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 5.9. ANTENNA REQUIREMENTS. 	.11 .12 .14 .16 .20 .24 .36 .45 .48 .54 .54 .56 .57

FCC ID: 2AMYS-ABOX

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

Name of EUT	OTT TV BOX
Test Model Number	ABOX A1
Additional Model No.	ABOX Pro, ABOX A1 mini, ABOX A1 plus, ABOX A2, ABOX A3, ABOX A3 plus, ABOX A4, ABOX A4 plus, ABOX A5, ABOX A5 plus, GooBang Doo XB-II, GooBang Doo XB-III, GooBang Doo XB-IV, GooBang Doo XB-V, GooBang Doo M8S-II, GooBang Doo M8S-III, GooBang Doo Master, MXQ, MXQ Pro, T95X, Globmall X1, Globmall X2, Globmall X3, Globmall X4
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Antenna Gain	0dBi (max.) For WLAN
Hardware version	V1.1
Software version	ABOX-II
WLAN FCC Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
WLAN FCC Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2412-2452MHz
Antenna Type	Integral Antenna
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	4.50VDC to 5.50VDC (nominal: 5.00VDC)

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
Shenzhen futian district yu-bin CAI electronic businesses	Power Adapter	TSL-1681		FCC VoC
SONY	TV	KDL-32W700B		FCC DoC
USB	TOSHIBA	U202		FCC DoC

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
USB	2	N/A
TF CARD	1	N/A
DC IN	1	N/A
HDMI	1	0.8m
AV	1	N/A
RJ-45	1	N/A
SPDIF	1	N/A

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001 The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty	:	9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
		200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11b mode (High Channel).

AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/50Hz modes, recorded worst case;

AC conducted emission pre-test at both at power adapter and power from PC modes, recorded worst case;

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11b mode (High Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11b Mode: 1 Mbps, DSSS. IEEE 802.11g Mode: 6 Mbps, OFDM. IEEE 802.11n Mode HT20: MCS0, OFDM. IEEE 802.11n Mode HT40: MCS0, OFDM.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 57

Channel List & Frequency

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437		

IEEE 802.11n HT40

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	3	2422	9	2452
	4	2427		
2422~2452MHz	5	2432		
	6	2437		
	7	2442		
	8	2447		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

The sample will control by special test software (RF Test Tool) to control sample change channel, modulation provided by application;

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

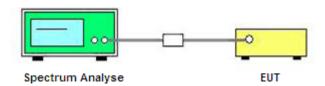
Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C				
FCC Rules	Description of Test	Result		
§15.247(b)	Maximum Conducted Output Power	Compliant		
§15.247(e)	Power Spectral Density	Compliant		
§15.247(a)(2)	6dB Bandwidth	Compliant		
§15.247(a)	Occupied Bandwidth	Compliant		
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant		
§15.205	Emissions at Restricted Band	Compliant		
§15.207(a)	Conducted Emissions	Compliant		
§15.203	Antenna Requirements	Compliant		
§15.247(i)§2.1093	RF Exposure	Compliant		

5. TEST RESULT

- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable


None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the spectrum analyzer.

5.1.3. Test Procedures

- 1. Set the centre frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
IEEE 802.11b	5	5	1	100	0	0.010
IEEE 802.11g	5	5	1	100	0	0.010
IEEE 802.11n HT20	5	5	1	100	0	0.010
IEEE 802.11n HT40	5	5	1	100	0	0.010

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

On T	Time an	d Duty Cycle	
Agjert Spectrum Andyzer/Swegt SA Interface Autor/Anno 11±4656 AM Add 2, 2017 00 80 900 ac Interface Autor/Anno 11±4656 AM Add 2, 2017 Points 40001 FMIC Face ++ Trig: Free Run Atten: 20 dB Avg Type: Log-Pwr MMC (12 3 4 5 6) Ref Offset 0.5 dB 10 dB/div Ref 10.00 dB/m Interface Interface Interface	Trace/Detector Select Trace	Addient Spectrum Analyzer / Swerg 51.4 Points 40001 / 114-225 MI J12-2007 Points 40001 / Michael Control Con	_
	Clear Write	100 Solar Rei 1000 Commente La participa de la constante de la	Write
	Trace Average		rerage
40.0	Max Hold	300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	x Hold
40.0	Min Hold	500 Min	n Hold
200	View Blank Trace On	700 View Bi	lank ce On
Center 2.437000000 GHz Span 0 Hz Res BW 8 MHz #VBW 50 MHz Sweep 5.000 ms (40001 pts)	More 1 of 3		More 1 of 3
🔰 start 🔰 🚺 Aglert Spectrum Ann. 🛛 Urig **	C 🛋 🔒 🖗 🔃 1196 AM	🖅 start 🔹 🕹 Oxfold Egensi 📰 Aglert Spectrum An 🛛 Eff 🕈 📢 🖄 🗎 🖸 11	1:47 AM
IEEE 802.11b			
		IEEE 802.11g	
Apjiest Synctrum Autyrer - Swort SA Immediate Synctrum Autyrer - Swort SA Points 40001 Immediate Synctrum Autyrer - Swort SA Priorities 40001 Immediate Synctrum Autyrer - Swort SA Priorities 40001 Immediate Synctrum Autyrer Synctrum Autyrer Sont Sa Priorities 40001 Immediate Synctrum Autyrer Sont Sa Priorities 500 Immediate Synctrum Autyrer Sont Sa Ref Offset 0.5 40 Immediate Sont Sa	Trace/Detector Select Trace	Adjest Spectrum Analyzer / Swej 13A Soviet PALSE ALISTANTO 13-96 11 AV M22 2017 Points 40001 PHO: Feer QP Trig: Free Run #FGaint.ow Avg Type: Log-Pur Time [2:23 + 5: 100] TraceIDete Ref Offset 0.5 dB B Select Trig Select Trig Select Trig	-
Agiltet Spectrum Assigner - Swrgt SA SPECIE PALSE ALEGRAUTO 11-47-49-MM 3412, 2017 Points 40001 SSE Section ALEGRAUTO 11-47-49-MM 3412, 2017 Proints 40001 Free Composition Area Type: Log-Pwr Three Type: Log-Pwr BF Gaind.ow Atten: 20 dB Log-PWr Log-PWr		Agitst Spectrum Assigner - Sweyt SA Stress PALSE ALSOLATIO 121-8011341 M122, 2017 Points 40001 PHO: Free Quints August A	'race 1►
Adjest Synchum Aufgrer, Swort SA. Aufgrein Frei St. Aufgrein Frei St. Bit St. St. St. St. St. St. St. St. St. St	Select Trace	Adited Spectrum Antigree: Swept SA Alignee/TO IL-BE 11 AM 1412, 2017 Points 40001 PM0; Fair Trig: Free Run Arten: 20 dB Avg Type: Log-Pur MM 12, 21 + 5 + 1 MM 12, 23 + 5 + 1 MM 12, 23 + 5 + 1 MM 12, 23 + 5 + 1 MM 12, 24 + 5 + 1 MM 12, 24 + 5 + 1 MM 12, 24 + 1 MM 12, 24 + 1 MM 12, 24 + 1 MM 12, 2017 PN0; Fair Trig: Free Run Arten: 20 dB Avg Type: Log-Pur Math 12, 2017 Ref Offset 0.5 dB Arten: 20 dB Select Tri D dB/d/w Ref 10.00 dBm Select Tri D dB/d/w Ref 10.00 dBm	'race 1 ∙Write
Adjest Synchum Aufgrer, Swort SA. Aufgrein Frei St. Aufgrein Frei St. Bit St. St. St. St. St. St. St. St. St. St	Select Trace	Reflect Spectrum Analyzer / Swept SA Ison AC Ison AC Ison AC Ison AC Ison AC Ison AC TraceDate Points 40001 PHO: Feer QL Trig: Free Run Arg Type: Log-Pur Time [2:3:4:5: Trig: Gree Run TraceDate Points 40001 PHO: Feer QL Trig: Free Run Arg Type: Log-Pur Time [2:3:4:5: Trig: Gree Run TraceDate 10 dBidiv Ref Offset 0.5 dB Gree Run Clear Clear Clear 10 dBidiv Ref 10.00 dBm TraceBate TraceDate Clear TraceDate 10 dBidiv Ref 10.00 dBm TraceBate TraceDate TraceDate Clear 10 dBidiv Ref 10.00 dBm TraceBate TraceDate TraceDate Clear 10 dBidiv Ref 10.00 dBm TraceBate TraceAu TraceAu TraceAu	'race 1 ∙Write
Adjest Synchum Aufgrer, Swort SA. Aufgrein Frei St. Aufgrein Frei St. Bit St. St. St. St. St. St. St. St. St. St	Select Trace 1 Clear Write Trace Average	Adjest Spectrum Analyzer / Sweyt SA Indext Spectrum Analyzer / Sweyt SA TraceDete Points 40001 PHO: Exerc D Trig: Free Run Free Run Free Run Free Run Ref Offset 0.5 dB TraceDete Select Trig: Sweyt SA Select Tri	'race 1 Write ∕erage
Adjited Synchron Addrews - Swert SA Points 40001 Ref Offset 0.5 dB 10 dB/div Ref Offset 0.5 dB 10 dB/div Ref 10.00 dBm Log Addrews - Same - S	Select Trace	Reflect Spectrum Analyzer / Swept SA Intel Spectrum Analyzer / Swept SA Intel Spectrum Analyzer / Swept SA Intel Spectrum Analyzer / Swept SA Points 40001 PRO: Free Current Control State Sector Sec	race 1 Write rerage x Hold
Addiest Spectrum Autorar: Swert SA Spectrum Autorar: Swert SA Points 40001 1900 # 00 # 00 # 00 # 00 # 00 # 00 # 00	Select Trace	Reflect Spectrum Analyzer / Swept SA Intel Spectrum Analyzer / Swept SA Intel Spectrum Analyzer / Swept SA TraceDate Points 40001 PHO; Feet Trig: Free Run Break internet So dB Arg Type: Log-Pur Trid: [2:3:4:5:5 Trid: Discussion of the Section of the Sectin	race
Addiest Spectrum Autorum Autorum Ist-0740 MM M2, 2007 Points 40001 PR0: For Control for	Select Trace	Reflect Spectrum Analyzer / Sweyt SA Ignoce Public ALIGNAUTO Its WE TAM ALL/2007 TraceIDate Points 40001 PRO: EverTrig: Free Run Arg Type: Log-Pur TMAC [2:2:3:4:5: TraceIDate Points 40001 PRO: EverTrig: Free Run Arg Type: Log-Pur TMAC [2:3:4:5: Select Trie Ref Offset 0.5 dB Ref Offset 0.5 dB Clear Clear TraceIDate 100 Bible bib	Vertee Net I and

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 57

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

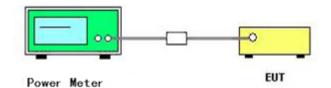
According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 the maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

According to KDB558074 D01 DTS Measurement Guidance Section 9.2 Maximum average conducted output power, 9.2.3.1 Method AVGPM (Measurement using an RF average power meter)

(a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.


3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.

(c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 57 5.2.6. Test Result of Maximum Conducted Output Power

Temperature	25 °C	Humidity	60%
Test Engineer	Kyle.Yin	Configurations	IEEE 802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Measured Average Output Power (dBm)	Limits (dBm)	Verdict
	1	2412	18.35	15.06		
IEEE 802.11b	6	2437	18.46	15.25	30	PASS
	11	2462	18.04	14.98		
	1	2412	16.37	12.65		
IEEE 802.11g	6	2437	16.45	12.83	30	PASS
	11	2462	16.38	12.45		
IEEE 802.11n	1	2412	16.09	12.42		
HT20	6	2437	16.12	12.59	30	PASS
11120	11	2462	15.90	12.33		
IEEE 802.11n	3	2422	14.72	10.74		
HT40	6	2437	14.16	10.67	30	PASS
11140	9	2452	14.51	10.48		

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40;
- 4. Average power is for report only;

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

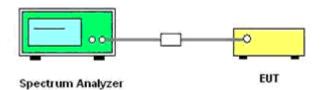
According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

1. The transmitter was connected directly to a Spectrum Analyzer.


2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

- 3. Set the RBW = 100 KHz.
- 4. Set the VBW \geq 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.

10. Use the peak marker function to determine the maximum power level in any 3 KHz band segment within the fundamental EBW.

11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

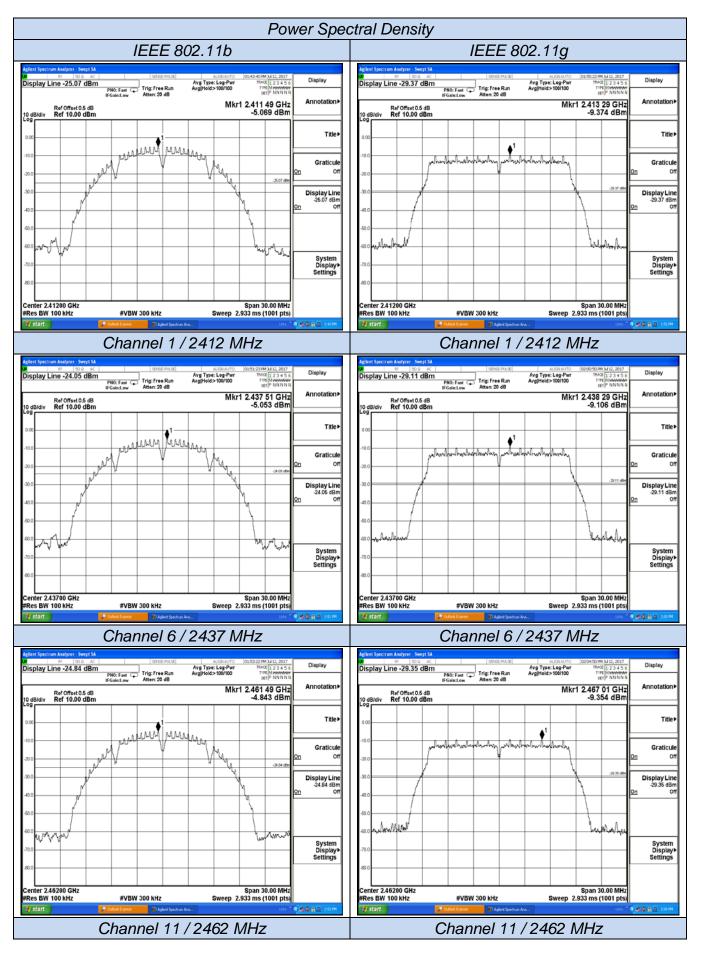
Temperature	25°C	Humidity	60%
Test Engineer	Kyle Yin	Configurations	IEEE 802.11b/g/n

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 57 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

Test Mode	Channel	Frequency (MHz)	Measured Peak Power Spectral Density (dBm/100KHz)	Limits (dBm/3KHz)	Verdict
IEEE 802.11b	1 6	2412 2437	-5.069 -5.053	8	PASS
	11	2462 2412	-4.843 -9.374		
IEEE 802.11g	6 11	2437 2462	-9.106 -9.354	8	PASS
IEEE 802.11n HT20	1 6	2412 2437	-9.414 -9.083	8	PASS
	11 3	2462 2422	-9.307 -9.371		D 4 0 0
IEEE 802.11n HT40	6 9	2437 2452	-9.831 -8.850	8	PASS

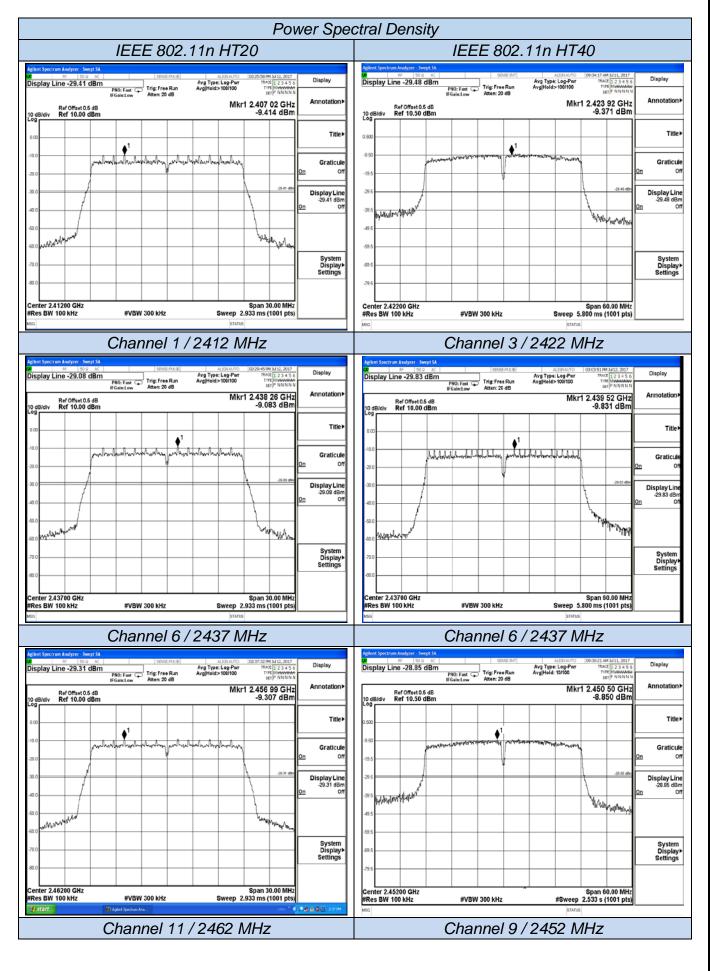
Remark:


1. Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.

- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40;
- 4. Please refer to following plots;

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMYS-ABOX


Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 57 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

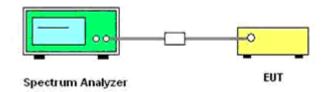
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 57

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 KHz.

5.4.2. Measuring Instruments and Setting


Please refer to section 6 of equipment's list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 6dB Spectrum Bandwidth

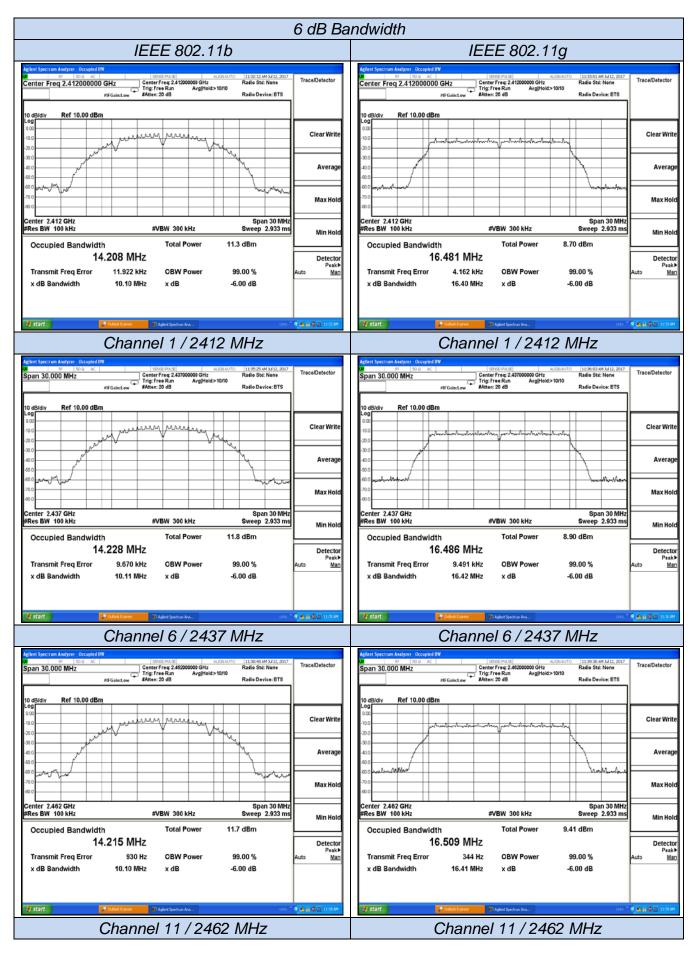
Temperature	25°C	Humidity	60%
Test Engineer	Kyle.Yin	Configurations	IEEE 802.11b/g/n

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

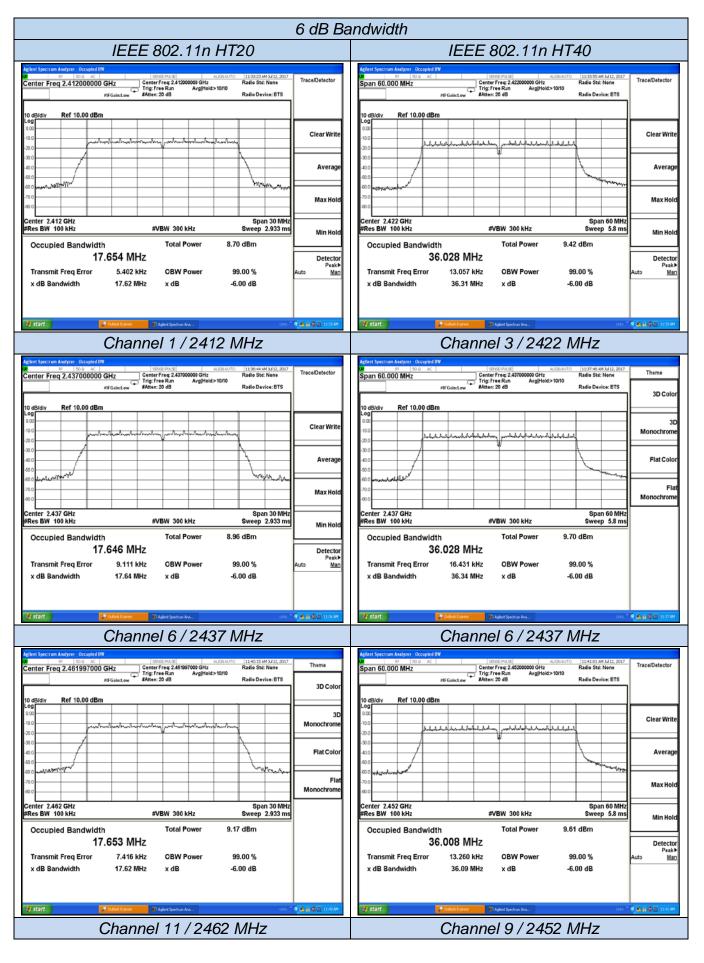
Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limits (MHz)	Verdict
	1	2412	10.100	0.500	
IEEE 802.11b	6	2437	10.110		PASS
	11	2462	10.100		
	1	2412	16.400		
IEEE 802.11g	6	2437	16.420	0.500	PASS
_	11	2462	16.410		
	1	2412	17.620		
IEEE 802.11n HT20	6	2437	17.640	0.500	PASS
	11	2462	17.620		
	3	2422	36.310		
IEEE 802.11n HT40	6	2437	36.340	0.500	PASS
	9	2452	36.090		

Remark:


1. Measured 6dB Bandwidth at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40;


4. Please refer to following plots;

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 57

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMYS-ABOX Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 57

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 57 5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

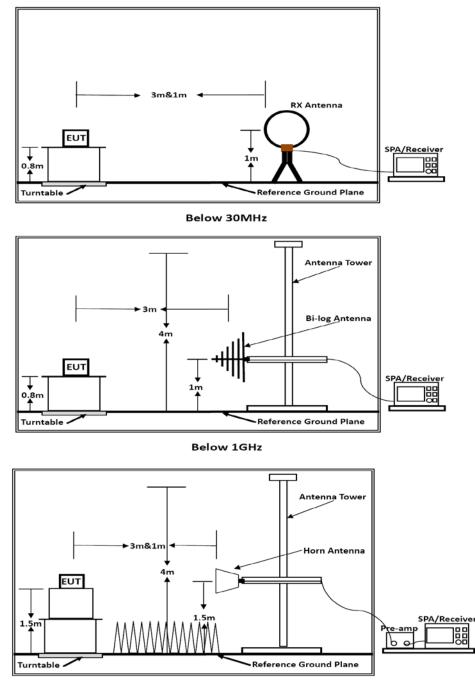
--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

5.5.4. Test Setup Layout

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = $20 \log (\text{specific distanc [3m] / test distance [1m]}) (dB);$ Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 29 of 57

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

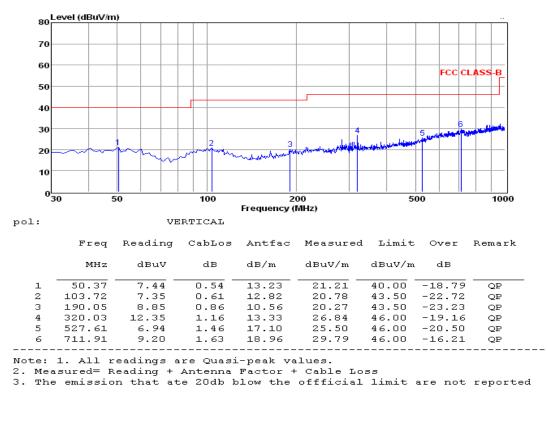
5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	Temperature25 °C		60%		
Test Engineer	Kyle.Yin	Configurations	IEEE 802.11b/g/n		

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

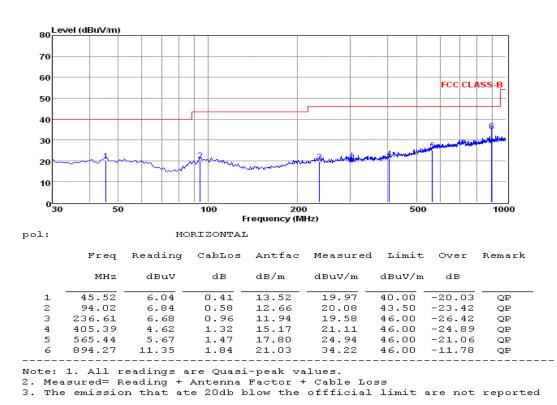
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25 °C	Humidity	60%
Test Engineer	Kyle.Yin	Configurations	IEEE 802.11b (High CH)


Test result for IEEE 802.11b (High Channel)

Vertical

Report No.: LCS170410096AE

Horizontal

Note:

1). Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b (High Channel)). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

2). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

IEEE 802.11b

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	58.08	33.06	35.04	3.94	60.04	74.00	-13.96	Peak	Horizontal
4824.00	54.67	33.06	35.04	3.94	46.63	54.00	-17.37	Average	Horizontal
4824.00	58.26	33.06	35.04	3.94	60.22	74.00	-13.78	Peak	Vertical
4824.00	53.69	33.06	35.04	3.94	45.65	54.00	-18.35	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	61.67	33.16	35.15	3.96	63.64	74.00	-10.36	Peak	Horizontal
4874.00	44.11	33.16	35.15	3.96	46.08	54.00	-7.92	Average	Horizontal
4874.00	58.30	33.16	35.15	3.96	60.27	74.00	-13.73	Peak	Vertical
4874.00	42.83	33.16	35.15	3.96	44.80	54.00	-9.20	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	62.05	33.26	35.14	3.98	64.15	74.00	-9.85	Peak	Horizontal
4924.00	57.00	33.26	35.14	3.98	49.10	54.00	-14.90	Average	Horizontal
4924.00	56.64	33.26	35.14	3.98	58.74	74.00	-15.26	Peak	Vertical
4924.00	41.09	33.26	35.14	3.98	43.19	54.00	-10.81	Average	Vertical

IEEE 802.11g

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	57.49	33.06	35.04	3.94	59.45	74.00	-14.55	Peak	Horizontal
4824.00	54.81	33.06	35.04	3.94	46.77	54.00	-17.23	Average	Horizontal
4824.00	57.66	33.06	35.04	3.94	59.62	74.00	-14.38	Peak	Vertical
4824.00	42.73	33.06	35.04	3.94	44.69	54.00	-9.31	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	58.36	33.16	35.15	3.96	60.33	74.00	-13.67	Peak	Horizontal
4874.00	43.21	33.16	35.15	3.96	45.18	54.00	-8.82	Average	Horizontal
4874.00	55.28	33.16	35.15	3.96	57.25	74.00	-16.75	Peak	Vertical
4874.00	40.80	33.16	35.15	3.96	42.77	54.00	-11.23	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	60.57	33.26	35.14	3.98	62.67	74.00	-11.33	Peak	Horizontal
4924.00	43.56	33.26	35.14	3.98	45.66	54.00	-8.34	Average	Horizontal
4924.00	56.55	33.26	35.14	3.98	58.65	74.00	-15.35	Peak	Vertical
4924.00	40.14	33.26	35.14	3.98	42.24	54.00	-11.76	Average	Vertical

IEEE 802.11n HT20

Channel 1 / 2412MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	57.40	33.06	35.04	3.94	59.36	74.00	-14.64	Peak	Horizontal
4824.00	44.12	33.06	35.04	3.94	46.08	54.00	-7.92	Average	Horizontal
4824.00	56.63	33.06	35.04	3.94	58.59	74.00	-15.41	Peak	Vertical
4824.00	42.83	33.06	35.04	3.94	44.79	54.00	-9.21	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	57.72	33.16	35.15	3.96	59.69	74.00	-14.31	Peak	Horizontal
4874.00	40.55	33.16	35.15	3.96	42.52	54.00	-11.48	Average	Horizontal
4874.00	56.36	33.16	35.15	3.96	58.33	74.00	-15.67	Peak	Vertical
4874.00	41.68	33.16	35.15	3.96	43.65	54.00	-10.35	Average	Vertical

Channel 11 / 2462MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	55.93	33.26	35.14	3.98	58.03	74.00	-15.97	Peak	Horizontal
4924.00	42.08	33.26	35.14	3.98	44.18	54.00	-9.82	Average	Horizontal
4924.00	57.24	33.26	35.14	3.98	59.34	74.00	-14.66	Peak	Vertical
4924.00	39.43	33.26	35.14	3.98	41.53	54.00	-12.47	Average	Vertical

IEEE 802.11n HT40

Channel 1 / 2422MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4844.00	58.83	33.06	35.04	3.94	60.79	74.00	-13.21	Peak	Horizontal
4844.00	42.79	33.06	35.04	3.94	44.75	54.00	-9.25	Average	Horizontal
4844.00	57.86	33.06	35.04	3.94	59.82	74.00	-14.18	Peak	Vertical
4844.00	42.85	33.06	35.04	3.94	44.81	54.00	-9.19	Average	Vertical

Channel 6 / 2437MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	56.81	33.16	35.15	3.96	58.78	74.00	-15.22	Peak	Horizontal
4874.00	43.21	33.16	35.15	3.96	45.18	54.00	-8.82	Average	Horizontal
4874.00	56.88	33.16	35.15	3.96	58.85	74.00	-15.15	Peak	Vertical
4874.00	42.04	33.16	35.15	3.96	44.01	54.00	-9.99	Average	Vertical

Channel 11 / 2452MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4904.00	56.98	33.26	35.14	3.98	59.08	74.00	-14.92	Peak	Horizontal
4904.00	41.03	33.26	35.14	3.98	43.13	54.00	-10.87	Average	Horizontal
4904.00	54.39	33.26	35.14	3.98	56.49	74.00	-17.51	Peak	Vertical
4904.00	40.51	33.26	35.14	3.98	42.61	54.00	-11.39	Average	Vertical

Notes:

- 1. Measuring frequencies from 9 KHz~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 13.5Mbps at IEEE 802.11n HT40;

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 KHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

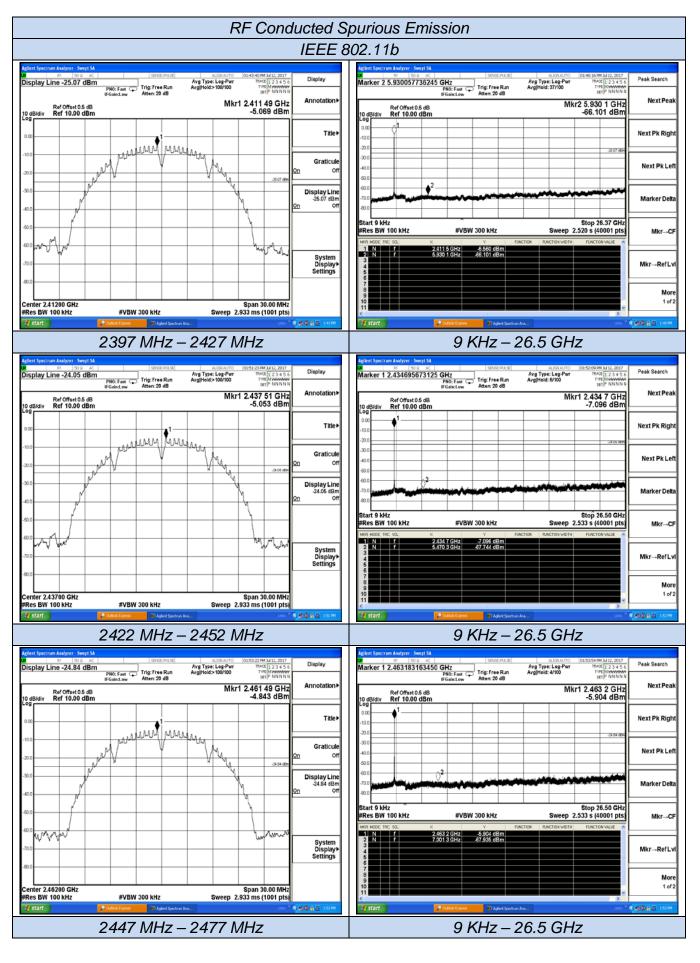
This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.6.6. Test Results of Conducted Spurious Emissions

Temperature	25°C	Humidity	60%
Test Engineer	Kyle.Yin	Configurations	IEEE 802.11b/g/n

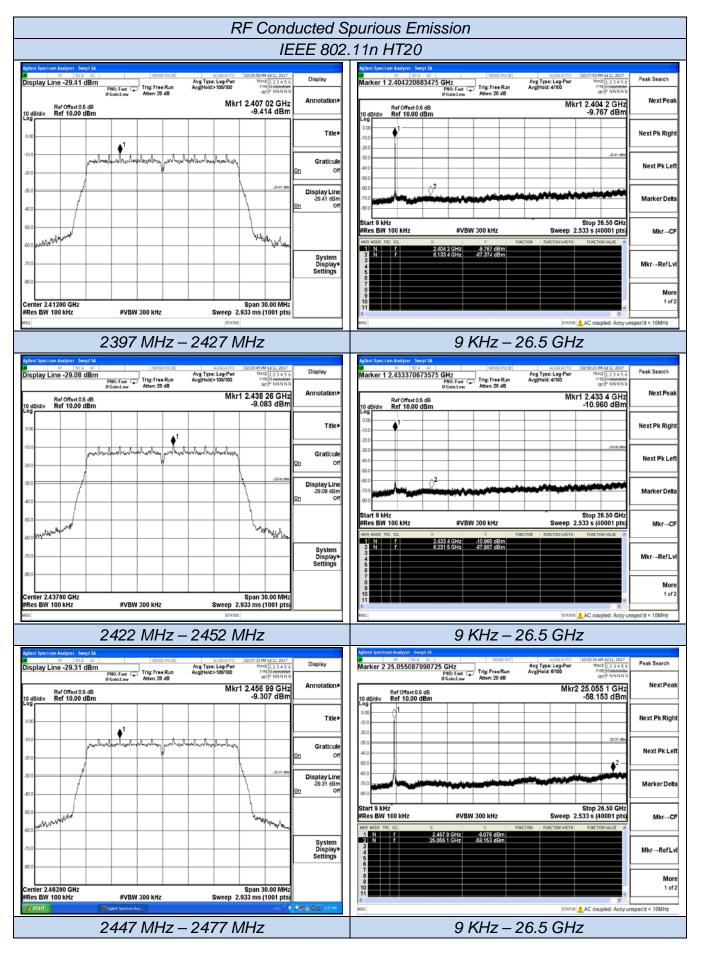

Report No.: LCS170410096AE

Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBc)	Limits (dBc)	Verdict
	1	2412	<-20		
IEEE 802.11b	6	2437	<-20	-20	PASS
	11	2462	<-20		
	1	2412	<-20		
IEEE 802.11g	6	2437	<-20	-20	PASS
_	11	2462	<-20		
IEEE 802.11n	1	2412	<-20		
HT20	6	2437	<-20	-20	PASS
H120	11	2462	<-20		
IEEE 802.11n	3	2422	<-20		
HT40	6	2437	<-20	-20	PASS
H140	9	2452	<-20		

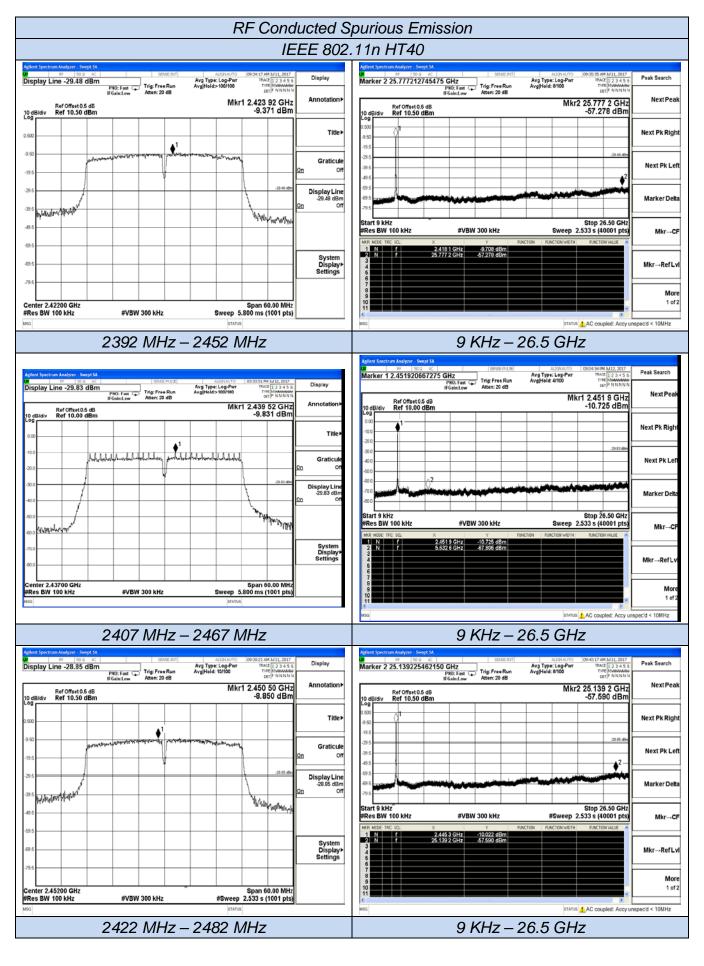
Remark:


- 1. Measured RF conducted spurious emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40; "---"means that the fundamental frequency not for 15.209 limits requirement.
- 4. Please refer to following plots;

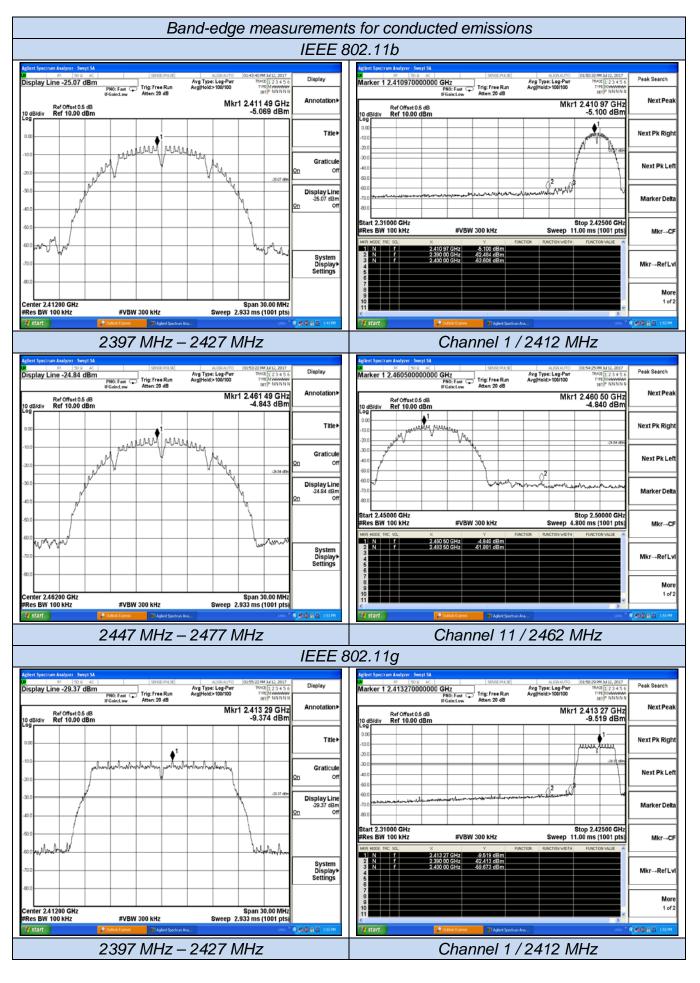
Report No.: LCS170410096AE


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 57

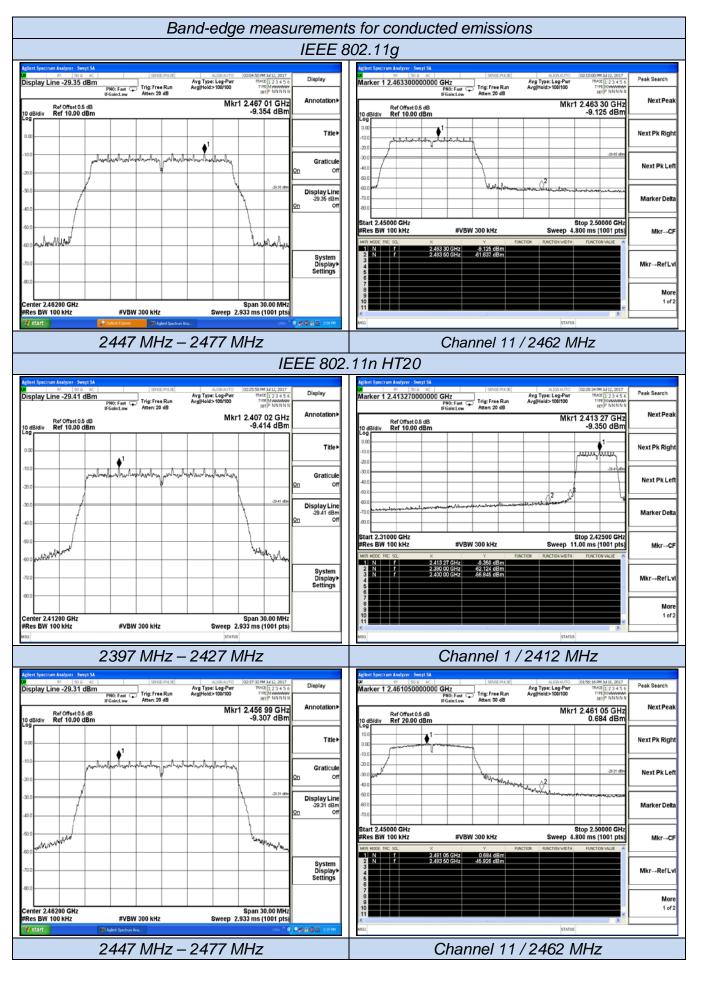
Report No.: LCS170410096AE

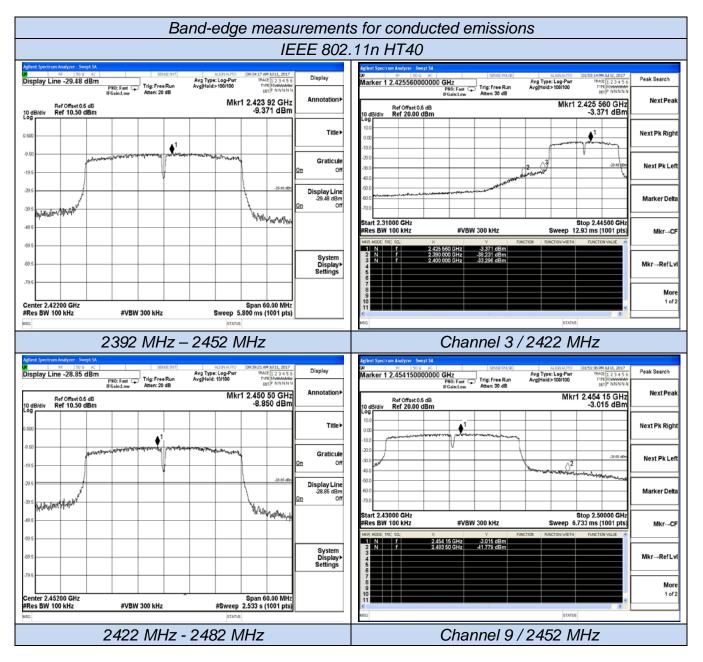

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 57

Report No.: LCS170410096AE



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 57

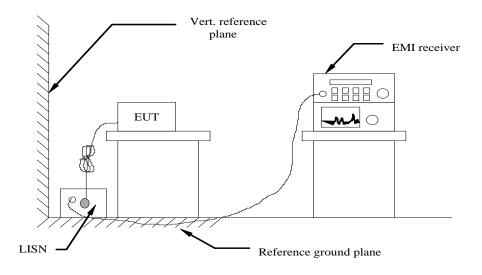

Report No.: LCS170410096AE


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 57

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 57

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 57

5.7. Power line conducted emissions

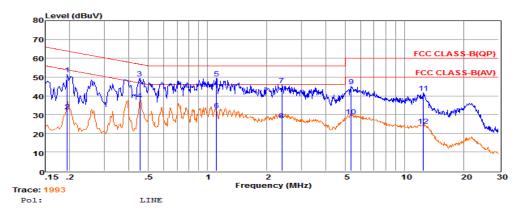

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

* Decreasing linearly with the logarithm of the frequency

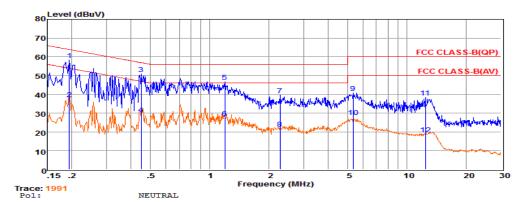
5.7.2 Block Diagram of Test Setup



5.7.3 Test Results

PASS.

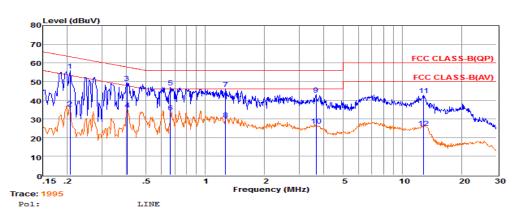
The test data please refer to following page.


AC Conducted Emission of power adapter @ AC 120V/60Hz @ IEEE 802.11b (worst case)

Over Remark Freq Reading LISNFac CabLos Aux2Fac Measured Limit

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.19	31.82	9.62	0.02	10.00	51.46	63.84	-12.38	QP
2	0.19	12.33	9.62	0.02	10.00	31.97	53.84	-21.87	Average
3	0.45	29.84	9.62	0.04	10.00	49.50	56.80	-7.30	QP
4	0.45	18.11	9.62	0.04	10.00	37.77	46.80	-9.03	Average
5	1.11	29.59	9.63	0.05	10.00	49.27	56.00	-6.73	QP
6	1.11	12.75	9.63	0.05	10.00	32.43	46.00	-13.57	Average
7	2.38	26.11	9.64	0.05	10.00	45.80	56.00	-10.20	QP
8	2.38	7.26	9.64	0.05	10.00	26.95	46.00	-19.05	Average
9	5.36	25.46	9.66	0.06	10.00	45.18	60.00	-14.82	QP
10	5.36	9.42	9.66	0.06	10.00	29.14	50.00	-20.86	Average
11	12.45	21.92	9.70	0.09	10.00	41.71	60.00	-18.29	QP
12	12.45	4.43	9.70	0.09	10.00	24.22	50.00	-25.78	Average

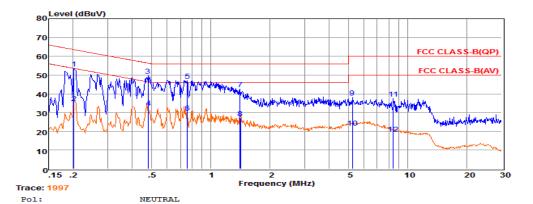
Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac. 2. The emission levels that are 20dB below the official limit are not reported.



	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measur	ed Limit	: Over	Remark
	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.19	38.75	9.60	0.02		58.37	63.84	-5.47	OP
2	0.19	17.92	9.60	0.02	10.00	37.54	53.84	-16.30	Average
3	0.45	31.16	9.62	0.04	10.00	50.82	56.89	-6.07	QP
4	0.45	9.68	9.62	0.04	10.00	29.34	46.89	-17.55	Average
5	1.19	27.09	9.63	0.05	10.00	46.77	56.00	-9.23	QP
6	1.19	7.56	9.63	0.05	10.00	27.24	46.00	-18.76	Average
7	2.27	19.92	9.63	0.05	10.00	39.60	56.00	-16.40	QP
8	2.27	1.94	9.63	0.05	10.00	21.62	46.00	-24.38	Average
9	5.33	21.08	9.67	0.06	10.00	40.81	60.00	-19.19	QP
10	5.33	8.20	9.67	0.06	10.00	27.93	50.00	-22.07	Average
11	12.38	18.59	9.73	0.09	10.00	38.41	60.00	-21.59	QP
12	12.38	-1.06	9.73	0.09	10.00	18.76	50.00	-31.24	Average
Re								Aux2 Fac	

The emission levels that are 20dB below the official limit are not reported. 2.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 57


AC Conducted Emission of power adapter @ AC 240V/50Hz @ IEEE 802.11b (worst case)

Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

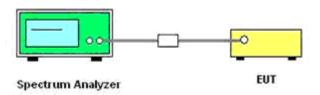
	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.21	36.11	9.63	0.03	10.00	55.77	63.36	-7.59	QP
2	0.21	15.97	9.63	0.03	10.00	35.63	53.36	-17.73	Average
3	0.40	29.74	9.62	0.04	10.00	49.40	57.81	-8.41	QP
4	0.40	15.50	9.62	0.04	10.00	35.16	47.81	-12.65	Average
5	0.66	27.27	9.64	0.04	10.00	46.95	56.00	-9.05	QP
6	0.66	13.89	9.64	0.04	10.00	33.57	46.00	-12.43	Average
7	1.27	26.50	9.63	0.05	10.00	46.18	56.00	-9.82	QP
8	1.27	10.15	9.63	0.05	10.00	29.83	46.00	-16.17	Average
9	3.64	23.38	9.65	0.06	10.00	43.09	56.00	-12.91	QP
10	3.64	6.71	9.65	0.06	10.00	26.42	46.00	-19.58	Average
11	12.78	23.04	9.70	0.09	10.00	42.83	60.00	-17.17	QP
12	12.78	5.41	9.70	0.09	10.00	25.20	50.00	-24.80	Average
Rer	Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.								

The emission levels that are 20dB below the official limit are not reported.

	Freq	Reading	LISNFac	CabLos	Aux2Fa	: Measur	ed Limi	t Over	Remark
	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.20	33.89	9.59	0.02	10.00	53.50	63.54	-10.04	QP
2	0.20	15.37	9.59	0.02	10.00	34.98	53.53	-18.55	Average
3	0.48	29.89	9.62	0.04	10.00	49.55	56.32	-6.77	QP
4	0.48	13.10	9.62	0.04	10.00	32.76	46.32	-13.56	Average
5	0.76	27.47	9.63	0.04	10.00	47.14	56.00	-8.86	QP
6	0.76	10.35	9.63	0.04	10.00	30.02	46.00	-15.98	Average
7	1.41	22.85	9.63	0.05	10.00	42.53	56.00	-13.47	QP
8	1.41	7.48	9.63	0.05	10.00	27.16	46.00	-18.84	Average
9	5.22	18.46	9.66	0.06	10.00	38.18	60.00	-21.82	QP
10	5.22	2.39	9.66	0.06	10.00	22.11	50.00	-27.89	Average
11	8.46	17.56	9.71	0.08	10.00	37.35	60.00	-22.65	QP
12	8.46	-1.10	9.71	0.08	10.00	18.69	50.00	-31.31	Average
Rem	Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.								

are 20dB below the offici limit are not reported.

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b).


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 57

5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies >

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 57

FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

1000 MHz).

- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

Where:

 $E = electric field strength in dB\mu V/m$, EIRP = equivalent isotropic radiated power in dBm D = specified measurement distance in meters.

- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.
- 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

	IEEE 802.11b								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
2310.000	-50.951	2.000	0.000	46.277	Peak	74.00	PASS		
2310.000	-62.025	2.000	0.000	35.203	AV	54.00	PASS		
2390.000	-47.378	2.000	0.000	49.850	Peak	74.00	PASS		
2390.000	-58.608	2.000	0.000	38.620	AV	54.00	PASS		
2483.500	-46.670	2.000	0.000	50.558	Peak	74.00	PASS		
2483.500	-57.912	2.000	0.000	39.316	AV	54.00	PASS		
2500.000	-48.437	2.000	0.000	48.791	Peak	74.00	PASS		
2500.000	-59.987	2.000	0.000	37.241	AV	54.00	PASS		

Frequency	Conducted Power	Antenna Gain	Ground Reflection	Covert Radiated E	Detector	Limit
			IEEE 802.	.11g		
2500.000	-59.987	2.000	0.000	37.241	AV	54.00
2500.000	-48.437	2.000	0.000	48.791	Peak	74.00
2483.500	-57.912	2.000	0.000	39.316	AV	54.00
2483.500	-46.670	2.000	0.000	50.558	Peak	74.00
2390.000	-58.608	2.000	0.000	38.620	AV	54.00
2390.000	-47.378	2.000	0.000	49.850	Peak	74.00
2310.000	-62.025	2.000	0.000	35.203	AV	54.00
2310.000	-50.951	2.000	0.000	46.277	Peak	74.00

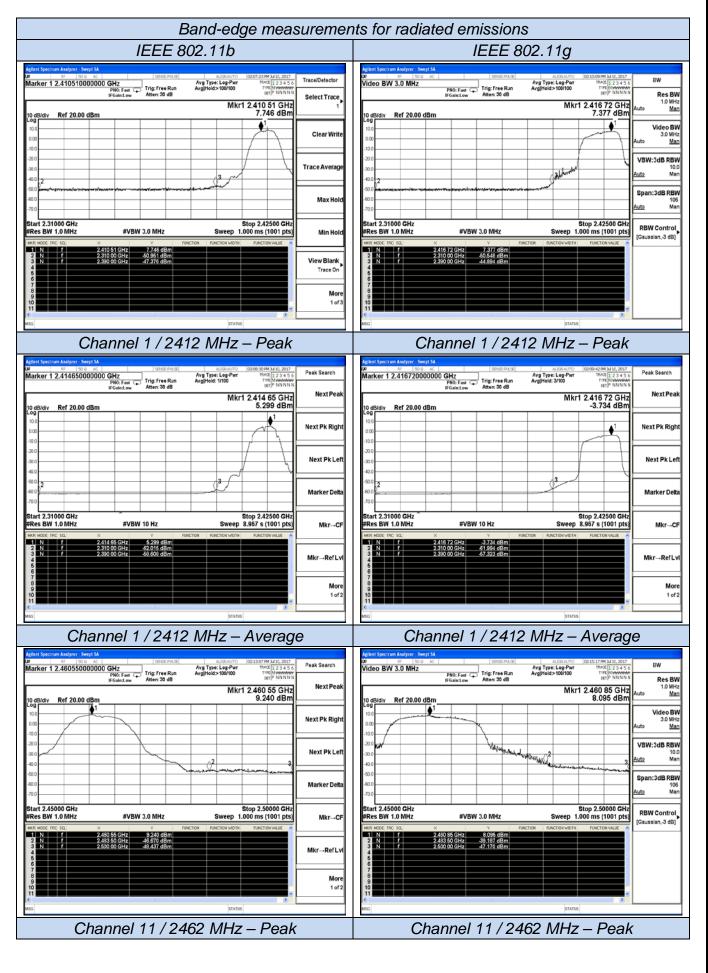
Frequency (MHz)	Power (dBm)	Gain (dBi)	Reflection Factor (dB)	Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
2310.000	-50.548	2.000	0.000	46.680	Peak	74.00	PASS
2310.000	-61.994	2.000	0.000	35.234	AV	54.00	PASS
2390.000	-44.894	2.000	0.000	52.334	Peak	74.00	PASS
2390.000	-57.323	2.000	0.000	39.905	AV	54.00	PASS
2483.500	-39.187	2.000	0.000	58.041	Peak	74.00	PASS
2483.500	-55.443	2.000	0.000	41.785	AV	54.00	PASS
2500.000	-47.170	2.000	0.000	50.058	Peak	74.00	PASS
2500.000	-58.953	2.000	0.000	38.275	AV	54.00	PASS

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 57

5.8.5 Test Results

Report No.: LCS170410096AE

	IEEE 802.11n HT20								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
2310.000	-50.054	2.000	0.000	47.174	Peak	74.00	PASS		
2310.000	-62.031	2.000	0.000	35.197	AV	54.00	PASS		
2390.000	-37.299	2.000	0.000	59.929	Peak	74.00	PASS		
2390.000	-56.353	2.000	0.000	40.875	AV	54.00	PASS		
2483.500	-37.483	2.000	0.000	59.745	Peak	74.00	PASS		
2483.500	-54.755	2.000	0.000	42.473	AV	54.00	PASS		
2500.000	-46.961	2.000	0.000	50.267	Peak	74.00	PASS		
2500.000	-58.994	2.000	0.000	38.234	AV	54.00	PASS		


	IEEE 802.11n HT40								
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
2310.000	-50.412	2.000	0.000	46.816	Peak	74.00	PASS		
2310.000	-62.044	2.000	0.000	35.184	AV	54.00	PASS		
2390.000	-36.506	2.000	0.000	60.722	Peak	74.00	PASS		
2390.000	-56.328	2.000	0.000	40.900	AV	54.00	PASS		
2483.500	-30.572	2.000	0.000	66.656	Peak	74.00	PASS		
2483.500	-54.769	2.000	0.000	42.459	AV	54.00	PASS		
2500.000	-46.962	2.000	0.000	50.266	Peak	74.00	PASS		
2500.000	-58.995	2.000	0.000	38.233	AV	54.00	PASS		

Remark:

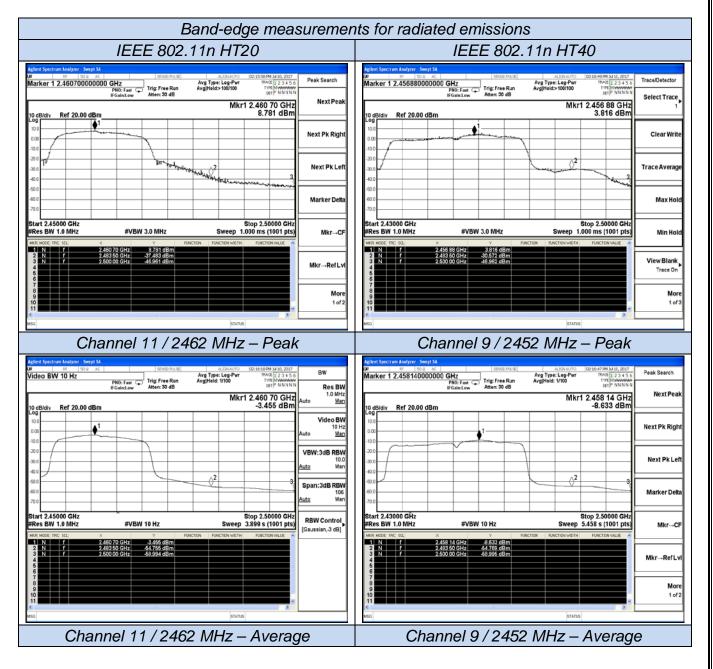
- 1. Measured Band edge measurement for radiated emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20 13.5Mbps at IEEE 802.11n HT40;
- 4. "---"means that the fundamental frequency not for 15.209 limits requirement.
- 5. Please refer to following plots;

FCC ID: 2AMYS-ABOX


Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 57

FCC ID: 2AMYS-ABOX


Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 57

FCC ID: 2AMYS-ABOX

Report No.: LCS170410096AE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 57

5.9. Antenna Requirements

5.9.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0 dBi, and the antenna is an internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Conducted power refers ANSI C63.10:2013 Output power test procedure for DTS devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter						
Detector:	Peak					
Sweep Time:	Auto					
Resolution bandwidth:	1MHz					
Video bandwidth:	3MHz					
Trace-Mode:	Max hold					

Limits

FCC	ISED				
Antenna Gain					
6 dBi					

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For WLAN devices, the DSSS mode is used;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 57

|--|

T _{nom}	V _{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Conducted power [dBm] Measured with DSSS modulation		8.369	8.804	8.743	
Radiated power [dBm] Measured with DSSS modulation		8.111	8.297	8.367	
Gain [dBi] Calculated		-0.258	-0.507	-0.376	
Measurement uncertainty			± 1.6 dB (cond.) / ± 3.8 dB (rad.)		

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18, 2016	June 17, 2017
Signal analyzer	Agilent	E4448A(Externa I mixers to 40GHz)	US44300469	9kHz~40GHz	July 16, 2016	July 15, 2017
Signal analyzer	Agilent	N9020A	MY50510140	9kHz~26.5GHz	October 27, 2016	October 27, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18, 2016	June 17, 2017
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18, 2016	June 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18, 2016	June 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18, 2016	June 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz 3m	June 18, 2016	June 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18, 2016	June 17, 2017
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16, 2016	July 15, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16, 2016	July 15, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18, 2016	June 17, 2017
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10, 2017	June 09, 2018
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10, 2017	June 09, 2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA91701 54	15GHz-40GHz	June 10, 2017	June 09, 2018
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18, 2016	June 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18, 2016	June 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z81	100458	DC-18GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18, 2016	June 17, 2017
AC Power Source	HPC	HPA-500E	HPA-910002 4	AC 0~300V	June 18, 2016	June 17, 2017
DC power source	GW	GPC-6030D	C671845	DC 1V-60V	June 18, 2016	June 17, 2017
Temp. and Humidify Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 18, 2016	June 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18, 2016	June 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 18, 2016	June 17, 2017
EMC Test Software	Audix ent through GRGT E	E3	N/A	N/A	N/A	N/A

Report No.: LCS170410096AE

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

-----THE END OF REPORT------