

n & Tes

15E7

HOM * PI

Certification & Testor

S

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

WSET

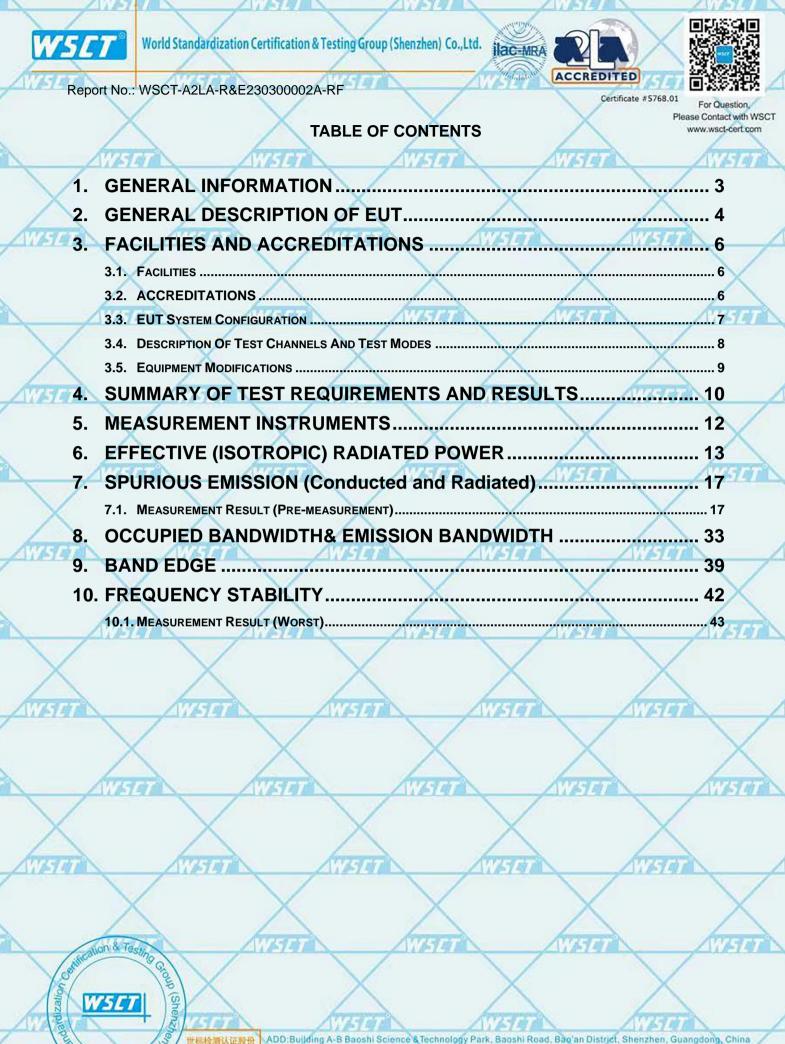
For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AMY3-8T9-422L Product: Tablet PC Model No.: Acer One 8 T9-422L Trade Mark: Acer Report No.: WSCT-R&E230300002A-RF Issued Date: 13 April 2023

Issued for:

Acer India Pvt Ltd. Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.


Issued By:

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: This report shall not be reproduced except in full, without the written approval of World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

> 3 世称检测认证股份 gGroup (Shenzhen) Co., ttd.
> TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsci.cert.com Http://www.wsci.cert.com

TEL:86-755-26998192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com

PHOM * P

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. Report Np.: WSCT-A2LA-R&E230300002A-RF

For Question, Please Contact with WSCT www.wsct-cert.com

1. **GENERAL INFORMATION**

Product:	Tablet PC527 WS27 WS27 WS27
Model No.:	Acer One 8 T9-422L
Trade Mark:	Acer
Applicant:	Acer India Pvt Ltd.
Address:	Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.
Manufacturer:	Acer India Pvt Ltd.
Address:	Embassy Heights 6th Floor, No. 13, Magrath Road, (Next to Hosmat Hospital), Bangalore-560 025, India.
Factory:	Acer India Pvt Ltd.
Address:	RS No. 38/2, Sedarapet Village, Villianur Commune, Pondicherry - 605111.
Date of Test:	12 January 2023 to 15 March 2023
Applicable Standards:	FCC Rules Part 22H and 24E and 27.
The above equip	ment has been tested by World Standardization Certification& Testing Group

The above equipment has been tested by World Standardization Certification& Testing Group (Shenzhen) Co., Ltd. And found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Checked By:

(Qin Shuiquan)

un

Approved By:

(Liu Fuxin)

Date: 13 APVil 2003

World Standardization Certification & Tordin

世际检测认证股份 ADD:Building A-B.Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China up (Shenzhen) Co. Ltd. TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsci.cert.com Http://www.wsci.cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

2. GENERAL D	ESCRIPTION OF EUT	www.wsct-cert.com
Equipment Type:	Tablet PC ///SCT	ASIA
Model	Acer One 8 T9-422L	\times
Trade Mark	Acer	$ \geq $
Frequency Bands:	 ☑GSM 850 ☑PCS 1900 (U.S. Bands) E-UTRA Bands: ☑ E-UTRA Band 5 ☑ E-UTRA Band 41 	
Antenna Type:	Internal Antenna	1000
Antenna gain:	GSM 850: -1.7 dBi PCS 1900: 1.56dBi E-UTRA Band 5: -1.7 dBi E-UTRA Band 41: 2.08dBi	
Rechargeable Li-Polymer Battery:	Model: GFL 1100100 1ICP4/100/100 Nominal Voltage: 3.8V Rated capacity: 5100mAh/19.38Wh Limited Charge Voltage: 4.35V	
Adapter:	Model: BSY01J3050200UU Input: 100-240V~50/60Hz 0.3A Output:5.0V2.0A 10.0W	$\langle \rangle$
Card(S):	Card 1: E-UTRA Card Slot	SET
Max power:	See Table 2.1	X
Remark:	N/A.	ATTA
		STATE WEST
		STATE
alon & Test		
WITCHION & Testing Goods WITCHION & Testing Goods (State Commonstration & Sono strong (Shenchen) Co ののいの 米 のい		X

Report No.: WSCT-A2LA-R&E230300002A-RF

GSM850 Class 4 GMSK 34.53 DCS1900 Class 1 GMSK 31.96 E-UTRA Band 5 QPSK/16QAM Class 3 25.16 E-UTRA Band 41 Class 3 QPSK/16QAM 23.75 115 16 21 Contration & Test OUP (Shenz W5E zat ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份 60 PHOM * PT

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

3. FACILITIES AND ACCREDITATIONS

3.1. Facilities

Non & Tes

WSE

MOM * P

S

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

3.2.ACCREDITATIONS CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

Non & Tee

W5E7

PHOM * P

(She

00

ilac-MRA

For Question

Please Contact with WSCT

Report No.: WSCT-A2LA-R&E230300002A-RF

3.3. EUT System Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

Fig. 3.2-1 Configuration of EUT System

EUT

Table 3.2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Note
	Tablet PC	Acer One 8 T9-422L		EUT

***Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 7 of 43

KIL

Non & Tex

WSET

PHOM * PT

Certif

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

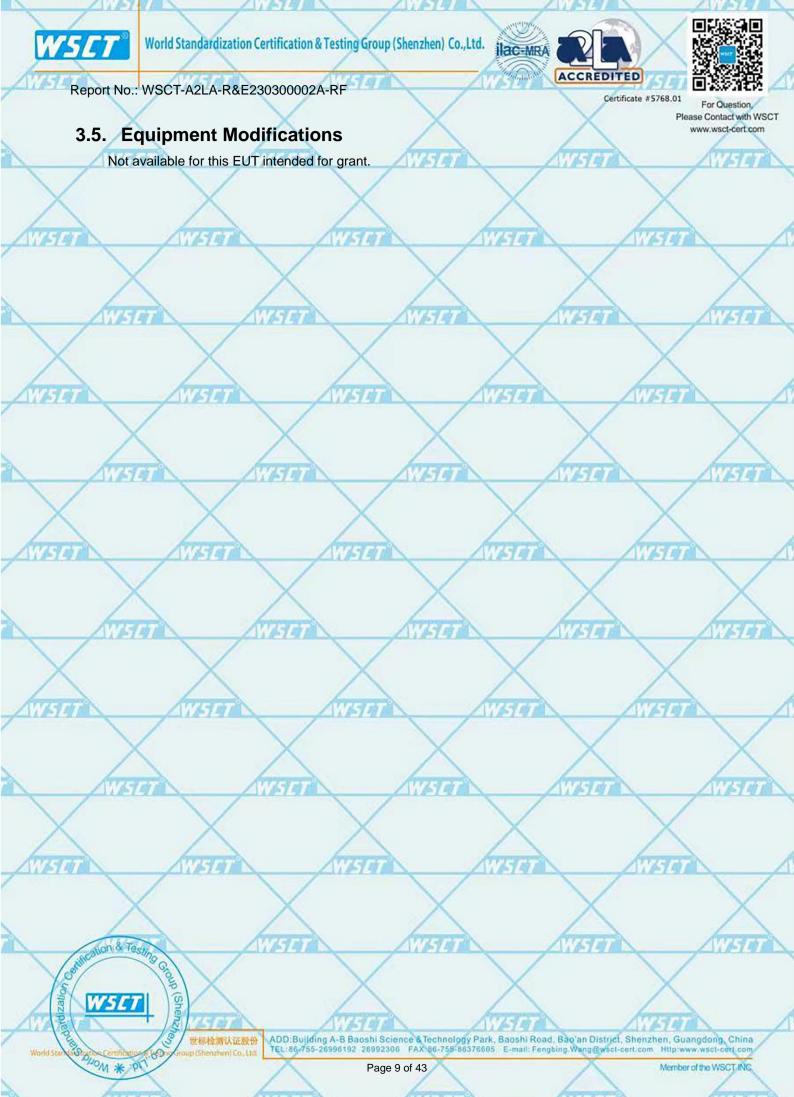
www.wsct-cert.com

Certificate #5768.01 For Question, Please Contact with WSCT

3.4. Description Of Test Channels And Test Modes

Report No.: WSCT-A2LA-R&E230300002A-RF

Test channels	s: /////	FI /	WSET	WSET	-
/		GSM	850		1
	Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	
Δ	Low Range	0.2	128	824.2	A
	Mid Range	0.2	190	836.6	
\sim	High Range	0.2	251	848.8	
\wedge					


PCS 1900				
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	
Low Range	0.2	512	1850.2	
Mid Range	0.2	661	1880	
High Range	0.2	810	1909.8	

	LTE Ba	ind 5	
Test Channel	BW(MHz)	UL Channel	Frequency(MHz)
- Pier	1.4	20407	824.7
	3	20415	825.5
Low Range	5	20425	826.5
WELT	10-27	20450	829
Mid Range	1.4/3/5/10	20525	836.5
/	1.4	20643	848.3
High Range	3	20635	847.5
	5	20625	846.5
	10	20600	844

LTE Band 41					
BW(MHz)	UL Channel	Frequency(MHz)			
5	39675	2498.5			
10	39700	2501			
15	39725	2503.5			
20	39750	2506			
5/10/15/20	40620	2593			
5517	41565	2687.5			
10	41540	2685			
15	41515	2682.5			
20	41490	2680			
	BW(MHz) 5 10 15 20 5/10/15/20 5 10 15	BW(MHz) UL Channel 5 39675 10 39700 15 39725 20 39750 5/10/15/20 40620 5 41565 10 41540 15 41515			

Note 1: both QPSK&16QAM modulation has been measured; Note 2: The worst condition was recorded in the test report if no other modes test data.

> 世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita

Report No.: WSCT-A2LA-R&E230300002A-RF

4.

8.01	For Question,
Pl€	ase Contact with WSCT
	www.wsct-cert.com

4.	SUMMARY C	OF TEST REQU	JIREMENTS AND RES		ase Contact with V www.wsct-cert.co
PCS	1900:	THE	ATTEN A	STAT	ACE OF
1	Test Item	FCC Rule No.	Requirements	Judgement	
(Effective (Isotropic) Radiated Power	§2.1046, §24.232(c)	EIRP ≤ 2W(33dBm)	Pass	
	Bandwidth	§2.1049 §24.238(a)	OBW: No limit. EBW: No limit.	Pass	
	Band Edges	§2.1051, §24.238(a)	-13dBm	Pass	$\mathbf{\nabla}$
1	Spurious Emission at Antenna Terminals	§2.1051, §24.238(a)	-13dBm	Pass	AVET
/	Field Strength of Spurious Radiation	§2.1053, §24.238(a)	-13dBm	Pass	
	NIST AT		the fundamental emission	wister	
	Frequency Stability	§2.1055, §24.235	stays within the authorized frequency block.	Pass	\geq
1	Peak to average ratio	§24.232(d)	<13dB	Pass	ALF14
-	Frequency Stability	§2.1055, §22.355	the fundamental emissions stay within the authorized bands of operation. (2.5ppm)	Pass	

Band 5(GSM850/E-UTRA Band 5):

ation & Tes

WSET

DUOM * PT

oup (Shenzy

60

Centific

Zatio

			V.	
	Test Item	FCC Rule No.	Requirements	Judgement
1	Effective (Isotropic) Radiated Power	§2.1046, §2.913(a)	EIRP ≤ 7W(38.5dBm)	Pass
	Occupied Bandwidth	§2.1049	OBW: No limit.	Pass
_	Emission Bandwidth	22.917(b)	EBW: No limit.	Pass
1	AWSET	AVIST	KDB 971 168 D02 971168 D02	
	Band Edges Compliance	§2.1051, §22.917(a)(b)	Misc OOBE License Digital Systems v01 &27.53(m) for detail the limit is upon different OBW	Pass
	Spurious Emission at Antenna Terminals	§2.1051, §22.917	-13dBm	Pass
	Field Strength of Spurious Radiation	§2.1053, §22.917	-13dBm	Pass
1	ANAT	§2.1055,	the fundamental emissions stay	NI/SIAT
	Frequency Stability	§22.355	within the authorized bands of operation. (2.5ppm)	Pass

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

1.15

Report No.: WSCT-A2LA-R&E230300002A-RF
Band 41(E-UTRA Band 41):

Ban	d 41(E-UTRA Ban	d 41):		Die	For Question, se Contact with WSCT
	Test Item	FCC Rule No.	Requirements	Judgement	www.wsct-cert.com
1	Effective (Isotropic) Radiated Power	§2.1046, §27.50(h)	EIRP ≤ 2W(33dBm)	Pass	(THE
	Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass	
	Band Edges	§2.1051, §27.53(m)	KDB 971 168 D02 971168 D02 Misc OOBE License Digital Systems v01	Pass	
			&27.53(m) for detail the limit is upon different OBW		
1	Spurious Emission at Antenna Terminals	§2.1051, §27.53(m)	-25dBm	Pass	
1	Field Strength of Spurious Radiation	§2.1053, §27.53(m)	-25dBm	Pass	
	Frequency Stability	§2.1055, §27.54	the fundamental emissions stay within the authorized bands of operation. (2.5ppm)	Pass	
and the second second	and the second s	A A A A A A A A A A A A A A A A A A A		and a start of the	and the second se

25 E

60

Nortesting of the state

Group (Shenzhen) ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

1512

NSE

6

zat

WSET

S DUOM * PT

up (Shenz

60

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

5. MEASUREMENT INSTRUMENTS

		/			
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.
EMI Test Receiver	R&S	ESCI	100005	11/05/2022	11/04/2023
LISN	AFJ	LS16	16010222119	11/05/2022	11/04/2023
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2022	11/04/2023
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2022	11/04/2023
Coaxial cable	Megalon	LMR400	N/A	11/05/2022	11/04/2023
GPIB cable	Megalon	GPIB	N/A	11/05/2022	11/04/2023
Spectrum Analyzer	R&S	FSU	100114	11/05/2022	11/04/2023
Pre Amplifier	SET H.P.	HP8447E	2945A02715	11/05/2022	11/04/2023
Pre-Amplifier	CDSI	PAP-1G18-38	/	11/05/2022	11/04/2023
Loop Antenna	R&S	HFH2-Z2	100296	11/05/2022	11/04/2023
Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2022	11/04/2023
9*6*6 Anechoic		\bigvee		11/05/2022	11/04/2023
Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2022	11/04/2023
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2022	11/04/2023
Power meter	Anritsu	ML2487A	6K00003613	11/05/2022	11/04/2023
Power meter	Anritsu	MA2491A	32263	11/05/2022	11/04/2023
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2022	11/04/2023
System-Controller	CCS	N/A	N/A	N.C.R	N.C.R
Turn Table	CCS	N/A	N/A	N.C.R	N.C.R
Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	Κ -	11/05/2022	11/04/2023
Loop Antenna	EMCO	6502	00042960	11/05/2022	11/04/2023
Wideband Radio Communication Tester	R&S	CMW 500	103974	11/05/2022	11/04/2023
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2022	11/04/2023
H & T Chamber	Guangzhou gongwen	GDJS-500-40	0329	11/05/2022	11/04/2023
UXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MY60192341	11/05/2022	11/04/2023
Anechoic chamber	SAEMC	966	741	11/05/2022	11/04/2023
Attreams of	1				

ilac-MRA

Certificate #5768.01

Please Contact with WSCT

Member of the WSCT INC

6. EFFECTIVE (ISOTROPIC) RADIATED POWER

Test limit:

According to §22.913, The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. According to§24.232, Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50 (d), Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications. According to §27.50 (h), Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

See section 4.

Test procedure:

1. The setup of EUT is according with per TIA/EIA Standard 603 D:2010 or KDB971168 D01 v02r02.

2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.

4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

5. ERP/EIRP = PMeas + GT - LC

where:

Non & Tes

W5L

PHOM * PT

(She

Cettific

ERP/EIRP = effective or equivalent radiated power

Report No.: WSCT-A2LA-R&E230300002A-RF

PMeas = measured transmitter output power from SG

- GT = gain of the substitution antenna
- LC = cable loss between SG and substitution antenna.

S PLOM * PT

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

ilac-MRA ACCREDITED

Report No.: WSCT-A2LA-R&E230300002A-RF

GSM850 B		Frequency	Peak	Avg.Burst		Duty cycle	Frame	ontact with
Мо	de	(MHz)	Power(dBm)	Power(dBm)	PAP	Factor(dB)	Power(dBm)	wsct-cert.c
ATTACK		824.2	34.53	33.52	1.01	-9	24.52	101-1-
GSN	1850	836.6	34.18	33.14	1.04	-9-	24.14	Net a
		848.8	33.69	33.55	0.14	-9	24.55	
2	1 Tx	824.2	31.17	30.75	0.42	-9	21.75	
	Slots	836.6	32.69	31.34	1.35	-9	22.34	
2	0.0.0	848.8	32.21	31.27	0.94	-9	22.27	
1	2 Tx	824.2	32.13	30.83	1.30	-6	24.83	-
	Slots	836.6	30.85	30.36	0.49	-6	24.36	1
	0.010	848.8	31.61	30.30	1.31	-6	24.30	\sim
GPRS850	3 Tx -	824.2	31.53	30.48	1.06	-4.26	26.22	\wedge
	Slots	836.6	32.16	30.51	1.65	-4.26	26.25	/
WISET.	0.010	848.8	32.21	30.73	1.48	-4.26	26.47	W51
	4 Tx	824.2	31.11	30.68	0.43	-3	27.68	
0	Slots	836.6	30.86	30.27	0.59	-3	27.27	
	01010	848.8	31.04	30.90	0.14	-3	27.90	
	1 Tx	824.2	27.34	26.87	0.47	-9	17.87	
3	Slots	836.6	28.02	27.04	0.98	-9	18.04	
1	/ IFT	848.8	27.82	26.38	1.44	-9	17.38	<hr/>
	2 Tx	824.2	27.83	26.80	1.03	-6	20.80	
X	Slots	836.6	28.47	26.66	1.81	-6	20.66	X
EPRS850		848.8	27.17	26.87	0.30	-6	20.87	
	3 Tx	824.2	28.32	26.97	1.36	-4.26	22.71	1
AWSET	Slots	836.6	28.45	27.66	0.79	-4.26	23.40	WSE
/		848.8	27.98	27.33	0.65	-4.26	23.07	
0	4 Tx	824.2	28.19	26.55	1.64	-3	23.55	
		836.6	29.33	27.55	1.79	-3	24.55	
	Slots					-		
	Slots	848.8	28.01	27.24	0.77	-3	24.24	
PCS1900 E				27.24	0.77	-3	24.24	
	Band:	848.8	28.01	27.24 Avg.Burst	(mera)	Duty cycle	Frame	
		848.8 Frequency (MHz)	28.01 Peak Power(dBm)	27.24 Avg.Burst Power(dBm)	PAP	Duty cycle Factor(dB)	Frame Power(dBm)	
	Band:	848.8 Frequency (MHz) 1850.2	28.01 Peak Power(dBm) 30.86	27.24 Avg.Burst Power(dBm) 30.36	PAP 0.51	Duty cycle Factor(dB) -9	Frame Power(dBm) 21.36	
Мс	Band:	848.8 Frequency (MHz) 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17	27.24 Avg.Burst Power(dBm) 30.36 30.18	PAP 0.51 0.99	Duty cycle Factor(dB) -9 -9	Frame Power(dBm) 21.36 21.18	
Мс	Band: ode	848.8 Frequency (MHz) 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32	PAP 0.51 0.99 0.64	Duty cycle Factor(dB) -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32	
Мс	Band: ode	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66	PAP 0.51 0.99 0.64 0.85	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66	
Мс	3and: ode 11900	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05	PAP 0.51 0.99 0.64 0.85 0.51	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05	
Мс	3and: ode	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03	PAP 0.51 0.99 0.64 0.85 0.51 1.39	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03	
Мс	3and: ode 11900	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86	
Мс	Band: ode 11900 1 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12	
Мс	3and: ode 11900 1 Tx Slots 2 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66	
GSM	3and: ode 11900 1 Tx Slots 2 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 28.12 27.66 27.16	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -4.26	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90	
GSM	3and: bde 11900 1 Tx Slots 2 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 28.12 27.66 27.16 27.16	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -4.26 -4.26	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31	
GSM	3and: bde 11900 1 Tx Slots 2 Tx Slots 3 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.16 27.57 27.95	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -4.26 -4.26 -4.26	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69	
GSM	3and: bde 11900 1 Tx Slots 2 Tx Slots 3 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.16 27.57 27.95 27.95 27.91	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.16 27.57 27.95 27.91 27.26	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26	
GSM	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.16 27.57 27.95 27.91 27.26 27.33	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.26 27.33 26.60	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.32 28.25 27.07 27.85	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.26 27.33 26.60 26.97	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 4 Tx Slots 1 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.26 27.33 26.60 26.97 26.42	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 4 Tx Slots 1 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 4 Tx Slots 1 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.766 27.16 27.91 27.95 27.91 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52	
GSM GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slots 2 Tx Slots 2 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.76 27.95 27.91 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75	
GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 4 Tx Slots 4 Tx Slots 2 Tx Slots 2 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03	
GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slots 2 Tx Slots 3 Tx	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70 27.37	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29 26.64	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42 0.73	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -4.26	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03 22.38	
GPRS1900 EGPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slots 2 Tx Slots 3 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70 27.37 28.00	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29 26.64 26.99	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42 0.73 1.01	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03 22.38 22.73	
GPRS1900 EGPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slots 2 Tx Slots 3 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70 27.37 28.00 28.26	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29 26.64 26.99 26.54	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42 0.73 1.01 1.72	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -3 -3 -3 -3 -3 -9 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03 22.38 22.73 23.54	
GPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70 27.37 28.00 28.26 27.32	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.91 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29 26.64 26.99 26.54 26.35	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42 0.73 1.01 1.72 0.97	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03 22.38 22.73 23.54 23.35	
GPRS1900 EGPRS1900	Band: Dode 11900 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots	848.8 Frequency (MHz) 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2 1880 1909.8 1850.2	28.01 Peak Power(dBm) 30.86 31.17 31.96 28.51 27.56 28.42 29.11 29.66 27.78 28.42 29.00 28.56 28.29 28.32 28.25 27.07 27.85 28.01 28.15 27.44 26.99 27.70 27.37 28.00 28.26 27.32 27.43	27.24 Avg.Burst Power(dBm) 30.36 30.18 31.32 27.66 27.05 27.03 27.86 28.12 27.66 27.16 27.57 27.95 27.95 27.91 27.26 27.33 26.60 26.97 26.42 27.11 26.52 26.75 27.29 26.64 26.99 26.54	PAP 0.51 0.99 0.64 0.85 0.51 1.39 1.25 1.54 0.11 1.26 1.43 0.61 0.38 1.06 0.92 0.48 0.88 1.59 1.05 0.91 0.24 0.42 0.73 1.01 1.72 0.97 1.25	Duty cycle Factor(dB) -9 -9 -9 -9 -9 -9 -9 -9 -6 -6 -6 -4.26 -4.26 -4.26 -4.26 -3 -3 -3 -3 -3 -9 -9 -9 -9 -9 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	Frame Power(dBm) 21.36 21.18 22.32 18.66 18.05 18.03 21.86 22.12 21.66 22.90 23.31 23.69 24.91 24.26 24.33 17.60 17.97 17.42 21.11 20.52 20.75 23.03 22.38 22.73 23.54 23.35 23.18	

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

Non & Tes

WSE7

OHOM * PI

up (She

Cer

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Plase Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

Radiation power test

Note: Record the condition when max power has been detector for radiated method.(X axis)

			Radi	ated Powe	er (ERP)) for GSM	1850			
	Mode	Frequency (MHz)	Р _{меа} (dBm)	Amplifier Gain (dBi)	Path Loss	Antenna Gain	Correcti on (dB)	ERP (Peak) (dBm)	Polarization	
211	1	824.2	6.70	31.23	1.02	-1.7	2.15	33.06	THE REAL	_
	GSM850	836.6	6.17	31.23	1.02	-1.7	2.15	32.53	Н	
	X	848.8	6.46	31.23	1.02	-1.7	2.15	32.82	Н	

AUTO		Radia	ated Powe	r (EIRP	tor PCS	1900 🦯	TRACT	100
Mode	Frequency (MHz)	P _{Mea} (dBm)	Amplifier Gain (dBi)	Path Loss	Antenna Gain	Correcti on (dB)	ERP (Peak) (dBm)	Polarization
	1850.2	0.34	31.23	1.02	1.56	2.15	29.96	Н
PCS1900	1880	0.72	31.23	1.02	1.56	2.15	30.34	H
~	1909.8	0.80	31.23	1.02	1.56	2.15	30.42 🗸	HAN

ERP or E.I.R.P = PMea + Amplifier Gain – Path Loss + Antenna Gain – Correction Factor Note: Each channel is scanned 10 times, and the peak value of each channel is recorded.

Non & Tes

W5E7

PHOM * PT

ip (She

Col

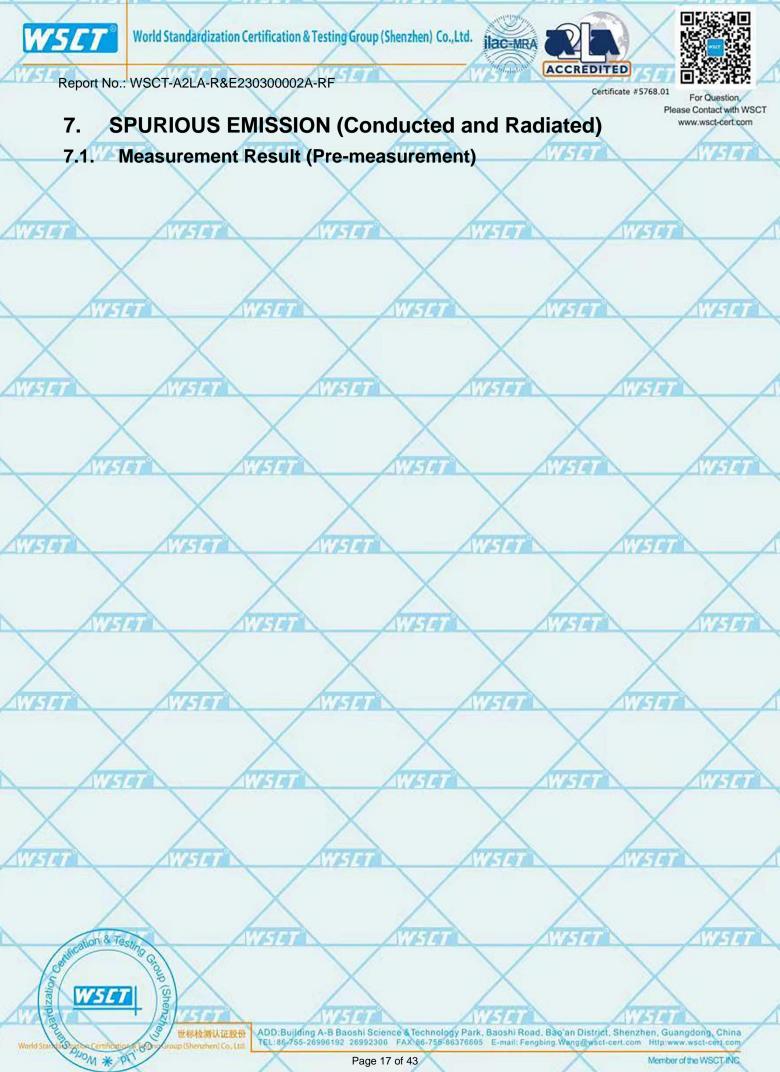
World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

LTE power is filtered as the worst mode data Radiated Power (ERP) for


	4			-	Radia	ted Power (ERP) for	E-UIKA B	and 5		-	
1	Mode	Band width (MHz)	Modul ation	Frequen cy (MHz)	P _{Mea} (dBm)	Amplifier Gain (dBi)	Path Loss (dB)	Antenna Gain (dB)	Correc tion (dB)	E.I.R.P. (Peak) (dBm)	Polariza tion	70
	X	1 1	QPSK	836.5	-8.37	31.23	-2.8	-1.7	0	23.96	Н	
1		1.4	Q16	836.5	-8.89	31.23	-2.8	-1.7	0	23.44	Н	
W	SET	3	QPSK	836.5	-8.92	31.23	-2.8	1.7	0	23.41	Н	1
	E-UTRA	3	Q16	836.5	-8.15	31.23	-2.8	-1.7	0	24.18	H	1
	Band 5	Y	QPSK	836.5	-8.50	31.23	-2.8	-1.7	0	23.83	HV	
		5	Q16	836.5	-9.00	31.23	-2.8	-1.7	0	23.33	H	R.
		10	QPSK	836.5	-8.65	31.23	-2.8	-1.7	0	23.68	А	-
-	1	/ 107	Q16	836.5	-8.58	31.23	-2.8	-1.7	0	23.75	ZH-ST/	

Radiated Power (EIRP) for E-UTRA Band 41

k	Mode	Band width (MHz)	Modul ation	Frequen cy (MHz)	Р _{меа} (dBm)	Amplifier Gain (dBi)	Path Loss (dB)	Antenna Gain (dB)	Correc tion (dB)	E.I.R.P. (Peak) (dBm)	Polariza tion	_
		5	QPSK	2593	-13.58	31.23	-1.3	2.08	0	21.03	H ,	/
		3	Q16	2593	-13.95	31.23	X-1.3	2.08	0	20.66	ΗХ	
		10	QPSK	2593	-13.49	31.23 🥥	-1.3	2.08	0	21.12	H	1
	E-UTRA	10	Q16	2593	-14.01	31.23	-1.3	2.08		20.60	HIT	7
1	Band 41	15	QPSK	2593	-14.03	31.23	-1.3	2.08	0	20.58	H	-
1		15	Q16	2593	-14.14	31.23	-1.3	2.08	0	20.47	Н	
	X	20	QPSK	2593	-14.07	31.23	-1.3	2.08	0	20.54	Н	
1	1	20	Q16	2593	-13.73	31.23	-1.3 🎽	2.08	0	20.88	Н	
177	5.07		ATA		A		1	11SIAN		11/190	1	

ERP or E.I.R.P = PMea + Amplifier Gain – Path Loss + Antenna Gain – Correction Factor Note: Each channel is scanned 10 times, the worst data is recorded.

世标检测认证数价 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Lta

Page 17 of 43

WSC1

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E230300002A-RF

Certificate #5768.01

15

25

For Question, Please Contact with WSCT www.wsct-cert.com

GS	SI	N 8	50	:	
_					

Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment	
Low Range	0.2	128	824.2	Pass	1
Middle Range	0.2	190	836.6	Pass	
High Range	0.2	251	848.8	Pass	
Second	and the second se		· Announce · · · · · · · · · · · · · · · · · · ·		-

PCS 1900 :

Test Channel	BW(MHz)	UL Channel	Frequency(MHz)	Judgment
Low Range	0.2	512	1850.2	Pass
Middle Range	0.2	661	1880.0	Pass
High Range	0.2	810	1909.8	Pass

1.0

65

Sentireation & Testin

WSET

113 BLOM * PT

.60

rdizatio

Group (Shenzh ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

25

1056

WSE

Sourcation & Testing

votrazione connectorente

Group (Shenzh

.60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question

0

Band 5:		X			$\langle \rangle$		X	Please Contact with WSC www.wsct-cert.com
ATTATA	Bandwidth	UL Channel	Frequency	Modulation	RB Size	RB Offset	Judgement	(TETA)
	1.4	20407	824.7	QPSK	6	LOW	Pass	/
	1.4	20407	824.7	Q16	6	LOW	Pass	\checkmark
\wedge	1.4	20525	836.5	QPSK	6	LOW	Pass	\wedge
hard	1.4	20525	836.5	Q16	6	LOW	Pass	and a second
AVISION	1.4	20643	848.3	QPSK	6	LOW	Pass	
	1.4	20643	848.3	Q16	6	LOW	Pass	
X	3	20415	825.5	QPSK 🔵	15	LOW	Pass	X
	3	20415	825.5	Q16	15	LOW	Pass	
AVISIE	3	20525	836.5	QPSK	15	LOW	Pass	WSIT
	3	20525	836.5	Q16	15	LOW	Pass	/
\sim	3 🗸	20635	847.5	QPSK	15	LOW	Pass	\sim
\wedge	3 🔨	20635	847.5	Q16	15	LOW	Pass	\wedge
A	5	20425	826.5	QPSK	25	LOW	Pass	
ATHIN	5	20425	826.5	Q16	25	LOW	Pass	5147
	5	20525	836.5	QPSK	25	LOW 🔪	Pass	
X	5	20525	836.5	Q16 📄	25	LOW	Pass	X
	5	20625	846.5	QPSK	25	LOW	Pass	
AVISTE	5	20625	846.5	Q16	25	LOW	Pass	WSIT
1	10	20450	829	QPSK	50	LOW	Pass	1
	10	20450	829	Q16	50	LOW	Pass	
\wedge	10	20525	836.5	QPSK	50 💋	LOW	Pass	\sim
	10	20525	836.5	Q16	50	LOW	Pass	
ATTATA	10	20600	844	QPSK	50	LOW	Pass	
	10	20600	844	Q16	50	LOW	Pass	
X		X			X		X	X

45E

157

N5E

175

W5E

Settication & Test

North Station Comparison of

Group (Shenzh

.60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E230300002A-RF Band 41:

Certificate #5768.01 For Question

Band 41:					1			For Question
	Bandwidth	UL Channel	Frequency	Modulation	RB Size	RB Offset	Judgement	Please Contact with WSCT www.wsct-cert.com
A ATTAG	5	39675	2498.5	QPSK	25	LOW	Pass	ATT THE
	5	39675	2498.5	Q16	25	LOW	Pass	- Curristers
	5	40620	2593	QPSK	25 🔷	LOW	Pass	\checkmark
\wedge	5	41565	2687.5	🔪 Q16	25	LOW	Pass	\wedge
	5	20643	848.3	QPSK	25	LOW	Pass	
AWSIGT	5	41565	2687.5	Q16	25	LOW	Pass	-14
	10	39700	2501	QPSK	50	LOW	Pass	
X	10	39700	2501	Q16	50	LOW	Pass	X
	10	40620	2593	QPSK	50	LOW	Pass	
AVISE	10	40620	2593	Q16	50	LOW	Pass	WISTER
	10	41540	2685	QPSK	50	LOW	Pass	1
\sim	10	41540	2685	🖊 Q16	50	LOW	Pass	\sim
\wedge	15 🦯	39725	2503.5	QPSK	75	LOW	Pass	\land
	15	39725	2503.5	Q16	75	LOW	Pass	
AWSET	15	40620	2593	QPSK	75	LOW	Pass	
	15	40620	2593	Q16	75	LOW	Pass	
X	15	41515	2682.5	QPSK 📄	75	LOW	Pass	X
	15	41515	2682.5	Q16	75	LOW	Pass	
AVISTA	20	39750	2506	QPSK	100	LOW	Pass	AWISTER
	20	39750	2506	Q16	100	LOW	Pass	/
	20	40620	2593	QPSK	100	LOW	Pass	
\wedge	20	40620	2593	Q16	100 🧹	LOW	Pass	\land
A	20	41490	2680	QPSK	100	LOW	Pass	for the second s
ATTATA	20	41490	2680	Q16	100	LOW	Pass	
			/		/	/	1	

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份 n) Co. Lte

75

195

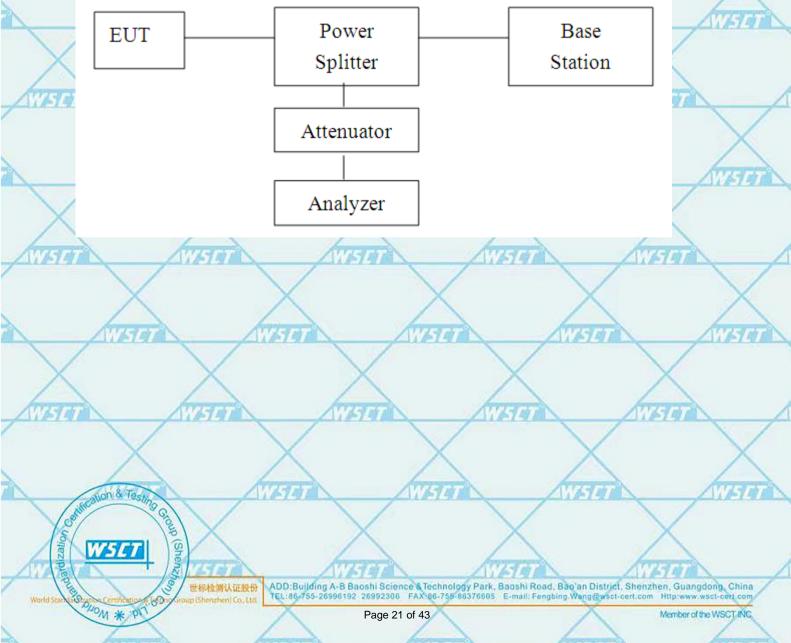
Report No.: WSCT-A2LA-R&E230300002A-RF Test Plot(s) Conducted method

ilac-MRA

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Test limit:

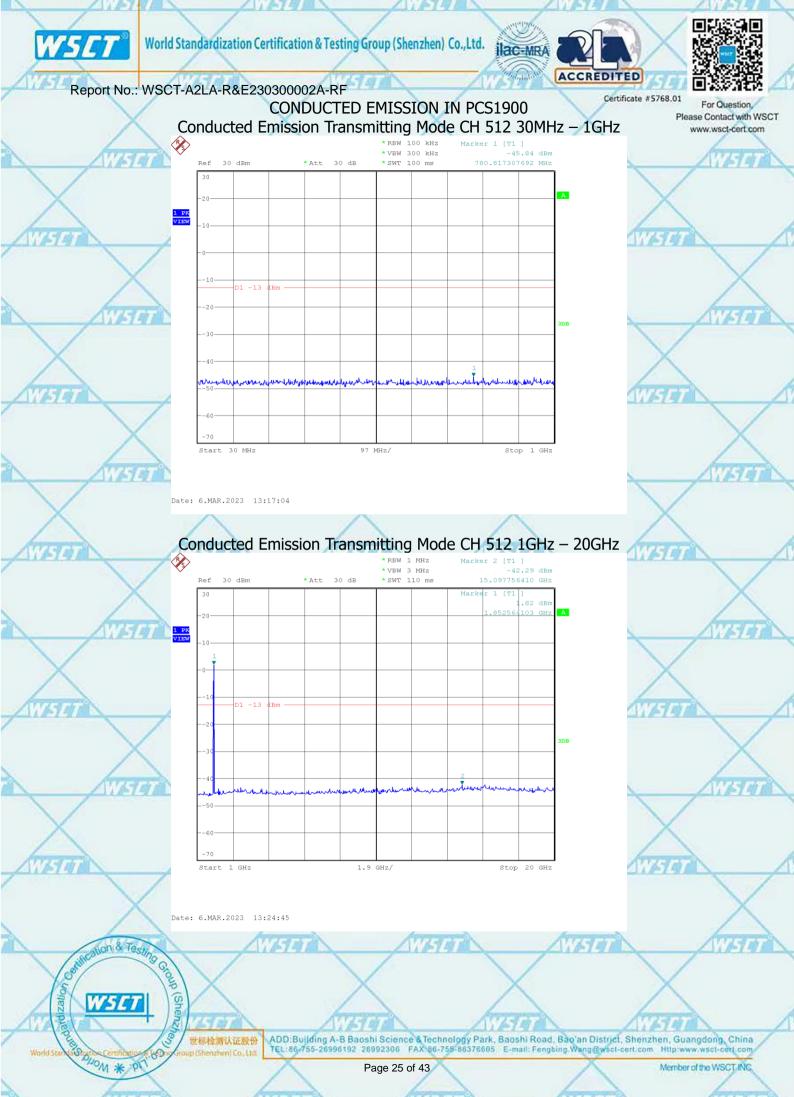

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.


Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least $X + 10\log(P)$ dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation $X + 10\log(P)$ being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., $10\log(P) - {X + 10\log(P)}]$, resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.

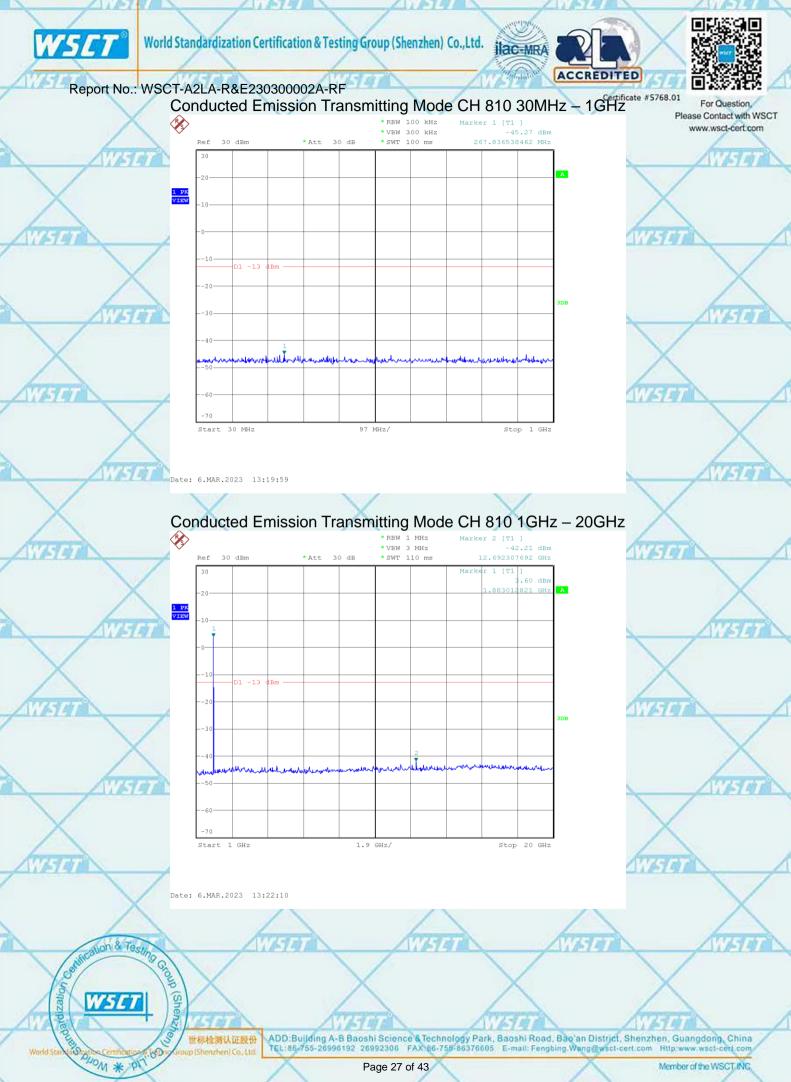
Test procedure:

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Conducted Emission Test-Up:



Page 22 of 43



Page 24 of 43

Report No.: WSCT-A2LA-R&E230300002A-RF

ilac-MRA

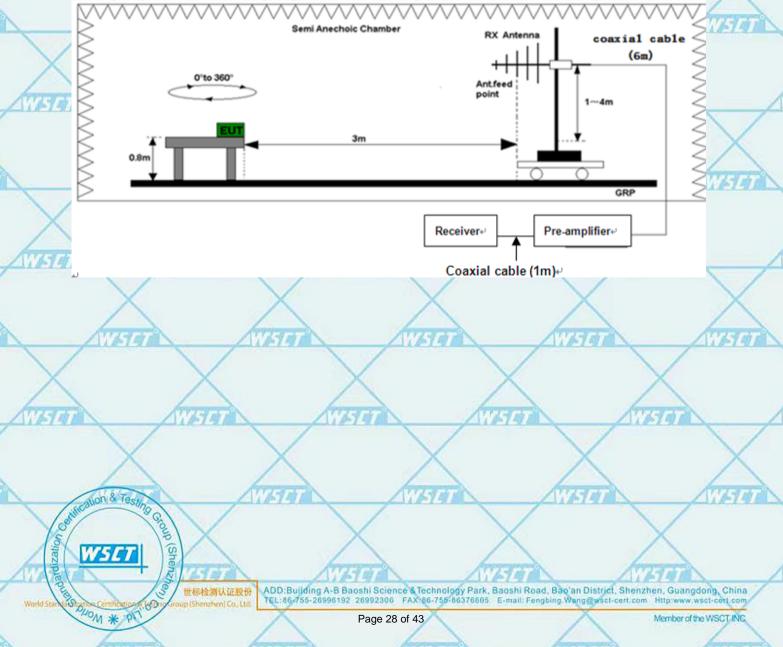
Certificate #5768.01

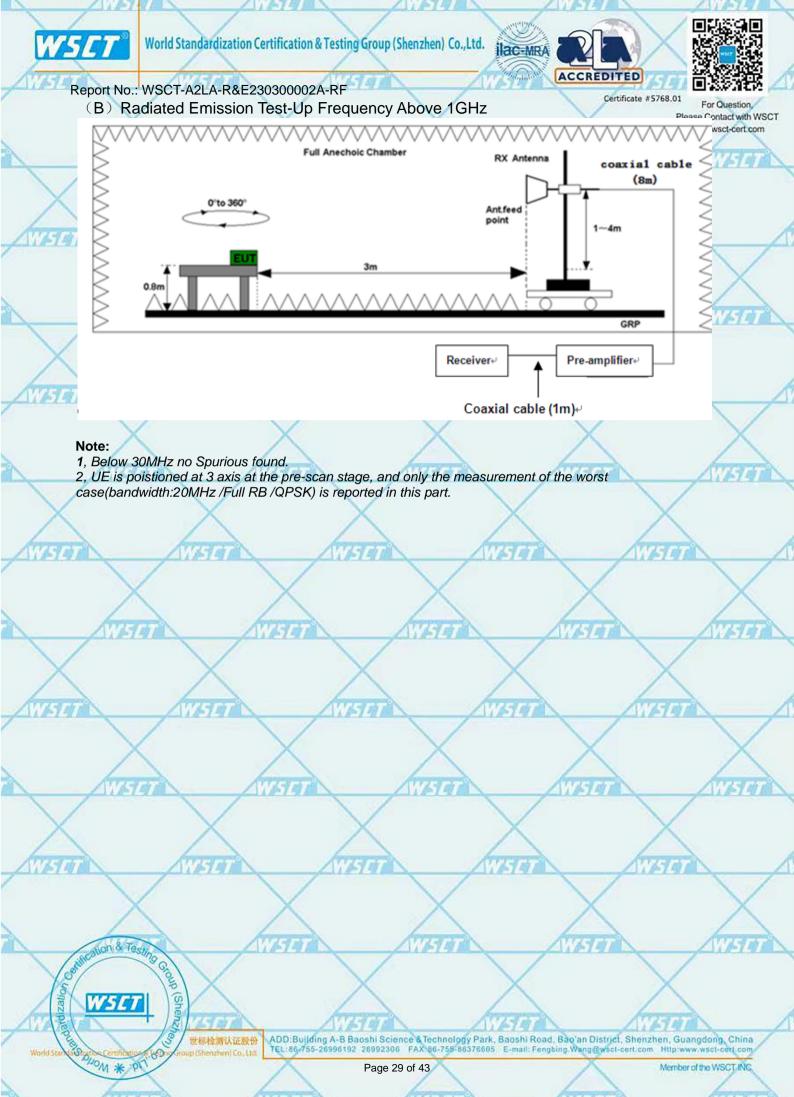
For Question Please Contact with WSCT www.wsct-cert.com

Radiated method

Test limit:

The spurious (unwanted) emission limits specified in the individual FCC rule parts applicable to licensed digital transmitters (typically referred to under the heading 'emission limits') normally apply to any and all emissions that are present outside of the authorized frequency band/block and apply to emissions in both the out-of-band and spurious domains. In some rule parts, the unwanted emission limits are specified by an emission mask that defines the applicable limit as a function of the frequency range relative to the authorized frequency block.


Typically, unwanted emissions are required by the licensed rule parts to be attenuated below the transmitter power by a factor of at least X + 10log(P) dB, where P represents the transmitter power expressed in watts and X is a specified scalar value (e.g., 43). This specification can be interpreted in one of two equivalent ways. First, the required attenuation can be construed to be relative to the mean carrier power, with the resultant of the equation X + 10log(P) being expressed in dBc (dB relative to the maximum carrier power). Alternatively, the specification can be interpreted as an absolute limit when the specified attenuation is actually subtracted from the maximum permissible transmitter power [i.e., 10log(P) - {X + 10log(P)}]. resulting in an absolute level of -X dBW [or (-X + 30) dBm]. See section 4.


Test procedure:

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The resolution bandwidth of the spectrum analyzer was set at 100 kHz below 1 GHz and 1 MHz above 1 GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonics.

Test setup:

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com

List of final test modes: GSM850:

Report No.: WSCT-A2LA-R&E230300002A-RF

			<u> </u>
Mode	UL Channel	Frequency	Judgement
1	128	824.2	Pass
2	190	836.6	Pass
3	251	848.8	Pass

PCS1900

		Sec. 19	
Mode	UL Channel	Frequency	Judgement
X	512	1850.2	Pass
2	661	1880	Pass
3	810	1909.8	Pass

E-UTRA BANDS

This is the worst pattern data Band 5:

· •	<u>v.</u>							
	Mode	Bandwidth	UL Channel	Frequency	Modulation	RB Size	RB Offset	Judgement
1	1/	10	20450	829	QPSK	50	LOW	Pass
	2	10	20525	836.5	QPSK	50	LOW	Pass
	3	10	20600	844	QPSK	50	LOW	Pass

Band 41:

a	41.7						1.1.1.1	
	Mode	Bandwidth	UL Channel	Frequency	Modulation	RB Size	RB Offset	Judgement
	1	20	39750	2506	QPSK	100	LOW	Pass
	2	20	40620	2593	QPSK	100	LOW	Pass
	3	20	41490	2680	QPSK	100	LOW	Pass 👘

Test record: Note:

Non & Tes

WSE

PHOM * PT

up (Sher

60

Centific

1. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss and the air loss. The measurement results are obtained as described below:

Power=PMea+ARpl

2. ARpl =Cable loss + Antenna gain

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a Shenzhen Co. Lta

Certifit

Mond Stan

Zatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E230300002A-RF

For Question with WSCT rt.com

Mode 1 Bm) PMea(dBm -34.72 -30.70 -32.13 -32.13 -32.13 -33.64 Mode 2 PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 -36.39 Mode 3 -31.32 -31.70 -31.32 -37.15 -34.95 Mode 1 -34.95 Mode 1 -37.09 -35.23 -37.71 -29.67 -29.67	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Polarity Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical
-34.72 -30.70 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -32.13 -33.64 Mode 2 3m) PMea(dBm -36.39 Mode 3 3m) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Vertical Polarity Horizontal Vertical
-30.70 -32.13 -32.13 -33.64 Mode 2 3m) PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.09 -35.23	-13 -13	Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Horizontal Vertical
-32.13 -33.64 Mode 2 3m) PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	-13 -13	Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Vertical Vertical Vertical Vertical Vertical Vertical Vertical Horizontal Vertical Horizontal Vertical
-33.64 Mode 2 3m) PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.70 -31.32 -31.32 -31.32 -34.95 Mode 1 3m) PMea(dBm -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Vertical Vertical Vertical Vertical Vertical Polarity Horizontal Vertical
Mode 2 3m) PMea(dBm -30.94 -34.49 -35.84 -35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Polarity Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical
PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 Bm) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 Bm) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
PMea(dBm -30.94 -34.49 -35.84 -36.39 Mode 3 Bm) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 Bm) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
-30.94 -34.49 -35.84 -36.39 Mode 3 Bm) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 Bm) PMea(dBm -34.95 Mode 1 Bm) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
-34.49 -35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.32 -37.15 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Vertical Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
-35.84 -36.39 Mode 3 3m) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
-36.39 Mode 3 Bm) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 Bm) PMea(dBm -37.09 -35.23 -37.71	-13 n) Limit (dBm) -13 -13 -13 -13 -13 n) Limit (dBm) -13 -13 -13	Vertical Polarity Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical
Mode 3 3m) PMea(dBm -31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 n) Limit (dBm) -13 -13 -13	Polarity Horizontal Vertical Vertical Vertical Vertical Vertical Vertical
Bm) PMea(dBm -31.70 -31.32 -37.15 -37.15 -34.95 -34.95 Mode 1	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal
Bm) PMea(dBm -31.70 -31.32 -37.15 -37.15 -34.95 -34.95 Mode 1	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal
-31.70 -31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13 -13 -13	Horizontal Vertical Horizontal Vertical Polarity Horizontal
-31.32 -37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	-13 -13 -13 -13 n) Limit (dBm) -13 -13	Vertical Horizontal Vertical Polarity Horizontal
-37.15 -34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13 -13 -13	Horizontal Vertical Polarity Horizontal
-34.95 Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13 -13	Vertical Polarity Horizontal
Mode 1 3m) PMea(dBm -37.09 -35.23 -37.71	n) Limit (dBm) -13 -13	Polarity Horizontal
8m) PMea(dBm -37.09 -35.23 -37.71	-13 -13	Horizontal
8m) PMea(dBm -37.09 -35.23 -37.71	-13 -13	Horizontal
8m) PMea(dBm -37.09 -35.23 -37.71	-13 -13	Horizontal
-37.09 -35.23 -37.71	-13 -13	Horizontal
-35.23 -37.71	-13	
-37.71	California Transmission	
and the second s	-13	Horizontal
	-13	Vertical
20.01	-10	
Mode 2		
Bm) PMea(dBm	m) Limit (dBm)	Polarity
-39.36	-13	Horizontal
		Vertical
		Horizontal
		Vertical
00.00		
Mode 3		
Bm) PMea(dBm	m) Limit (dBm)	Polarity
-35.31	-13	Horizontal
		Vertical
		Horizontal
		Vertical
00.02		
	-39.36 -35.14 -36.37 -33.39 Mode 3 Bm) PMea(dBn	-39.36 -13 -35.14 -13 -36.37 -13 -33.39 -13 Mode 3 -35.31 -35.31 -13 -32.05 -13 -30.32 -13

Report No.: WSCT-A2LA-R&E230300002A-RF E-UTRA BANDS Band 5:

8.01 For Question, Please Contact with WSCT

				~		+ prt.o
		Mode	e 1			arto
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity	E
1658	-56.69	2.38	-59.07	-13	Horizontal	
1658	-55.73	2.38	-58.11	-13	Vertical	
2487	-55.65	2.38	-58.03	-13	Horizontal	
2487 1/5	-57.65	2.38	-60.03	-13	Vertical	
			-			

Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity	
1673	-58.63	2.38	-61.01	-13	Horizontal	
1673	-56.65	2.38	-59.03	-13	Vertical	
2509.5	-58.64	2.38	-61.02	-13	Horizontal	
2509.5	-56.33	2.38	-58.71	-13	Vertical	
MILLER MILLER MILLER						

Mode 3

mode o					
Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity	
-60.77	2.38	-63.15	-13	Horizontal	
-57.08	2.38	-59.46	-13,57	Vertical	
-58.16	2.38	-60.54	-13	Horizontal	
-60.66	2.38	-63.04	-13	Vertical	
	-60.77 -57.08 -58.16	Power(dBm) ARpl (dBm) -60.77 2.38 -57.08 2.38 -58.16 2.38	Power(dBm) ARpl (dBm) PMea(dBm) -60.77 2.38 -63.15 -57.08 2.38 -59.46 -58.16 2.38 -60.54	Power(dBm) ARpl (dBm) PMea(dBm) Limit (dBm) -60.77 2.38 -63.15 -13 -57.08 2.38 -59.46 -13 -58.16 2.38 -60.54 -13	

Band 41:

Certifi

W5E7

BIS BLOM * PT

Zatic

Noup (Shenzh

60

Mode 1					
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
5012	-56.69	2.38	-59.07	-13	Horizontal
5012	-55.73	2.38	-58.11	-13	Vertical
7518	-55.65	2.38	-58.03	-13	Horizontal
7518	-57.65	2.38	-60.03	-13	Vertical
~		~		~	~

Mode 2					
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
5186	-58.63	2.38	-61.01	-13	Horizontal
5186	-56.65	2.38	-59.03	-13 🔨	Vertical
7779	-58.64	2.38	-61.02	-13	Horizontal
7779	-56.33	2.38	-58.71	-13	Vertical

Mode 3					
Frequency(MHz)	Power(dBm)	ARpl (dBm)	PMea(dBm)	Limit (dBm)	Polarity
5360	-60.77	2.38	- <mark>6</mark> 3.15	-13	Horizontal
5360	-57.08	2.38	-59.46	-13	Vertical
8040	-58.16	2.38	-60.54	-13	Horizontal
8040	-60.66	2.38	-63.04	-13	Vertical

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m[Shenzhen] (p. ttd. TEL:86-755-26996192 26992300 FAX 66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E230300002A-RF

8. OCCUPIED BANDWIDTH& EMISSION BANDWIDTH

Test limit:

The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission, shall be measured when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user. [ji2.1049(h)]

Many of the individual rule parts specify a relative OBW in lieu of the 99% OBW. In such cases, the OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

The relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The test report shall specify which OBW is reported.

A spectrum/signal analyzer or other instrument providing a spectral display is recommended for these measurements and the video bandwidth shall be set to a value at least three times greater than the IF/resolution bandwidth to avoid any amplitude smoothing. Video filtering shall not be used during occupied bandwidth tests.

The OBW shall be measured for all operating conditions that will affect the bandwidth results (e.g. variable modulations, coding, or channel bandwidth settings). See section 4.

Test procedure:

PHOM * PT

Occupied bandwidth - relative measurement procedure

The reference value is the highest level of the spectral envelope of the modulated signal. a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.

b) The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to prevent the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances. e) The dynamic range of the spectrum analyzer at the selected RBW shall be at least 10 dB below the target "-X dB down" requirement (i.e., if the requirement calls for measuring the -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference value).

f) Set the detection mode to peak, and the trace mode to max hold.

g) Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-X dB down amplitude" as equal to (Reference Value – X). Alternatively, this calculation can be performed by the analyzer by using the marker-delta function.
 i) Place two markers, one at the lowest and the other at the highest frequency of the

世际検済认证設份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

envelope of the spectral display such that each marker is at or slightly below the "-X dB For Question down amplitude" determined in step g). If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.

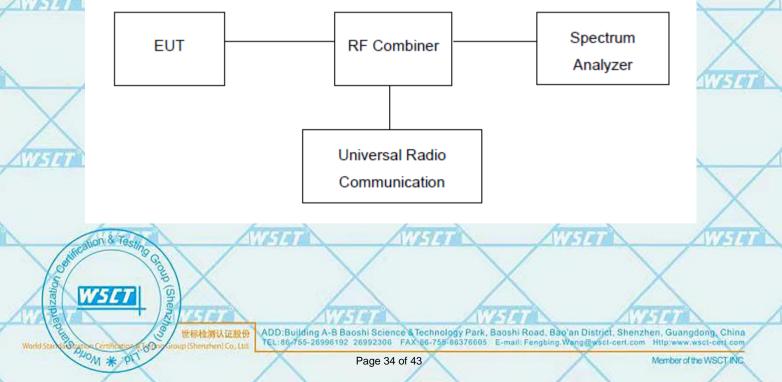
ilac-MRA

j) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Occupied bandwidth – power bandwidth (99%) measurement procedure The following procedure shall be used for measuring (99%) power bandwidth a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.


d) NOTE—Steps a) through c) may require iteration to adjust within the specified tolerances.e) Set the detection mode to peak, and the trace mode to max hold.

f) Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.

g) If the instrument does not have a 99 % power bandwidth function, the trace data points are to be recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequence between these two frequencies.

h) The OBW shall be reported by providing plot(s) of the measuring instrument display. The frequency and amplitude axes and scale shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test setup:

ACCREDITED Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

850(GSM/GPRS/EGPRS):

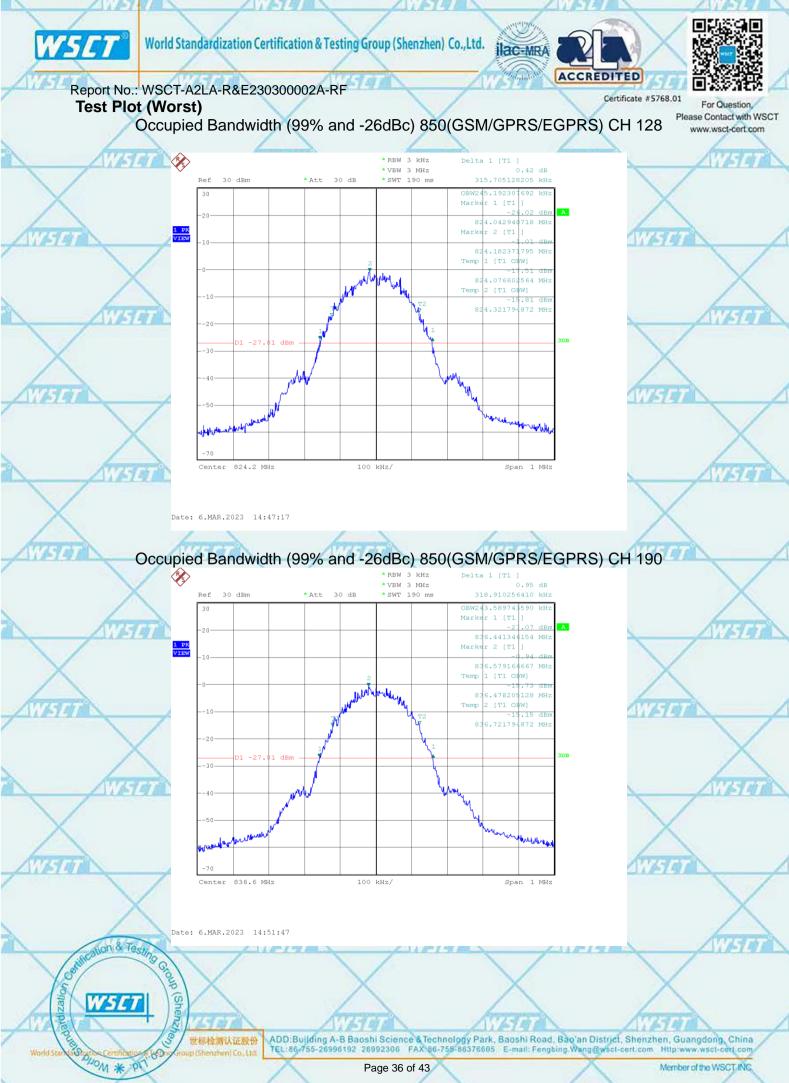
Measurement Result(Worst)

Report No.: WSCT-A2LA-R&E230300002A-RF

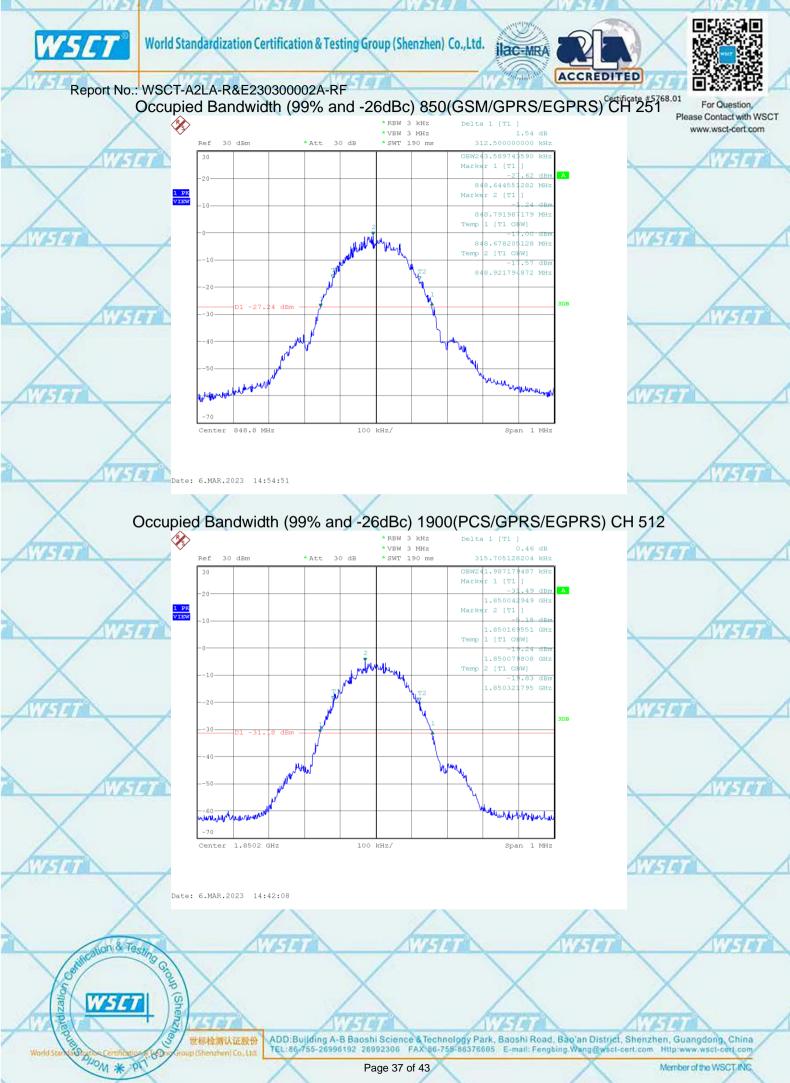
				0
	Frequency	OBW(99%)	26dB BW	A\\A
	824.2	245.192KHz	315.705KHz	
/	836.6	243.590KHz	318.910KHz	
	848.8	243.590KHz	312.500KHz	
/				

1900(PCS /GPRS/EGPRS):

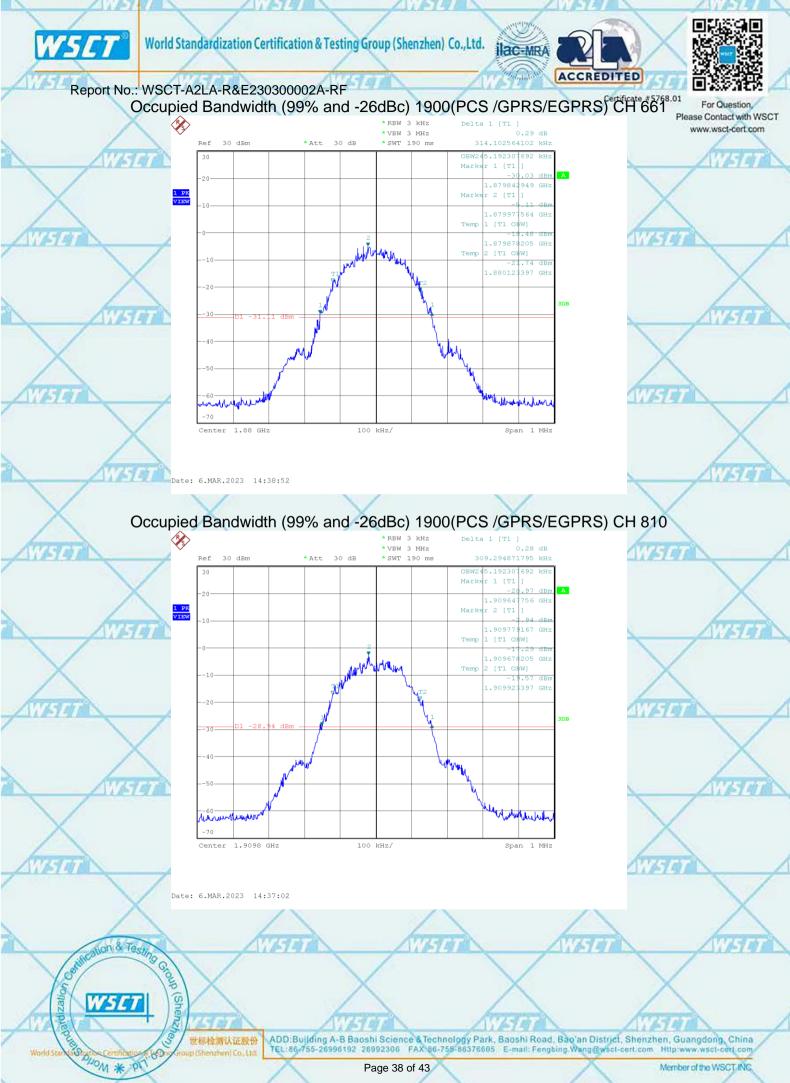
	Frequency	OBW(99%)	26dB BW	
	1850.2	241.987KHz	315.705KHz	
	1880	245.192KHz	314.103KHz	X
AT A	1909.8	245.192KHz	309.295KHz	WEITER



Contration & Test Group (Shenzh WSET BUOM * PT


.60

rdizatio


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com 世标检测认证股份

Page 36 of 43

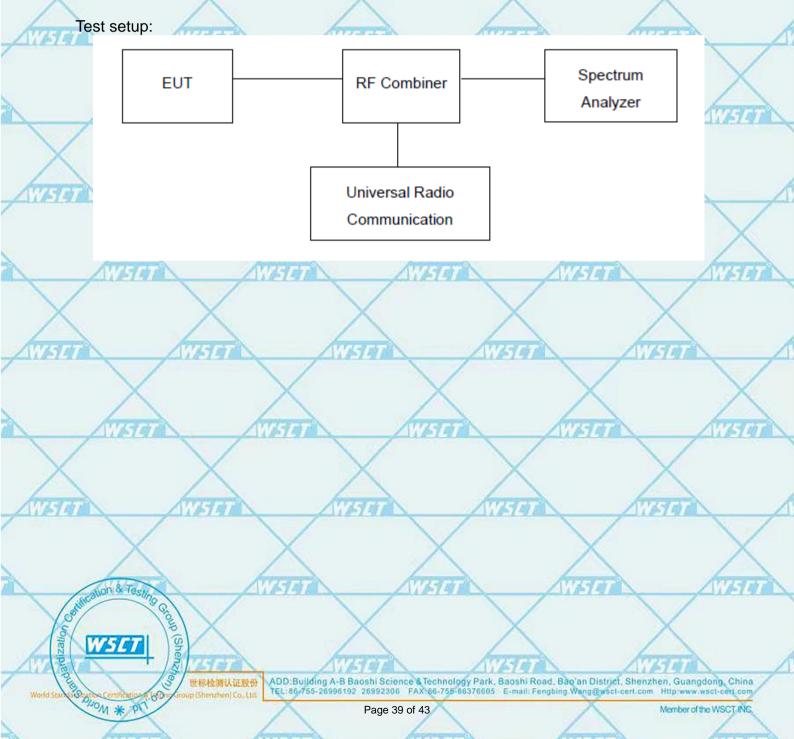
Page 37 of 43

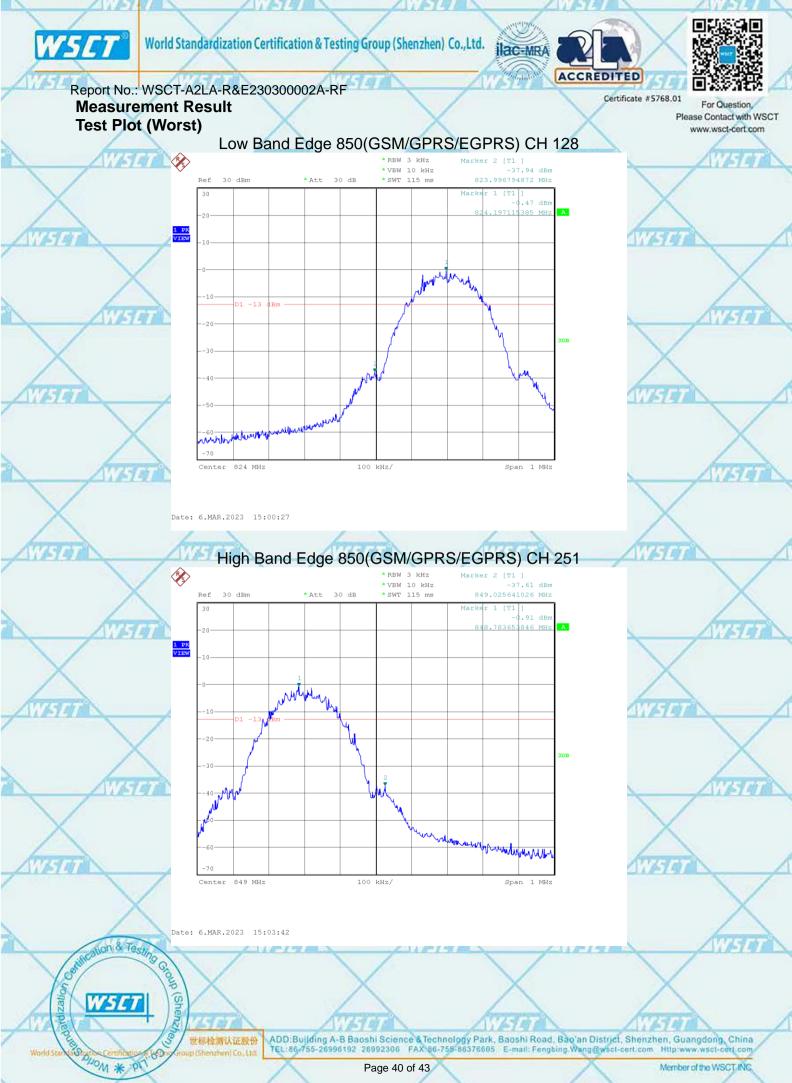
Page 38 of 43

For Question, Please Contact with WSCT

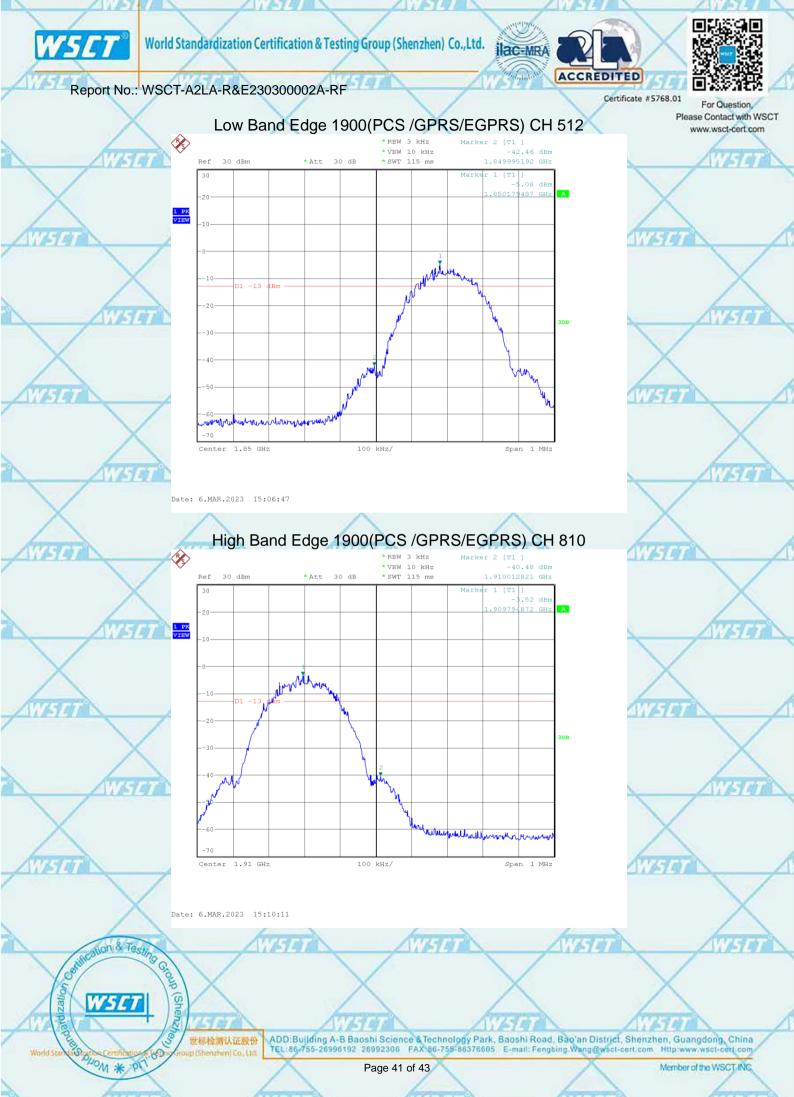
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF


9. BAND EDGE


Test Limit:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly load ed with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is op erated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified. See section 4.


Test procedure:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Page 40 of 43

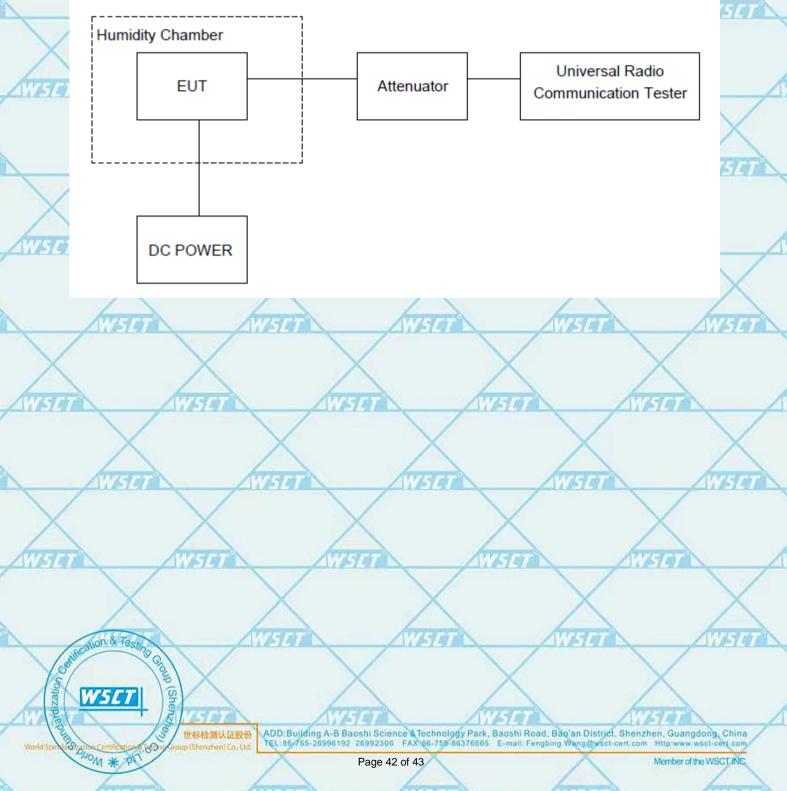
ilac-MRA

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF

10. FREQUENCY STABILITY


Test limit:

The frequency stability of the transmitter shall be measured while varying the ambient temperatures and supply voltages over the ranges specified in §2.1055. The specific frequency stability limits are provided in the relevant rules section(s). see section 4.

Test procedure:

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

Test setup:

0.018

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E230300002A-RF 10.1. Measurement Result (Worst)

4.35

on & Tea

W5E7

MOM * PI

up (Sher

Cer

Frequency Error against Voltage for GSM 850 (836.4MHz)						
oltage(V)	Frequency error(Hz)	Frequency error(ppm)				
3.45	35	0.019				
3.8 5 7	29					

Frequency Error against Temperature for GSM 850 (836.4MHz)

33

Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	39	0.021
0	37	0.020
10	40	0.022
20	30	0.016
30	39	0.021
40	34	0.018
50	32	0.017

Frequency Error against Voltage for PCS 1900 band (1880MHz)

Voltage(V)	Frequency error(Hz)	Frequency error(ppm)
3.45	37	0.044
3.8	28	0.034
4.35	37	0.044

Frequency Error against Temperature for PCS 1900 band (1880MHz)

Temperature(°C)	Frequency error(Hz)	Frequency error(ppm)
-10	34	0.041
0	30	0.036
10	36	0.044
20	40	0.048
30	32	0.038
40	28	0.034
50 50	40 40	0.048

Note: Please refer to Annex Acer One 8 T9-422L (E-UTRA Ban5/Band41) for more test data

---END OF REPORT---

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China a(Shenzhen) Co. Ita