

TEST REPORT

APPLICANT	: Golden Mark (HK) Limited
PRODUCT NAME	: Smart Hub
MODEL NAME	: ZL-100
BRAND NAME	: N/A
FCC ID	: 2AMY9ZL100
STANDARD(S)	: 47 CFR Part 15 Subpart C
TEST DATE	: 2018-01-22 to 2018-02-07
ISSUE DATE	: 2018-03-19

Tested by:

Tu Ya'nan

Tu Ya'nan (Test Engineer)

Approved by:

Andy Yeh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	Technical Information	4
1.1.	Applicant and Manufacturer Information	4
1.2.	Equipment Under Test (EUT) Description	4
1.3.	Test Standards and Results	5
1.4.	Environmental Conditions	5
2. 4	7 CFR Part 15C Requirements	6
2.1.	Antenna requirement ·····	6
2.2.	Peak Output Power ·····	6
2.3.	Bandwidth	9
2.4.	Conducted Spurious Emissions and Band Edge1	6
2.5.	Power spectral density (PSD)2	6
2.6.	Restricted Frequency Bands	3
2.7.	Conducted Emission 4	2
2.8.	Radiated Emission 4	5
Ann	ex A Test Uncertainty5	8
Ann	ex B Testing Laboratory Information5	9

Change History				
Issue	Date	Reason for change		
1.0	2018-03-19	First edition		

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Golden Mark (HK) Limited			
Applicant Address:	6/F., Kimberley Plaza, 45-47 Kimberley Road, Tsim Sha Tsui,			
	Kowloon, Hong Kong,China			
Manufacturer:	Golden Mark (HK) Limited			
Manufacturer Address:	6/F., Kimberley Plaza, 45-47 Kimberley Road, Tsim Sha Tsui,			
	Kowloon, Hong Kong,China			

1.2. Equipment Under Test (EUT) Description

Product Name:	Smart Hub
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	N/A
Software Version:	N/A
Modulation Type:	DSSS, OFDM
Operating Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Channel Number:	802.11b/g/n-20MHz: 11
Antenna Type:	PCB Antenna
Antenna Gain:	2 dBi

Note 1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

Note 2: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity		Document Title			
1 47 CFR Part 15 (10-1-15 Edition)		Radio Frequency Devices				
Test detailed items/section required by FCC rules and results are as below:						
No.	Section	Description		Test Date	Test Engineer	Result
1	15.203	Antenna Requirement		N/A	N/A	PASS
2	15.247(b)	Peak Output Power		Feb 08, 2018	Tu Ya'nan	PASS
3	15.247(a)	Bandwidth		Jan 22, 2018	Tu Ya'nan	PASS
1	15.247(d)	15 247(d) Conducted Spurious Emission		lan 22, 2018	Tu Va'nan	PASS
-	10.247 (d)	and Band Edge		Jan 22, 2010	iu iu iuii	1,400
5	15.247(d)	Restricted Frequency Bands		Feb 06, 2018	Wu Junke	PASS
6	15.207	Conducted Emission		Jan 24, 2018	Wu Junke	PASS
7	15.209,	Padiatod Emission		Eab 07 2019	Mu lunko	DASS
<i>'</i>	15.247(d)	Radiated Emission		reb 07, 2010	vvu Julike	FA33
8	15.247(e)	Power spectral density (PS	SD)	Jan 22, 2018	Tu Ya'nan	PASS
Note	Note1: The tests of Conducted Emission and Radiated Emission were performed according to					
the n	the method of measurements prescribed in ANSI C63.10 2013 and KDB558074 D01 v04					
(04/0	05/2017).					

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power

2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

B. Equipments List:

Please refer ANNEX A(1.5).

2.2.3. Test Result

		Measured Output Peak Power		Limit		\/o voli ot
Channel	Frequency (IVIEZ)	dBm	W	dBm	W	verdict
1	2412	9.98	0.00995			PASS
6	2437	11.33	0.01358	30	1	PASS
11	2462	12.38	0.01730			PASS

2.2.3.1 802.11b Test Mode

Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	6.33	0.00430			PASS
6	2437	7.57	0.00571	30	1	PASS
11	2462	8.64	0.00731			PASS

2.2.3.2 802.11g Test mode

		Measured Output Peak Power		Limit		Vordiot
Channel		dBm	W	dBm	W	verdict
1	2412	12.86	0.01932			PASS
6	2437	12.83	0.01919	30	1	PASS
11	2462	13.98	0.02500			PASS

Channel	Channel Frequency (MHz)		Measured Output Average Power		Limit	
		dBm	W	dBm	W	
1	2412	4.95	0.00313			PASS
6	2437	4.94	0.00312	30	1	PASS
11	2462	7.33	0.00541			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.2.3.3 802.11n-20MHz Test mode

		Measured Output Peak Power		Limit		Vordiot
Channel	Frequency (MHZ)	dBm	W	dBm	W	veruici
1	2412	12.93	0.01963			PASS
6	2437	13.28	0.02128	30	1	PASS
11	2462	14.01	0.02518			PASS

Channel Frequency (MHz)		Measured Output Average Power		Limit		Verdict
		dBm	W	dBm	W	
1	2412	5.22	0.00333			PASS
6	2437	5.50	0.00355	30	1	PASS
11	2462	7.44	0.00555			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.3.3. Test Result

2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	8.112	≥500	PASS
6	2437	8.115	≥500	PASS
11	2462	8.107	≥500	PASS

B. Test Plots

(Channel 1, 2412MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

(Channel 11, 2462MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	16.36	≥500	PASS
6	2437	16.36	≥500	PASS
11	2462	16.36	≥500	PASS

B. Test Plots:

(Channel 1, 2412MHz, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11g)

(Channel 11, 2462MHz, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	16.61	≥500	PASS
6	2437	16.68	≥500	PASS
11	2462	16.61	≥500	PASS

B. Test Plots:

(Channel 1, 2412MHz, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel 6, 2437MHz, 802.11n-20)

(Channel 11, 2462MHz, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.4.3. Test Result

2.4.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	Manaurad Max, Out of	Limit		
		Read Emission (dPm)	Carrier	Calculated	Verdict
		Danu Emission (ubm)	Level	-20dBc Limit	
1	2412	-33.60	8.25	-11.75	PASS
6	2437	-39.96	7.56	-12.44	PASS
11	2462	-39.86	9.12	-10.88	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

Agilent Spectrum Analyzer - Swept SA				
Marker 2 4.82424000000		E:INT ALIGNA	AUTO 03:49:50 PM Jan 22, 2018 -Pwr TRACE 1 2 3 4 5 6	Peak Search
	PNO: Fast Trig: Free IFGain:Low Atten: 20 o	Run Avg Hold:>1007 IB	100 TYPE MWWWW DET P N N N N N Mkr2 4.824 GHz	Next Peak
10 dB/div Ref 20.00 dBm			-33.601 dBm	
				Next Pk Right
-10.0 -20.0 -30.0 -2				Next Pk Left
-400 -500 -600 -700	~	المسامر بعر المسالح من المراجع المراجع المراجع المراجع المراجع المسالح المراجع المراجع المراجع المراجع المراجع	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marker Delta
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz		Stop 25.00 GHz reep 2.386 s (2001 pts)	Mkr→CF
I I I I 1 N 1 f 2 N 1 f 3 4 5 6	2.415 GHz 8.247 dB 4.824 GHz -33.601 dB	m n		Mkr→RefLvl
7 8 9 9 10 11			×	More 1 of 2
MSG			STATUS	

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge, Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 7.383665000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:52:11 PM Jan 22, 2018 TRACE 1 2 3 4 5 6	Peak Search
PNO: Fast IEGain: I ov	Trig: Free Run Atten: 20 dB	Avg Hold: 7/100	DET P N N N N	
			/kr2 7.384 GHz	Next Peak
10 dB/div Ref 20.00 dBm			-39.861 dBm	
				Next Pk Right
-10.0				
-20.0				
-30.0				Next Pk Left
-40.0				
-50.0			mann	
-60.0 -60.0	and the second states of the second states	while and a series of the seri		Marker Delta
-70.0				
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Sween	Stop 25.00 GHz	Mkr.,CE
	× ·			WIKI→CI
1 N 1 f 2.465 GHz	9.118 dBm	TONCTON TONCTON WIDTH		
2 N 1 f 7.384 GHz	-39.861 dBm			
4				MKr→RetLvi
6				
8				More
9				1 of 2
			~ ~	
MSG		STATU	S	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	Measured Max, Out of	Limit		
		Rend Emission (dPm)	Carrier	Calculated	Verdict
		Banu Emission (ubm)	Level	-20dBc Limit	
1	2412	-45.31	4.13	-15.87	PASS
6	2437	-42.92	3.60	-16.40	PASS
11	2462	-43.88	2.73	-17.27	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge, Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 7.383665000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	03:56:23 PM Jan 22, 2018 TRACE 1 2 3 4 5 6	Peak Search
PNO: Fast IFGain:Lov	Trig: Free Run Atten: 14 dB	Avg Hold: 6/100	DET P N N N N	
			/kr2 7.384 GHz	Next Peak
10 dB/div Ref 15.00 dBm			-43.877 dBm	
5 m 01				
5.00				Next Pk Right
-15.0				
-25.0				
-35.0				Next Pk Left
-45.0				
-55.0	<mark> </mark>		A A A A A A A A A A A A A A A A A A A	
-65.0 -65.0	white and a second second	and a state of the second s		Marker Delta
-75.0				
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Sween	Stop 25.00 GHz 2 386 s (2001 nts)	Mkr.,CE
1 N 1 f 2.465 GHz	2.729 dBm			
2 N 1 f 7.384 GHz	-43.877 dBm			Min Defield
4			=	WIKr→Ret LVI
6				
8				More
9				1 of 2
			×	
MSG	All	STATU	s	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.3 802.11n -20MHz Test mode

A. Test Verdict:

Channel	Frequency (MHz)	Moncured Max, Out of	Limit		
		Rend Emission (dPm)	Carrier	Calculated	Verdict
		Band Emission (dbm)	Level	-20dBc Limit	
1	2412	-41.65	4.31	-15.69	PASS
6	2437	-43.50	4.88	-15.12	PASS
11	2462	-43.71	3.68	-16.32	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(Channel = 1, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Band Edge, Channel = 1)

(Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 7.383665000000 GHz	SENSE:1	INT ALIGN AUTO Avg Type: Log-Pwr	04:05:09 PM Jan 22, 2018 TRACE 2 3 4 5 6	Peak Search
PNO: IFGair	Fast 🕞 Trig: Free Ru :Low Atten: 14 dB	un Avg Hold: 14/100 i	DET P NNNN	
Pof Offset 11.5 dP			Mkr2 7.384 GHz	Next Peak
10 dB/div Ref 15.00 dBm			-43.706 dBm	
5.00				
-5.00				Next Pk Right
-15.0				
-25.0				
-35.0 2				Next Pk Left
-45.0				
-55.0		and the second state of the second		
-65.0	man from and the	endeduning		Marker Delta
-75.0				
Start 30 MHz	^		Stop 25.00 GHz	
#Res BW 100 kHz	#VBW 300 kHz	Sweep	2.386 s (2001 pts)	Mkr→CF
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	
1 N 1 f 2.465 G 2 N 1 f 7.384 G	Hz 3.683 dBm Hz -43.706 dBm			
3				Mkr→RefLvl
5				
7				
9				More
10			~	1 of 2
<				
MSG		STAT	US	

(Channel = 11, 30MHz to 25GHz)

(Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Spectral power density (dBm/3kHz)							
Channel	Frequency	Macourad BSD (dBm/2kHz)	Limit	Vardiat			
Channel	(MHz)	Measured FSD (dBIII/3KHZ)	(dBm/3kHz)	verdict			
1	2412	-6.16	8	PASS			
6	2437	-6.22	8	PASS			
11	2462	-6.27	8	PASS			
Measurement uncertainty: ±1.3dB							

B. Test Plots:

(Channel = 1, 802.11b)

(Channel = 6, 802.11b)

(Channel = 11, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.2 802.11g Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)												
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict									
1	2412	-10.02	8	PASS									
6	2437	-10.27	8	PASS									
11 2462 -10.49 8 PASS													
Measurement uncertainty: ±1.3dB													

B. Test Plots:

(Channel = 1, 802.11g)

(Channel = 6, 802.11g)

(Channel = 11, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)												
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict									
1	2412	-10.74	8	PASS									
6	2437	-10.17	8	PASS									
11 2462 -10.67 8 PASS													
Measurement uncertainty: ±1.3dB													

B. Test Plots:

(Channel = 1, 802.11n-20MHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-20MHz)

(Channel = 11, 802.11n-20MHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T : Total correction Factor except Antenna U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)		U _R (dBuV)	(dB)	(dB@3m)	E (dBμV/m)	(dBµV/m)	
1	2388.77	PK	43.99	-33.63	32.56	42.92	74	Pass
1	2388.77	AV	37.43	-33.63	32.56	36.36	54	Pass
11	2485.61	PK	48.95	-33.18	32.50	48.27	74	Pass
11	2485.72	AV	40.64	-33.18	32.50	39.96	54	Pass

B. Test Plots:

Keysight Spectrum Analyzer - Swept SA 02:13:09 PM Feb 06, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N RI Avg Type: Voltage Avg|Hold:>100/100 Marker Marker 1 2.388768000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast C Select Marker Mkr1 2.388 77 GHz 43.992 dBµV 10 dB/div Log Ref 106.99 dBµV Normal Delta 12 **Fixed** Start 2.30000 GHz Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz Off FUNCTION FUNCTION WIDTH 2.388 77 GHz 2.390 00 GHz 43.992 dBµV 43.468 dBµV 1 f Ň **Properties**► More 1 of 2

(Channel = 1 PEAK, 802.11b)

(Channel = 1 AVG, 802.11b)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn

								wept SA	Analyzer - Sw	nt Spectrui	eysigh
02:10:45 PM Feb 06, 2018 TRACE 12 3 4 5 6 TYPE MWWWWW	02:10:45 TR/ T	ALIGN OFF Coltage >100/100	Avg Ty AvalHo	INT	SENSE:	Tria: Fr	GHz	DC DC	856070	r 2 2.4	ke
	1				10 dE	Atten:	IFGain:Low				
2.485 607 GHZ 48.951 dBμV	2.485 48.9	MKr2						9 dBµV	ef 106.99	iv R	B/d
											ļ
Next Pk										~~~	
Next P			2	1							
and the strength of the state o	hor hand a start way and	Assessment of the second	Lan and the	- Veron	~~~~	~~~~					┝
Marko											
											Ĺ
top 2.50000 GHz	Stop 2.5								GHz	.4630	L rt 2
000 ms (1001 pts) Mk	.000 ms	Sweep 1			Z	/ 3.0 MH	#VBV	٧Hz	SPR) 1 N	SW (CI	es E
FUNCTION VALUE	FUNCT	ICTION WIDTH	ION F	FUN	lBuV	Y 47.472 d	500 GHz	× 2.483	L	E TRC S	MOD
Mkr→F					lΒµV	48.951 d	607 GHz	2.485		1	Ν
=											

(Channel = 11 PEAK, 802.11b)

(Channel = 11 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.6.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vordiot
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2384.00	PK	49.79	-33.63	32.56	48.72	74	Pass
1	2389.60	AV	37.66	-33.63	32.56	36.59	54	Pass
11	2483.61	PK	54.28	-33.18	32.50	53.6	74	Pass
11	2483.65	AV	39.82	-33.18	32.50	39.14	54	Pass

B. Test Plots:

(Channel = 1 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer R L RF PRESEL	- Swept SA 50 Ω DC	SENSE:INT	ALIGN OFF	02:16:23 PM Feb 06, 2018	Peak Search
arker 1 2.38960	0000000 GHZ PNO: Fa IFGain:Lo	st Trig: Free Run Atten: 10 dB	Avg Type: Voltage Avg Hold: 2/100		
dB/div Ref 106	.99 dBµV		Mkı	r1 2.389 60 GHz 37.658 dBµV	NextPea
7.0					Next Pk Rig
7.0					Next Pk Lo
7.0					Marker De
art 2.30000 GHz Is BW (CISPR) 1	MHz #	VBW 10 Hz	Sweep	Stop 2.41200 GHz 12.84 s (1001 pts)	Mkr→
NODE TRC SCL N 1 f N 1 f	× 2.389 60 GHz 2.390 00 GHz	γ z 37.658 dBµV z 37.887 dBµV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Mkr→Refl
					Mo

(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Back Secret	1Feb 06, 2018	02:05:59 P	ALIGN OFF		SE:INT	SENS		r - Swept SA 50 Ω DC	ectrum Analyze RF PRESEL	Keysight Sp R L
Feak Search	E 123456 E MWWWWW T P P N N N N	TRAC TYI DI	ype: Voltage old: 9/100	Avg Avg	Run dB	Trig: Free Atten: 10	PNO: Fast G	6000000	2.48364	rker 2
Next Pe	46 GHz 4 dBµV	2.483 6	Mkr2					.99 dBuV	Ref 10	dB/div
Next Pk Rig										
										.0
Next Pk L					2					.0
Marker De										.0
	000 GHz	Stop 2 5			~				300 GHz	ort 2.46
Mkr→	1001 pts)	4.243 s (Sweep FUNCTION WIDTH	ICTION	FUN	Y 10 Hz	#VB\	1 MHz ×		es BW
Mkr→Refl	=				JV	39.999 dBµ 39.824 dBµ	500 GHz 646 GHz	2.483 2.483	1 f 1 f	
Mo										
1 c	-									

(Channel = 11 AVG, 802.11g)

2.6.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	Detector	Receiver Reading	A _T (dB)	A _{Factor}	Max. Emission F	Limit	Verdict	
	(1011 12)	PK/ AV	(dBuV)	(uD)		_ (dBµV/m)	(00µ1/11)		
1	2389.38	PK	47.04	-33.63	32.56	45.97	74	Pass	
1	2389.38	AV	33.81	-33.63	32.56	32.74	54	Pass	
11	2483.87	PK	54.00	-33.18	32.50	53.32	74	Pass	
11	2483.57	AV	39.41	-33.18	32.50	38.73	54	Pass	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

						rept SA	Analyzer - Sw	Spectrum	Keysight
Peak Search	08:25:54 PM Feb 06, 2018 TRACE 123456	ALIGN OFF	INT	SENSE:	Hz		ESEL 50 Ω	RF PR	RL arker
	DET P P N N N	Hold:>100/100	un A B	Trig: Free R Atten: 10 dE	PNO: Fast 🕞 FGain:Low	F F	000700	<i>L L</i> ,J	anci
Next Peak	2 2.389 38 GHz 47.039 dBµV	Mkr) dBuV	f 106.99	/ Re) dB/div
Next Pk Right									7 .0
Next Pk Left	2		ur	- (), d. 5 have 20 m 1 M	ann - Ann an Maile an	- to state to	di na ch	de La Maria	7.0
Marker Delta									7.0 7.0 7.0
Mkr→CF	Stop 2.41200 GHz .000 ms (1001 pts)	Sweep 1	FUNCTIO	3.0 MHz	#VBW	Hz ×	GHz R) 1 Mi		tart 2. es BW
Mkr→RefLv				45.434 dBµV 47.039 dBµV	00 GHz 38 GHz	2.390 (2.389 (1 f 1 f	1 N 2 N 3 4 5 6
More 1 of 2									7 8 9 0
	۲.			m					

(Channel = 1 PEAK, 802.11n-20)

(Channel = 1 AVG, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Page 40 Of 61

	4Eob.06.2018	01:50:25.0			CE-INT	CEN		Swept SA	um Analyzer -	sight Spec
Peak Search	E 1 2 3 4 5 6	TRAC	e: Voltage	Avg	50.1141	JEN	SHz	000000 0	.483868	(er 2
		DE	1:>100/100	Avg H	Run dB	Atten: 10	PNO: Fast G FGain:Low			
NextPe	68 GHz 3 dBµV	2.483 8 54.00	Mkr2					99 dBµV	Ref 106.9	3/div
Next Pk Rig										
Next Blat					<u>م</u> `2					
Next PK L				· · · ·	- martine	~~~~~				
	and the second states	hterestation and the second	and he have a state of the second							
Marker De										
Marker De										
Mkr→	1000 GHz 1001 pts)	Stop 2.50 000 ms (Sweep 1.			/ 3.0 MHz	#VBV	MHz	00 GHZ CISPR) 1	t 2.46: s BW (
	ON VALUE	FUNCTIO	INCTION WIDTH	CTION	FUN	Y		Х	SCL	
					JV	53.//9 dB	00 GHz	2.483 5	1	N 1
					VL	54.003 dB	68 GHz	2.483 8	f	N 1
Mkr→Ref					JV	54.003 dBi	68 GHz	2.483 8	f	N 1
Mkr→Ref	=					54.003 dBı	68 GHz	2.483 8	f	N 1
Mkr→Ref	=				JV	54.003 dB	68 GHz	2.483 8	f	N 1

(Channel = 11 PEAK, 802.11n-20)

(Channel = 11 AVG, 802.11n-20)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.7. Conducted Emission

2.7.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)					
(MHz)	Quai-peak	Average				
0.15 - 0.50	66 to 56	56 to 46				
0.50 - 5	56	46				
5 - 30	60	50				

NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.

2.7.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

MORLAB

B. Equipments List:

Please refer ANNEX A(1.5).

2.7.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

B. Test Plots:

NO. Fre.	Fre.	Emission L	.evel (dBµV)	Limit (dBµV)	Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.18	50.17	36.64	64.49	54.49		PASS
2	0.25	41.66	33.99	61.76	51.76		PASS
3	0.59	42.96	36.00	56.00	46.00	Lino	PASS
4	1.27	48.13	42.32	56.00	46.00	LINE	PASS
5	2.31	37.11	31.28	56.00	46.00		PASS
6	13.79	29.66	23.21	60.00	50.00		PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn

(N Phase)

NO.	Fre. (MHz)	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
		Quai-peak	Average	Quai-peak	Average		
1	0.24	39.02	33.18	62.27	52.27		PASS
2	0.42	37.38	32.65	57.45	47.45		PASS
3	0.74	31.32	25.38	56.00	46.00	Noutral	PASS
4	3.14	34.68	28.56	56.00	46.00	Neutrai	PASS
5	6.03	30.09	23.03	60.00	50.00		PASS
6	16.76	28.47	22.45	60.00	50.00		PASS

2.8. Radiated Emission

2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705 - 30.0	30	30	
30 - 88	100	3	
88 - 216	150	3	
216 - 960	200	3	
Above 960	500	3	

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.8.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of

the site as factors are calculated to correct the reading

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

A. Equipments List:

Please refer ANNEX A(1.5).

2.8.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2.8.3.1 802.11b Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax Http://www.morlab.cn E-n

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai

2.8.3.2 802.11g Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

2.8.3.3 802.11n-20MHz Test mode

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab	Mr. Su Eona		
Manager:	Ivii. Su Felig		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Nama	Shenzhen Morlab Communications Technology Co., Ltd.
name.	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2017.12.03	2018.12.02
USB Wideband Power Sensor	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2017.05.17	2018.05.16
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.4 Radiated Test Equipments

Equipment Name	Sorial No	Туре	Manufacturor	Cal Data	Cal.Due
	Senar No.		Manufacturer	Cal. Date	Date
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB	Schwarzbeck	2017.05.14	2018.05.13
		5105			
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2017.03.07	2018.03.06
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT _____

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn