

For Question Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AMY3-8T9-422L **Product: Tablet PC** Model No.: Acer One 8 T9-422L **Trade Mark: Acer** Report No.: WSCT-A2LA-R&E230300002A-15B Issued Date: 13 April 2023

Issued for:

Acer India Pvt Ltd. Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192 MSLI

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

Noation & Testi

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com 世称检测认证股份 Http://www.wscl-cert.com Group (Shenzhen) Co., Ltd

111

Contration & Test

WSET

SPON * PT

dizatio

anoup (Shenza

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

TABLE OF CONTENTS

/	WHET WHET WHET WEIT WEIT	C
1.	Test Certification	
2.	GENERAL DESCRIPTION OF EUT	
3.	Test Result Summary	
4.	TEST METHODOLOGY	/
	4.1. CONFIGURATION OF SYSTEM UNDER TEST	
1	4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	E
5.	MEASUREMENT INSTRUMENTS	
6.	Facilities and Accreditations 10	
	6.1. FACILITIES	
	6.2. ACCREDITATIONS	<
-	have been have here here here here here here here he	7
1	EMC EMISSION TEST	
1	7.1. CONDUCTED EMISSION MEASUREMENT	
1	7.2. RADIATED EMISSION MEASUREMENT	

Report No.: WSCT-A2LA-R&E230300002A-15B

Test Certification 1.

For Question Please Contact with WSCT

Product:	Tablet PC
Model No.:	Acer One 8 T9-422L
Trade Mark:	Acer
Applicant:	Acer India Pvt Ltd.
Address:	Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.
Manufacturer:	Acer India Pvt Ltd.
Address:	Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.
Factory:	Acer India Pvt Ltd.
Address:	RS No. 38/2, Sedarapet Village, Villianur Commune, Pondicherry – 605111.
Date of Test:	12 January 2023 to 15 March 2023
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart B
The charge and	

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Xiai 01 Tested By: (Wang Xiang)

Checked By:

(Qin Shuiquan)

07

nan

WSET

10'

Approved By:

ion & Tes

75E1

on Certification & Testor

World Standardization Certineau

(Liu Fuxin)

Date: AD

ADD:Building A-B Broshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份 oup (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E230300002A-15B

2. GENER	RAL DESCRIPTION OF EUT	
Equipment Type:	Tablet PC	1
Test Model:	Acer One 8 T9-422L	
Trade Mark	Acer	
Rechargeable	Model: GFL 1100100 1ICP4/100/100 Nominal Voltage: 3.8V Rated capacity: 5100mAh/19.38Wh Limited Charge Voltage: 4.35V	
Adapter:	Model: BSY01J3050200UU Input: 100-240V~50/60Hz 0.3A Output:5.0V===2.0A 10.0W	1
Remark:	N/A. WSET WSET	1
	Equipment Type: Test Model: Trade Mark Rechargeable Li-Polymer Battery: Adapter:	2. GENERAL DESCRIPTION OF EUT Produestion, Presse Contact with WSCT www.wsct-deft.com Equipment Type: Tablet PC Test Model: Acer One 8 T9-422L Trade Mark Acer Rechargeable Li-Polymer Battery: Model: GFL 1100100 1ICP4/100/100 Nominal Voltage: 3.8V Rated capacity: 5100mAh/19.38Wh Limited Charge Voltage: 4.35V Model: BSY01J3050200UU Adapter: Model: BSY01J3050200UU Input: 100-240V~50/60Hz 0.3A Output: 5.0V==: 2.0A 10.0W

1-13

Centification & Test

WSET

BUNN * PIT

dardization

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:4755-28998192 28992308 FAX 86-755-88376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

151

Page 4 of 21

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

3. Test Result Summary

	AULTRA AULT	TA AVERTA	ATTACK /	WSET
7	Requirement	CFR 47 Section	Result	
	CONDUCTED EMISSION	§15.107	PASS	
3	RADIATED EMISSION	WSCT §15.109 WSCT	PASS	- /

 W_{5}

Note:

Contration & Test

W5E1

S PHOM * PT

60

dizatio

1. PASS: Test item meets the requirement.

9.4

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 5 of 21

mon & Tes

W5E

PHOM * PT

oup (Sher

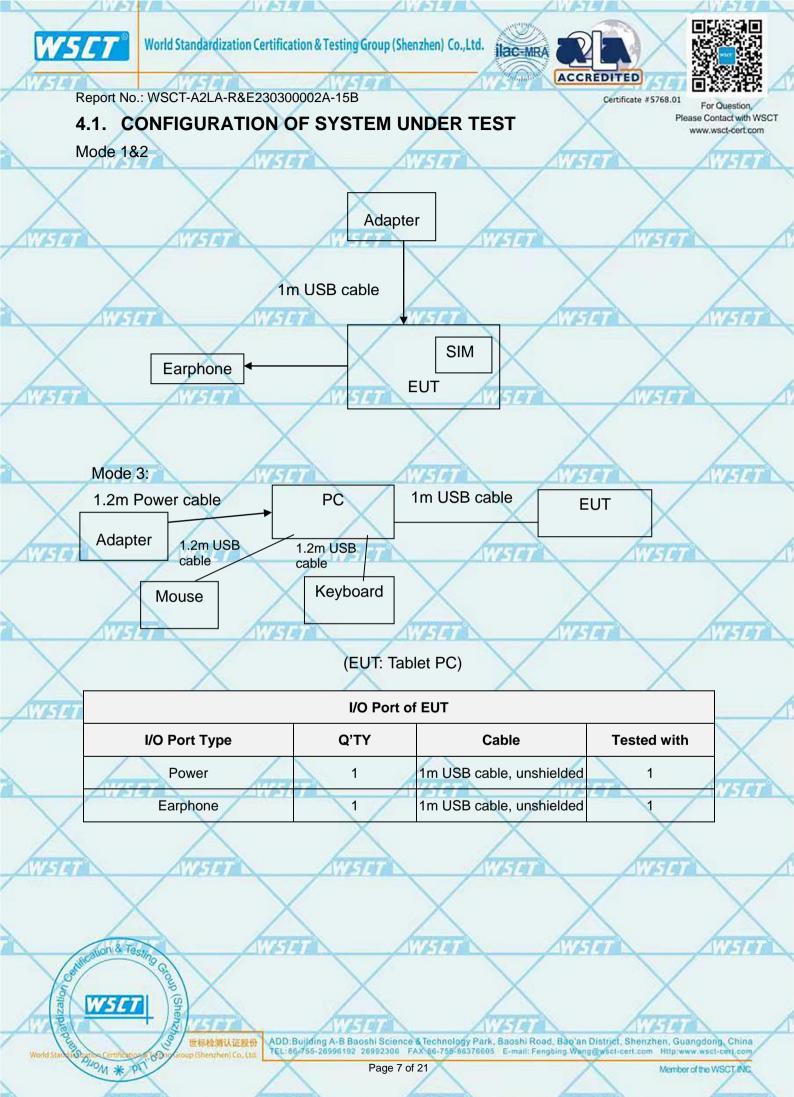
Cot

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com


Report No.: WSCT-A2LA-R&E230300002A-15B

4. TEST METHODOLOGY

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Video Recording
Model 2	Video Playing
Mode 3	Transferring with USB Disk (the worst case)

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

4.2. DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	and the second sec	and the second sec		Arrest and the		ACC - CO
4	ltem	Equipment Mfr/Brand Model/Type		Model/Type No.	Series No.	Note
	1	Adapter		BSY01J3050200UU	X	/
	2	Keyboard	HP	SK-2880	435302-AA-	/
	3	Mouse	DELL	MS111-1		1

Note: (1)

(2)

sion & Tee

WSCI

MOM * PI

oup (She)

The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ^{[[}Length] column.

Page 8 of 21

1-10

Contration & Test

WSET

BUOM * PT

dizatio

aroup (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

5. MEASUREMENT INSTRUMENTS

						/	
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until	127
2	Test software		EZ-EMC	CON-03A		×	
1	ESCI Test Receiver	R&S	ESCI	100005	11/05/2022	11/04/2023	
1		AFJ	567 LS16	16010222119	11/05/2022	11/04/2023	
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2022	11/04/2023	/
	pre-amplifier	CDSI	PAP-1G18-38		11/05/2022	11/04/2023	1
	System Controller	WCT7	SC100 777		11/05/2022	11/04/2023	ET
	Bi-log Antenna	Chase	CBL6111C	2576	11/05/2022	11/04/2023	
5	Spectrum analyzer	R&S	FSU26	200409	11/05/2022	11/04/2023	
7	Horn Antenna	SCHWARZBECK	9120D	1141	11/05/2022	11/04/2023	
	Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	11/05/2022	11/04/2023	1
	Pre Amplifier	H.R.	HP8447E	2945A02715	11/05/2022	11/04/2023	X
	9*6*6 Anechoic	ATT	ATSIT	- /	11/05/2022	11/04/2023	74

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenzhen (o. M.

For Question, Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT IN

Report No.: WSCT-A2LA-R&E230300002A-15B

6. Facilities and Accreditations

6.1.Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

on & Tes

MOM * P

S

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

Non & Tes

WSE1

S PHOM * PT

oup (Shen

60

Certifit

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question,

Please Contact with WSCT

Report No.: WSCT-A2LA-R&E230300002A-15B

6.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	oonnao			
1	No.	Item	MU	
7	7	Conducted Emission Test	±3.2dB	_
	2	RF power, conducted	±0.16dB	>
	3	Spurious emissions, conducted	±0.21dB	4
1	4	All emissions, radiated(<1GHz)	±4.7dB	
~	5	All emissions, radiated(>1GHz)	±4.7dB	
7	6	Temperature ///SUT	±0.5°C	
	7	Humidity	±2.0%	
				-

114

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question,

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

7. EMC EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. POWER LINE CONDUCTED EMISSION LIMITS

					ATT A DE LE SA
FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		Standard
	Quasi-peak	Average	Quasi-peak	Average	Stanuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

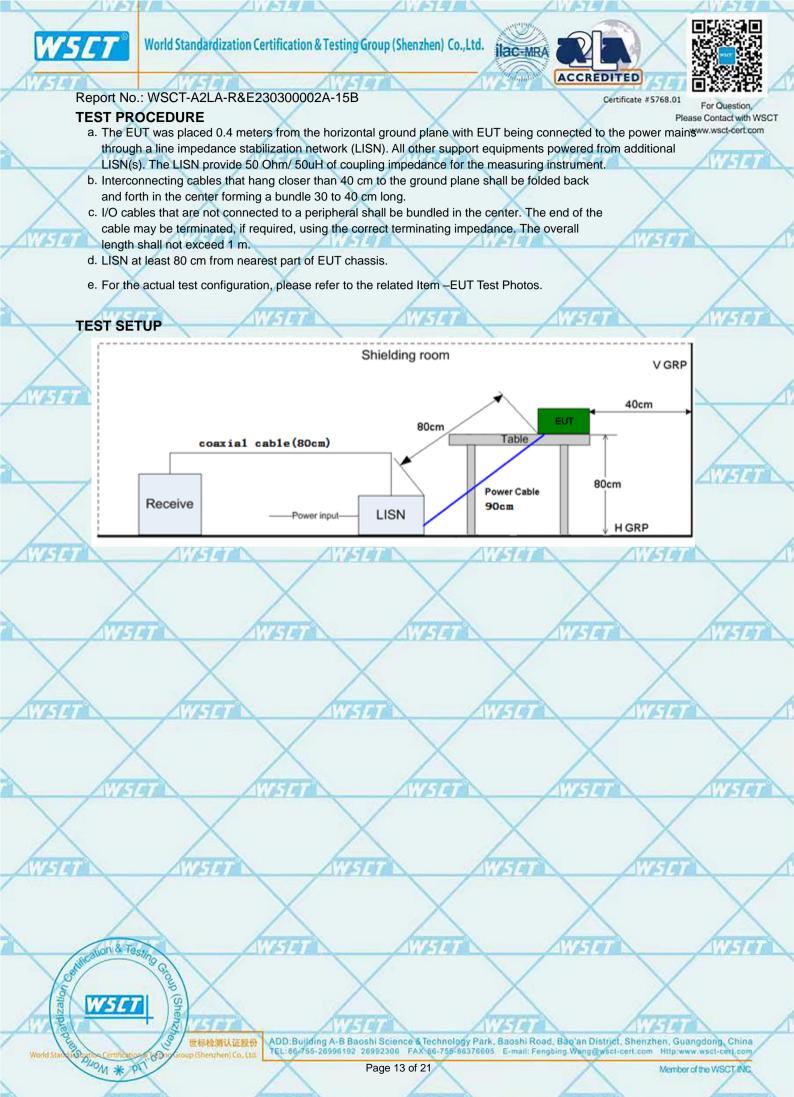
ion & Tes

W5E

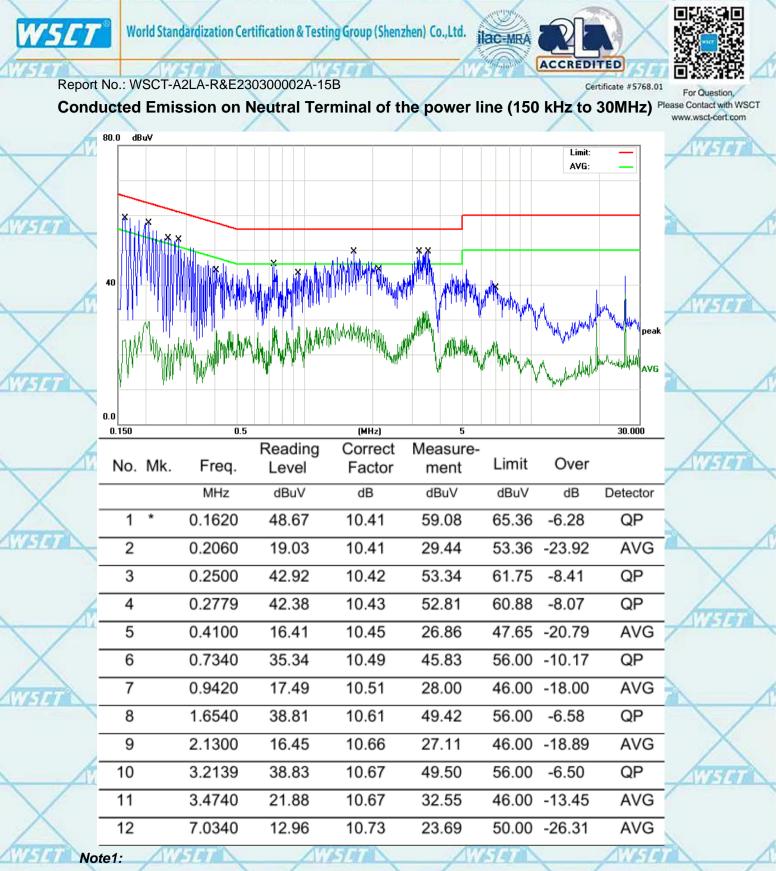
PHOM * PT

up (Sher

e


Zatio

- (1) The tighter limit applies at the band edges.
 - (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following	table is the	setting of	the receiver
The following		sound of	

<	Receiver Parameters	Setting	
-	Attenuation	10 dB	
19	Start Frequency	0.15 MHz	
	Stop Frequency	30 MHz	1
	IF Bandwidth	9 kHz	X
			/

WSET	World Sta	ndardization Ce	rtification & Tes	sting Group (Sher	nzhen) Co.,Ltd.	ILAC-MRA			
Report	No.: WSCT-	A2LA-R&E2	30300002A-	15B	\checkmark		~	ertificate #5768.01	For Question,
7.1.	.2. Test Re	esults	\wedge		\wedge		\wedge		www.wsct-cert.com
	perature 2		75157	Relative H		48%	WSLT	<u> </u>	ATTATA
Pres	ssure	1010 hPa		Test Mode		Mode 3(the wors	st case)	
	Conducted	d Emissio	n on Line	Terminal o	of the pow	ver line (1	50 kHz	to 30MHz)	
	80.0 dBuV			13L/ Ka		<i>N 51. I</i> 1	Limit:	Z 1 47.9	
							AVG:		X
	~								WIST
\bigvee		×							
\wedge			×		18 n				<
AVISET	40		Mar Jaal Martin			WWWWWWW			
			TAN TAN	Lahahala/WithWith	T MARY M	,	Man Mar M	peak	\times
k		Mr. Mr.M.	M. MAAAA			Why man have a	n yaa	AVG	Antes
		V YWW	'IV " I		· •		her han when here here here	14 Ann	-
X	0.0								
WISH	0.150	0.5	11	(MHz)	5	11-1-7		30.000	
	No. Mix	-	Reading	Correct	Measure		Over		
4	No. Mk.	Freq. MHz	dBuV	Factor dB	dBuV	Limit dBuV	Over dB	Detector	\square
	1 *	0.1580	50.51	10.41	60.92	65.56	-4.64	QP	AVISION
X	2	0.1780	48.87	10.41	59.28	64.57	-5.29	QP	
THE REAL	3	0.1980	20.41	10.41	30.82	53.69	-22.87	AVG	
	4	0.2300	45.43	10.42	55.85	62.45	-6.60	QP	
	5	0.2740	42.94	10.42	53.36	60.99	-7.63	QP	X
	6	0.3660	37.93	10.44	48.37	58.59	-10.22	QP	WSET
$\mathbf{\nabla}$	7	0.4100	17.90	10.45	28.35	47.65	-19.30	AVG	
Δ	8	0.7260	37.86	10.49	48.35	56.00	-7.65	QP	
	9	0.7260	22.25	10.49	32.74	46.00	-13.26	AVG	
	10	1.2500	21.28	10.55	31.83	46.00	-14.17	AVG	X
t	11	1.8460	21.88	10.64	32.52	46.00	-13.48	AVG	AVERT
Contration	12	3.3460	23.31	10.67	33.98	46.00	-12.02	AVG	
Sa Przs	ALL IN	X		\times		X		X	
World Startun Provide Com	(Shenzh	TITA		THE	1	WSIG		1779	
World Star As Openios Cerr	and the second state	世标检测认证股份 p(Shenzhen)Co.Ltd	ADD:Building A TEL:86-755-2699	B Baoshi Science 6192 26992306 FA Page 14 of	X 86-755-863766	rk, Baoshi Road 05 E-mail: Feng	, Bao'an Distr bing Wang@ws	ct-cert.com Http:w	ww.wscl-cerl.com
- M	* P		$ \land $	Faye 14 0			\wedge	Membe	r of the WSCT INC

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

Cor

DUOM * PT

meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

第二世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992300 FAX 66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Page 15 of 21

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

7.2. RADIATED EMISSION MEASUREMENT

7.2.1. Radiated Emission Limits

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	X 3 X
Above 960	500	3
and the second s	All and a second s	attended and a second of a

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

on & Te

MOM * P

up (St

(1) The limit for radiated test was performed according to FCC PART 15B.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Setting
Auto
1000 MHz
10th carrier harmonic
1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

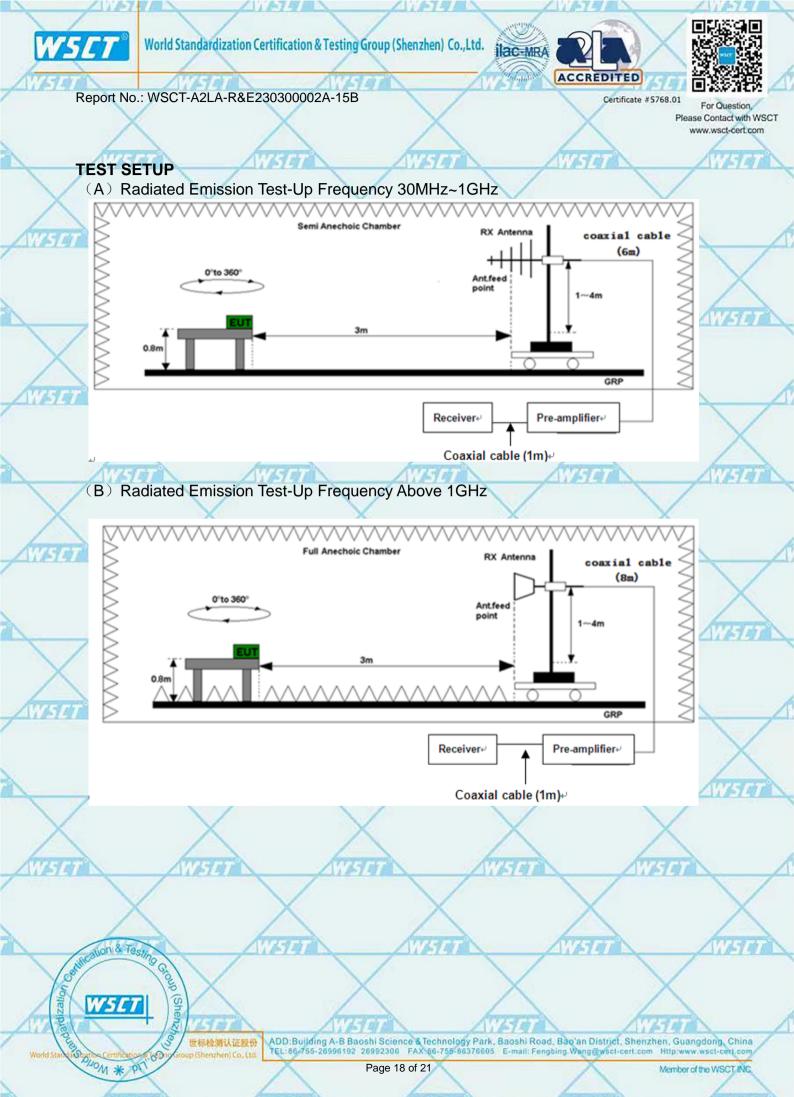
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

TEST PROCEDURE

tion & Tes


MOM * P

oup (St

Cot

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test
- antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

7.2.2. Test Results

Temperature	20 °C	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3(the worst case)

Please refer to following diagram for individual

Contration & Test

W.5L

PHOM * PIT

Zatio

roup (Shenz)

60

A LOCAL PROPERTY AND

LA:	1-1-1	100	(_)	1 PITIN		PI-TAD_			1
	No. I	۷k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	a l
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	2	32.2925	22.57	3.91	26.48	40.00	-13.52	QP
	2	44	82.0706	34.34	-6.91	27.43	40.00	-12.57	QP
í.	3	* 2	207.1226	45.44	-6.68	38.76	43.50	-4.74	QP
	4	3	316.5890	39.79	-2.04	37.75	46.00	-8.25	QP
	545	-	457.5073	37.02	0.06	37.08	46.00	-8.92	QP
-	6	ç	952.0937	25.32	6.45	31.77	46.00	-14.23	QP

2111 C 10 10 10 10 1

1111

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

1		2			2		1		
1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	T
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	1	30.9619	23.94	4.43	28.37	40.00	-11.63	QP
	2	1	77.5928	35.39	-7.14	28.25	40.00	-11.75	QP
	3		158.1123	38.49	-5.63	32.86	43.50	-10.64	QP
A	4	*	248.5519	43.38	-4.79	38.59	46.00	-7.41	QP
	6	N.	462.3455	38.01	0.08	38.09	46.00	-7.91	QP
	6		952.0937	25.32	6.45	31.77	46.00	-14.23	QP
			and the second se						

Note1:

non & Tes

W5L

PHOM * PT

up (Shen

Cer

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

> 世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-15B

TEST RESULTS

Above 1GHz(1~26GHz) :(Mode 3-worst case)

	Freq.	Ant.	Emission Level(dBuV)		Ant. Emission Limit			Over	
	(MHz)	Pol.			3m(dBu)	V/m)	N	mars	
1	$\langle \rangle$	H/V	PK	AV	PK	AV	PK	AV	0.0
	1552.35	V	65.45	40.75	74	54	-8.55	-13.25	\bigvee
	2399.95	V	61.35	39.58	74	54	-12.65	-14.42	\wedge
	1614.23	Н	59.44	40.45	74	54	-14.56	-13.55 📈	
	2333.72	Н	59.47	40.47	74	54	-14.53	-13.53	1510

Remark:

sion & Tee

W5E

NOW * PIT

up (Sher

e

Zatic

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Freq. = Emission frequency in MHz

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

*****END OF REPORT*****

Page 21 of 21