

FCC 47 CFR PART 15 SUBPART C ISED RSS-210 ISSUE 10

CERTIFICATION TEST REPORT

For

Z-Wave In-Wall Switch / Dimmer

MODEL NUMBER: WD700

FCC ID: 2AMY9WD700

IC: 22968-WD700

REPORT NUMBER: 4789810769-1

ISSUE DATE: April 12, 2021

Prepared for

Golden Mark (HK) Limited. 6/F., Kimberley Plaza, 45-47 Kimberley Road, Tsim Sha Tsui, Kowloon, Hong Kong

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

REPORT NO.: 4789810769-1 Page 2 of 41

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	04/12/2021	Initial Issue	

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. CA	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
5. EQ	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM EMISSIONS FIELD STRENGTH	7
5.3.	TEST ENVIRONMENT	8
5.4.	TEST CHANNEL CONFIGURATION	8
5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.6.	DESCRIPTION OF TEST SETUP	10
5.7.	MEASURING INSTRUMENT AND SOFTWARE USED	11
6. SU	JMMARY OF TEST RESULTS	13
7. AN	NTENNA PORT TEST RESULTS	14
7.1.	ON TIME AND DUTY CYCLE	14
7.2.	20 dB AND 99% BANDWIDTH	15
8. RA	ADIATED TEST RESULTS	18
8.1.	LIMITS AND PROCEDURE	18
8.2.	FIELD STRENGTH OF INTENTIONAL EMISSIONS	25
8.3.	SPURIOUS EMISSIONS BELOW 30M	29
8.4.	SPURIOUS EMISSIONS BELOW 1 GHz	32
8.5.	SPURIOUS EMISSIONS 1 ~ 10GHz	34
9. AC	POWER LINE CONDUCTED EMISSIONS	38
10.	ANTENNA REQUIREMENTS	41

REPORT NO.: 4789810769-1 Page 4 of 41

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Golden Mark (HK) Limited

Address: 6/F., Kimberley Plaza, 45-47 Kimberley Road, Tsim Sha Tsui,

Kowloon, Hong Kong

Manufacturer Information

Company Name: Golden Mark (HK) Limited

Address: 6/F., Kimberley Plaza, 45-47 Kimberley Road, Tsim Sha Tsui,

Kowloon, Hong Kong

EUT Name: Z-Wave In-Wall Switch / Dimmer

Model: WD700 Sample ID: 3738779 Sample Status: Normal

Sample Received Date: March 25, 2021

Date of Tested: March 25,2021~March 31, 2021

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C PASS

ISED RSS-210 Issue 10 PASS

ISED RSS-GEN Issue 5 PASS

Prepared By: Checked By:

Kebo Zhang

Project Engineer

kelo. Thang.

Shawn Wen

Laboratory Leader

Shemmy les

Approved By:

Stephen Guo

Laboratory Manager

Sephentus

REPORT NO.: 4789810769-1 Page 5 of 41

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, ISED RSS-210 Issue 10 and RSS-GEN Issue 5

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B, the VCCI registration No. is C-20012 and T-20011
	Silieluling Room B, the VCCI registration No. is C-20012 and 1-20011

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.62 dB
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	ment Z-Wave In-Wall Switch / Dimmer			
Model Name	WD700			
Data Batas	908.4 MHz:40kbps/FSK			
Data Rates	916.0 MHz:100kbps/GFSK			
	Channel ID	Channel Frequency(MHz)		
Transmit Channel Tested:	1 908.40			
	2 916.00			
Power Supply	AC 120 V,60 Hz			

5.2. MAXIMUM EMISSIONS FIELD STRENGTH

Operation Frequency (MHz)	Number of Transmit Chains (NTX)	Channel Number	Max. Emissions Field Strength (dBµV/m)
908.4&916	1	[1~2]	89.2

5.3. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55	5 ~ 65%	
Atmospheric Pressure:	1025Pa		
Temperature	TN	23 ~ 28°C	
	VL	N/A	
Voltage :	VN	AC 120V, 60Hz	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel Number	Test Channel
Z-wave	CH 1, CH 2/ Low, High	908.4MHz, 916MHz

REPORT NO.: 4789810769-1 Page 9 of 41

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	908.4&916	PCB	4

Test Mode	Transmit and Receive Mode	Description	
Z-wave ⊠1TX, 1RX		Antenna 1 can be used as transmitting/receiving antenna.	

Note: 1. The value of the antenna gain was declared by customer.

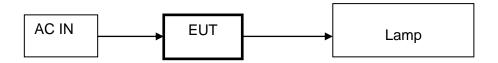
5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	TP00094A	/
2	Lamp	/	/	/

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
/	/	/	/	/	/


ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in an engineering mode though the laptop before the testing.

SETUP DIAGRAM FOR TESTS

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

This report shall not be reproduced except in full, without the written approval of UL Verification Services

(Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.7. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Nov. 12, 2020	Nov. 11, 2021
Two-Line V- Network	R&S	ENV216	101983	Nov. 12, 2020	Nov. 11, 2021
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Nov. 12, 2020	Nov. 11, 2021
Software					
Description			Manufacturer	Name	Version
Test Software for Conducted Emissions			Farad	EZ-EMC	Ver. UL-3A1

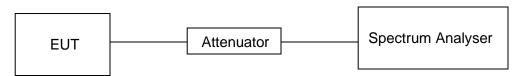
	Radiated Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Nov. 12, 2020	Nov. 11, 2021	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug. 11, 2018	Aug. 10, 2021	
Preamplifier	HP	8447D	2944A09099	Nov. 12, 2020	Nov. 11, 2021	
EMI Measurement Receiver	R&S	ESR26	101377	Nov. 12, 2020	Nov. 11, 2021	
Horn Antenna	TDK	HRN-0118	130939	Sept. 17, 2018	Sept. 17, 2021	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Nov. 20, 2020	Nov. 19, 2021	
Horn Antenna	Schwarzbeck	BBHA9170	#691	Aug. 11, 2018	Aug. 11, 2021	
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Nov. 12, 2020	Nov. 11, 2021	
Loop antenna	Schwarzbeck	1519B	80000	Jan.17, 2019	Jan.17,2022	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Nov. 12, 2020	Nov. 11, 2021	
Preamplifier Mini-Circuits ZX60-83LN-S+		SUP01201941	Nov. 20, 2020	Nov. 19, 2021		
	Software					
[Description		Manufacturer	Name	Version	
Test Software	Test Software for Radiated Emissions			EZ-EMC	Ver. UL-3A1	

REPORT NO.: 4789810769-1 Page 12 of 41

Other instruments					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Spectrum Analyzer	Keysight	N9030A	MY55410512	Nov. 20, 2020	Nov. 19, 2021
Dual Channel Power Meter	Keysight	N1912A	MY55416024	Nov. 20, 2020	Nov. 19, 2021
Power Sensor	Keysight	USB Wideband Power Sensor	MY5100022	Nov. 20, 2020	Nov. 19, 2021

6. SUMMARY OF TEST RESULTS

Summary of Test Results					
Clause	Test Items	FCC/IC Rules	Test Results		
1	20dB Bandwidth	FCC Part 15.215(c)	Pass		
2	99%dB Bandwidth	RSS-Gen Clause 6.7	Pass		
3	TX Spurious Emission	FCC 15.249 (a)(d)(e) FCC 15.209 FCC 15.205 RSS-GEN Clause 8.9 RSS-GEN Clause 8.10	Pass		
4	Conducted Emission Test for AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Pass		
5	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 6.8	Pass		


7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

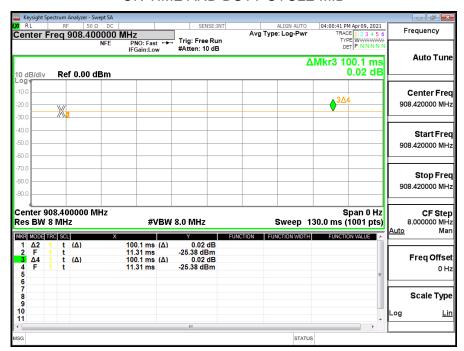
LIMITS

None; for reporting purposes only

TEST SETUP

RESULTS

Test Channel	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	minimum VBW 1/T (KHz)
MID	100.1	100.1	1	100%	0	0.01


Note: Duty Cycle Correction Factor= $10\log(1/x)$.

Where: x is Duty Cycle (Linear)

Where: T is On Time (transmit duration)

All test modes have been tested and the results are the same, so only one mode test data record in this report.

ON TIME AND DUTY CYCLE MID

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

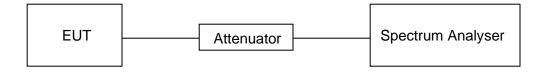
This report shall not be reproduced except in full, without the written approval of UL Verification Services

(Guangzhou) Co., Ltd, Song Shan Lake Branch.

7.2. 20 dB AND 99% BANDWIDTH

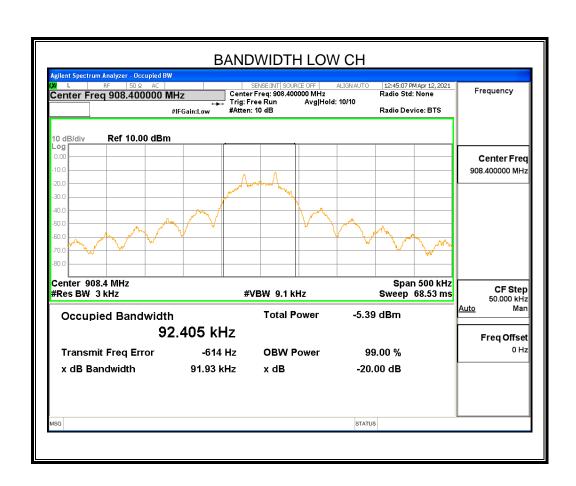
LIMITS

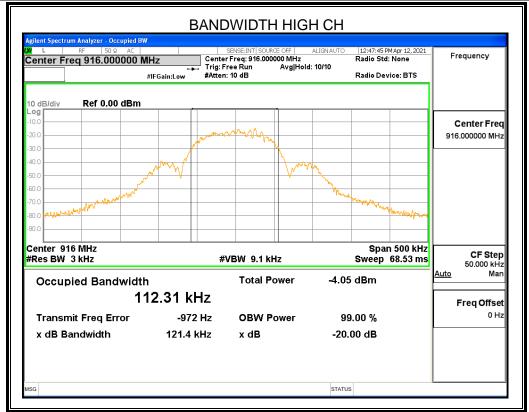
FCC Part15 (15.249), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)		
FCC 15.215(c)	Bandwidth	for reporting purposes only	902-928 MHz		
RSS-Gen Clause 6.6	99% Bandwidth	N/A	902-928MHz		


TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	1% to 5% of the occupied bandwidth	
VBW	≥ 3×RBW	
Trace	Max hold	
Sweep	Auto couple	

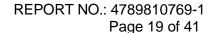

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.


TEST SETUP

Channel	20dB bandwidth (KHz)	99% bandwidth (KHz)	Result
Low	91.93	92.405	Pass
High	121.4	112.31	Pass

REPORT NO.: 4789810769-1 Page 18 of 41

8. RADIATED TEST RESULTS


8.1. LIMITS AND PROCEDURE

LIMITS

Please refer to FCC §15.205 and §15.209 Please refer to FCC §15.249 (a)(d)(e) RSS-210 Issue 10 Clause Annex B B.10

The field strength of emissions from intentional radiators operated within these frequency bands				
Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)	
902 - 928	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	
2400 – 2483.5	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	
5725 – 5875	50 mV/m (94dBuV/m)	500 uV/m (54dBuV/m)	3	

Emissions radiated outside of the specified frequency bands				
Frequency Range	Field Strength Limit Field Strength L		ngth Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m	n) at 3 m	
30 - 88	100	Quasi	-Peak	
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
Above 1000	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz

Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)

0.009-0.490 2400/F(kHz) 300

0.490-1.705 24000/F(kHz) 30

1.705-30.0 30

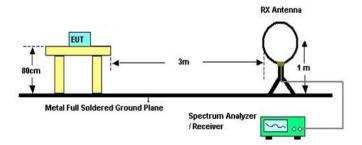
ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz				
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)		
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300		
490 - 1705 kHz	63.7/F (F in kHz)	30		
1.705 - 30 MHz	0.08	30		

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 156.9	10.6 - 12.7
3.020 - 3.028	182.0125 - 187.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
8.215 - 6.218	608 - 614	23.6 - 24.0
8.26775 - 6.26825	980 - 1427	31.2 - 31.8
8.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1845.5 - 1646.5	Above 38.6
8.362 - 8.366	1880 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3280 – 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

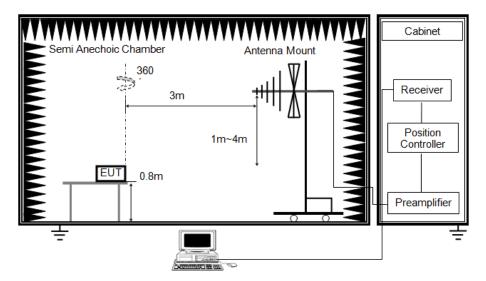

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

Below 30 MHz

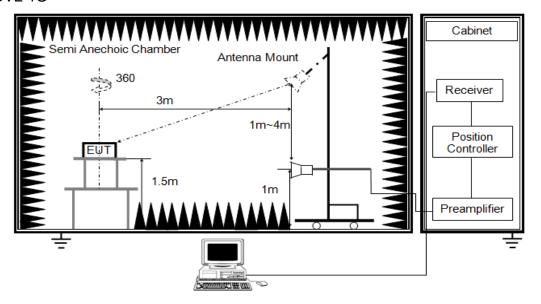


The setting of the spectrum analyser

	<u> </u>
RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

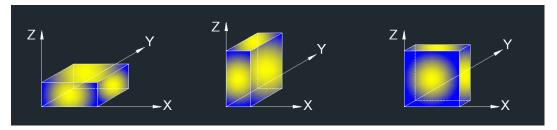
Below 1G


The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Measurement = Reading Level + Correct Factor
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

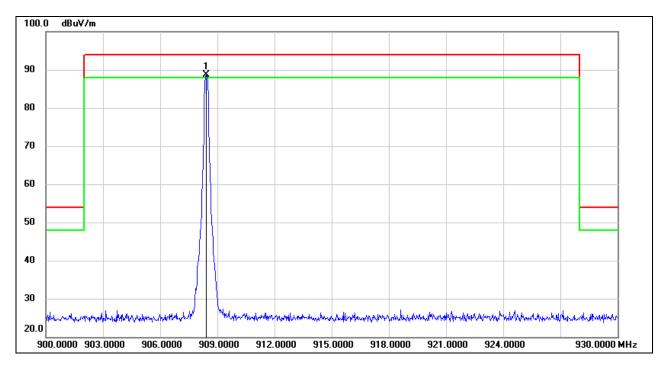
ABOVE 1G


The setting of the spectrum analyser

RBW	1 MHz
IVBW	PEAK: 3 MHz AVG: See Note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For average power measurement, set the detector to AVG, while maintaining all of the other instrument settings, if the duty cycle of the EUT is less than 98%, the Duty Cycle Correction Factor shall be added to the measured emission levels. For the Duty Cycle and Correction Factor please refer to clause 7.1.ON TIME AND DUTY CYCLE.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

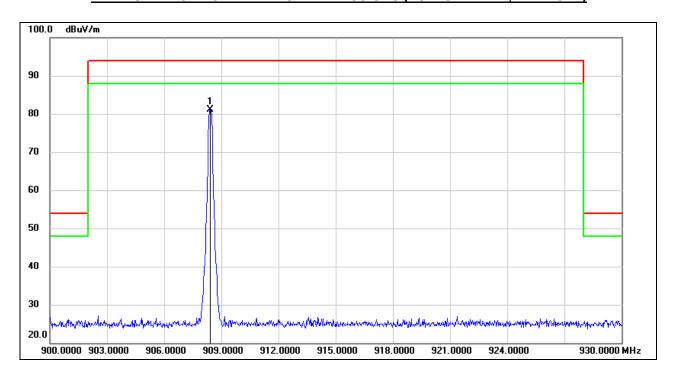
X axis, Y axis, Z axis positions:



Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

8.2. FIELD STRENGTH OF INTENTIONAL EMISSIONS

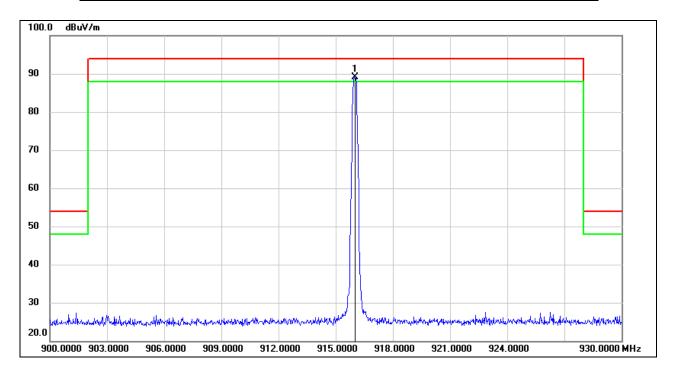
FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Frequency Reading		Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4000	93.80	-5.01	88.79	94.00	-5.21	peak

Note: 1. Measurement = Reading Level + Correct Factor.

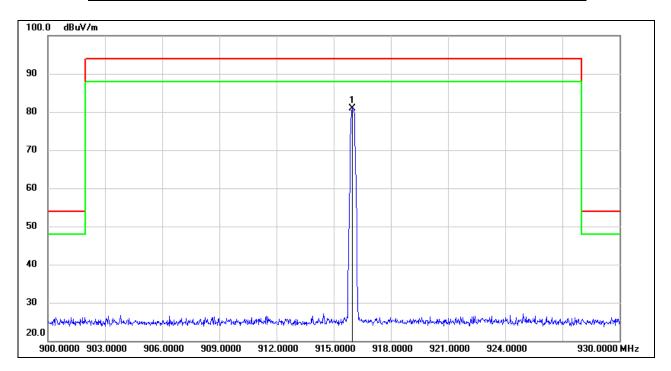
FIELD STRENGTH OF INTENTIONAL EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	908.4000	86.21	-5.01	81.20	94.00	-12.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, HORIZONTAL)



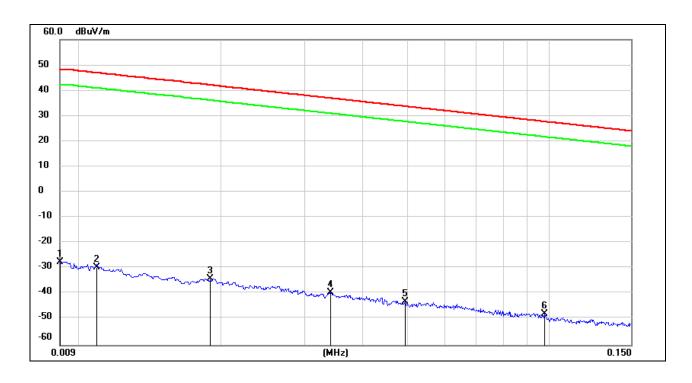
No.	Frequency	Frequency Reading		Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	916.0200	94.04	-4.84	89.20	94.00	-4.80	peak

Note: 1. Measurement = Reading Level + Correct Factor.

FIELD STRENGTH OF INTENTIONAL EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency Reading		Correct	Result Limit		Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	915.9600	85.79	-4.84	80.95	94.00	-13.05	peak

Note: 1. Measurement = Reading Level + Correct Factor.

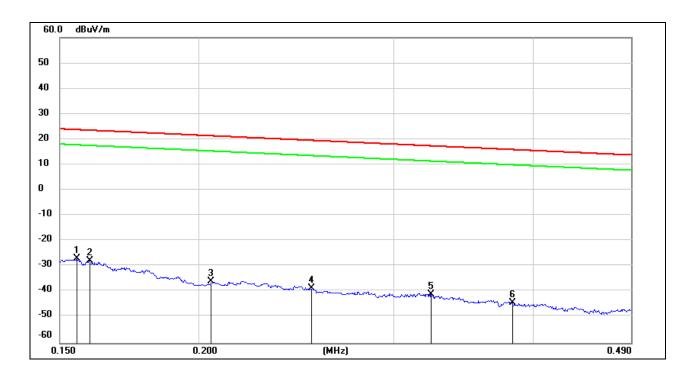

REPORT NO.: 4789810769-1 Page 29 of 41

8.3. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS

(LOW CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION)

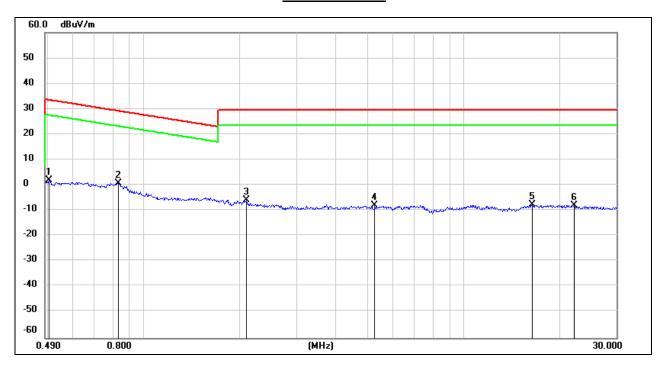
9kHz~ 150kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.0090	73.84	-101.32	-27.48	48.36	-78.98	-3.14	-75.84	peak
2	0.0108	71.91	-101.39	-29.48	46.93	-80.98	-4.57	-76.41	peak
3	0.0189	67.25	-101.35	-34.10	42.07	-85.6	-9.43	-76.17	peak
4	0.0342	61.93	-101.41	-39.48	36.92	-90.98	-14.58	-76.40	peak
5	0.0492	58.36	-101.47	-43.11	33.76	-94.61	-17.74	-76.87	peak
6	0.0980	53.87	-101.78	-47.91	27.78	-99.41	-23.72	-75.69	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

150kHz ~ 490kHz


No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.1554	74.77	-101.65	-26.88	23.77	-78.38	-27.73	-50.65	peak
2	0.1595	73.86	-101.65	-27.79	23.55	-79.29	-27.95	-51.34	peak
3	0.2053	65.79	-101.73	-35.94	21.35	-87.44	-30.15	-57.29	peak
4	0.2530	63.14	-101.80	-38.66	19.54	-90.16	-31.96	-58.20	peak
5	0.3240	60.87	-101.88	-41.01	17.39	-92.51	-34.11	-58.40	peak
6	0.3830	57.70	-101.94	-44.24	15.94	-95.74	-35.56	-60.18	peak

Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).

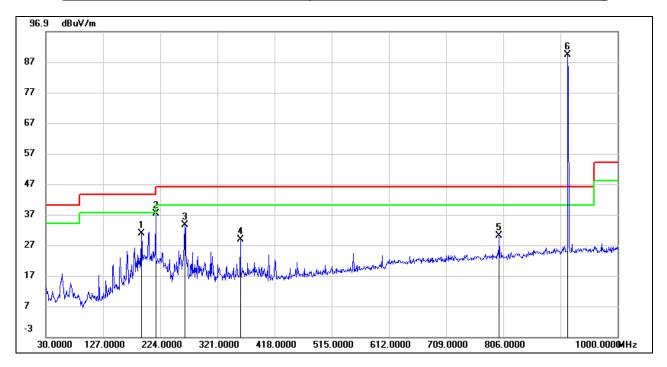
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

REPORT NO.: 4789810769-1 Page 31 of 41

490kHz ~ 30MHz

No.	Frequency	Reading	Correct	FCC	FCC	ISED	ISED	Margin	Remark
				Result	Limit	Result	Limit		
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuA/m)	(dBuA/m)	(dB)	
1	0.5039	63.94	-62.07	1.87	33.56	-49.63	-17.94	-31.69	peak
2	0.8296	62.94	-62.17	0.77	29.23	-50.73	-22.27	-28.46	peak
3	2.0939	55.89	-61.79	-5.90	29.54	-57.4	-21.96	-35.44	peak
4	5.2705	53.54	-61.45	-7.91	29.54	-59.41	-21.96	-37.45	peak
5	16.3959	53.17	-60.96	-7.79	29.54	-59.29	-21.96	-37.33	peak
6	22.1503	52.70	-60.67	-7.97	29.54	-59.47	-21.96	-37.51	peak

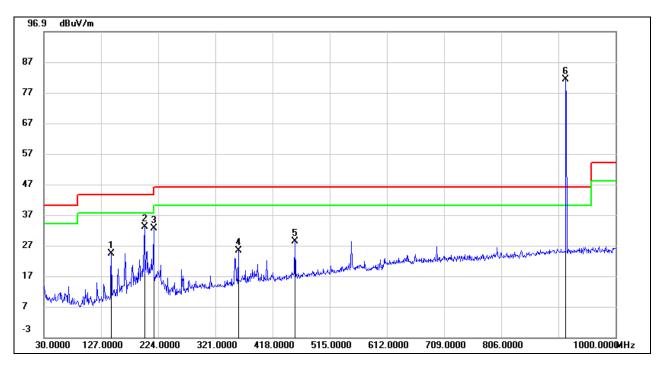
Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$).


- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

Note: All the modes and channels had been tested, but only the worst data recorded in the report.

8.4. SPURIOUS EMISSIONS BELOW 1 GHz

SPURIOUS EMISSIONS BELOW 1GHZ (WORST-CASE HIGH CHANNEL, HORIZONTAL)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	191.9900	47.42	-16.56	30.86	43.50	-12.64	peak
2	216.2400	55.10	-17.84	37.26	46.00	-8.74	peak
3	265.7100	51.63	-18.09	33.54	46.00	-12.46	peak
4	359.8000	42.77	-14.10	28.67	46.00	-17.33	peak
5	799.2100	37.27	-7.33	29.94	46.00	-16.06	peak
6	915.6100	94.02	-4.85	89.17	/	/	Fundamental

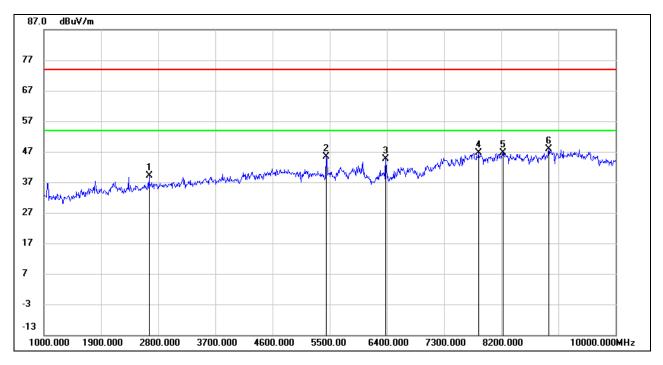
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 4. About the Fundamental emission test result please refer to section 8.2.

SPURIOUS EMISSIONS BELOW 1GHz (WORST-CASE HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	144.4600	42.86	-18.60	24.26	43.50	-19.24	peak
2	200.7200	49.57	-16.44	33.13	43.50	-10.37	peak
3	216.2400	50.29	-17.84	32.45	46.00	-13.55	peak
4	359.8000	39.42	-14.10	25.32	46.00	-20.68	peak
5	455.8300	40.46	-12.27	28.19	46.00	-17.81	peak
6	915.6100	86.02	-4.85	81.17	/	/	Fundamental

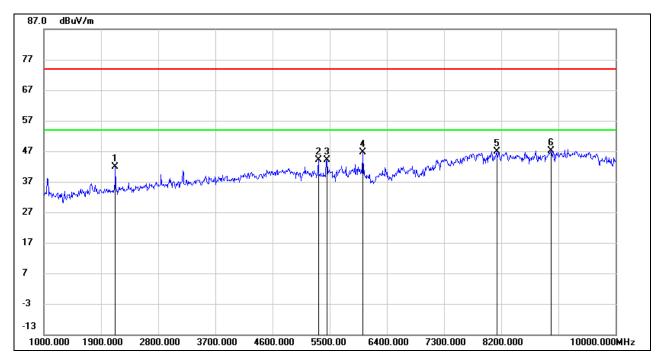
Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.


- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto
- 4. About the Fundamental emission test result please refer to section 8.2.

Note: All the channels had been tested, but only the worst data recorded in the report.

8.5. SPURIOUS EMISSIONS 1 ~ 10GHz

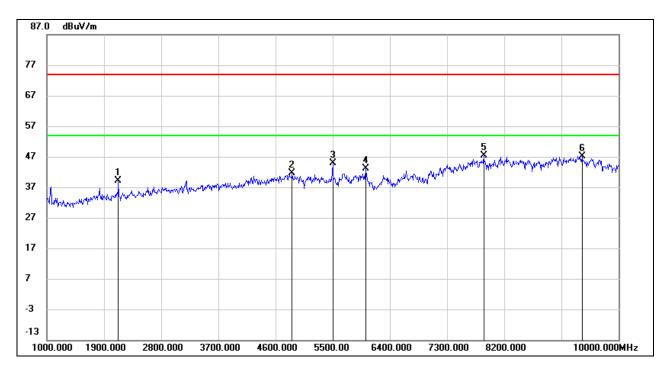
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2656.000	46.61	-7.50	39.11	74.00	-34.89	peak
2	5446.000	43.28	2.01	45.29	74.00	-28.71	peak
3	6382.000	40.45	4.27	44.72	74.00	-29.28	peak
4	7840.000	38.46	8.13	46.59	74.00	-27.41	peak
5	8227.000	37.41	9.25	46.66	74.00	-27.34	peak
6	8947.000	37.77	10.07	47.84	74.00	-26.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

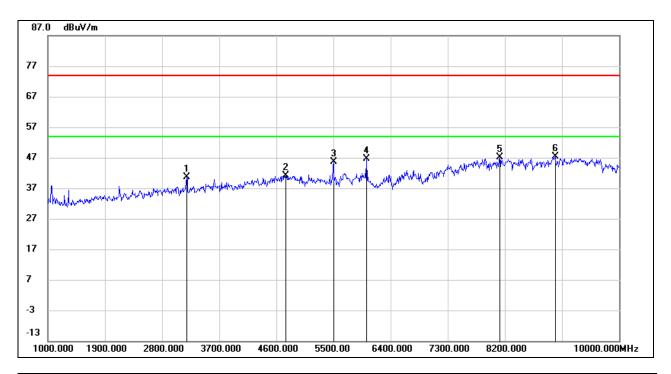
HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2125.000	51.35	-9.48	41.87	74.00	-32.13	peak
2	5320.000	42.06	1.96	44.02	74.00	-29.98	peak
3	5455.000	42.15	2.04	44.19	74.00	-29.81	peak
4	6022.000	43.24	3.30	46.54	74.00	-27.46	peak
5	8128.000	38.14	8.74	46.88	74.00	-27.12	peak
6	8983.000	36.67	10.45	47.12	74.00	-26.88	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)



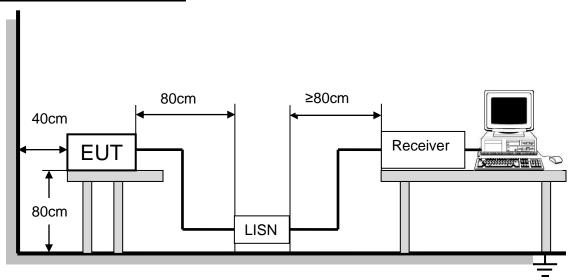
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2125.000	48.63	-9.48	39.15	74.00	-34.85	peak
2	4861.000	40.94	0.68	41.62	74.00	-32.38	peak
3	5500.000	42.64	2.17	44.81	74.00	-29.19	peak
4	6022.000	39.73	3.30	43.03	74.00	-30.97	peak
5	7876.000	39.25	8.02	47.27	74.00	-26.73	peak
6	9424.000	36.78	10.35	47.13	74.00	-26.87	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3187.000	46.02	-5.27	40.75	74.00	-33.25	peak
2	4753.000	40.80	0.32	41.12	74.00	-32.88	peak
3	5500.000	43.45	2.17	45.62	74.00	-28.38	peak
4	6022.000	43.25	3.30	46.55	74.00	-27.45	peak
5	8119.000	38.33	8.68	47.01	74.00	-26.99	peak
6	8992.000	36.83	10.54	47.37	74.00	-26.63	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.


9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

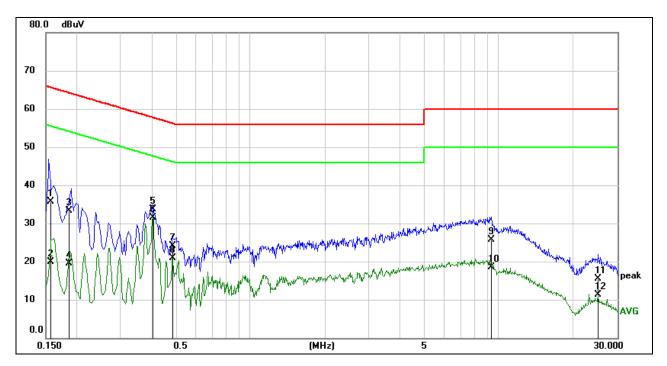
Please refer to FCC §15.207 (a) and RSS-Gen Clause 8.8.

FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

TEST SETUP AND PROCEDURE

The EUT is put on a table of non-conducting material that is 80mm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9kHz.

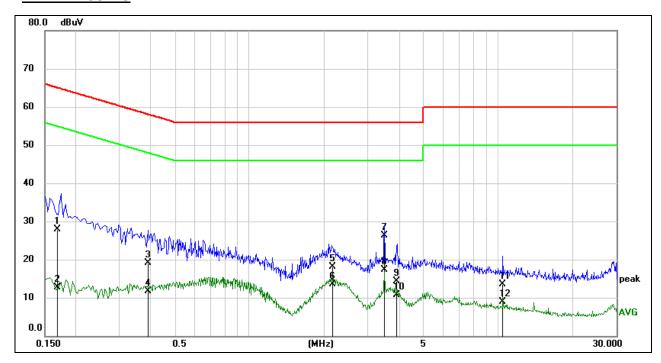
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST ENVIRONMENT

Temperature	24.7°C	Relative Humidity	69.3%
Atmosphere Pressure	101kPa	Test Voltage	AC120V,60Hz

TEST RESULTS (HIGH CHANNEL, WORST-CASE CONFIGURATION)

LINE N RESULTS



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1570	26.02	9.59	35.61	65.62	-30.01	QP
2	0.1570	10.37	9.59	19.96	55.62	-35.66	AVG
3	0.1856	23.66	9.59	33.25	64.23	-30.98	QP
4	0.1856	10.01	9.59	19.60	54.23	-34.63	AVG
5	0.4054	24.15	9.60	33.75	57.74	-23.99	QP
6	0.4054	22.00	9.60	31.60	47.74	-16.14	AVG
7	0.4865	14.54	9.60	24.14	56.23	-32.09	QP
8	0.4865	11.31	9.60	20.91	46.23	-25.32	AVG
9	9.2738	16.07	9.62	25.69	60.00	-34.31	QP
10	9.2738	8.98	9.62	18.60	50.00	-31.40	AVG
11	25.1837	5.69	9.75	15.44	60.00	-44.56	QP
12	25.1837	1.59	9.75	11.34	50.00	-38.66	AVG

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

LINE L RESULTS

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1693	18.36	9.59	27.95	64.99	-37.04	QP
2	0.1693	3.07	9.59	12.66	54.99	-42.33	AVG
3	0.3891	9.56	9.59	19.15	58.08	-38.93	QP
4	0.3891	2.15	9.59	11.74	48.08	-36.34	AVG
5	2.1652	8.49	9.63	18.12	56.00	-37.88	QP
6	2.1652	3.95	9.63	13.58	46.00	-32.42	AVG
7	3.4959	16.69	9.61	26.30	56.00	-29.70	QP
8	3.4959	7.77	9.61	17.38	46.00	-28.62	AVG
9	3.9266	4.80	9.60	14.40	56.00	-41.60	QP
10	3.9266	1.16	9.60	10.76	46.00	-35.24	AVG
11	10.4865	3.88	9.63	13.51	60.00	-46.49	QP
12	10.4865	-0.81	9.63	8.82	50.00	-41.18	AVG

Note: 1. Result = Reading +Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Note: All the modes had been tested, but only the worst data recorded in the report.

REPORT NO.: 4789810769-1

Page 41 of 41

ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

RESULTS

Complies

END OF REPORT