

TE	EST REPORT				
Report Reference No:	TRE17080050 R/C: 83273				
FCC ID:	2AMXI-WT-1002				
Applicant's name:	Ningbo Zhonghai Electrical Appliance Co.,Ltd				
Address	Jishan Industrial District, Xidian Town, Ninghai, Ningbo, 315613 China				
Manufacturer	Ningbo Zhonghai Electrical Appliance Co.,Ltd				
Address	Jishan Industrial District, Xidian Town, Ninghai, Ningbo, 315613 China				
Test item description:	Walkie Talkies				
Trade Mark					
Model/Type reference	WT-1002				
Listed Model(s):	_				
Standard :	FCC 47 CFR Part2.1093 ANSI/IEEE C95.1: 1999				
	IEEE 1528: 2013				
Date of receipt of test sample:	Aug. 09, 2017				
Date of testing	Aug. 16, 2017 - Aug. 17, 2017				
Date of issue	Aug. 22, 2017				
Result:	PASS				
Compiled by (position+printed name+signature):	File administrators: Candy Liu				
Supervised by (position+printed name+signature):	Test Engineer: Siyuan Rao Manager: Hans Hu Hams Hu				
Approved by					
(position+printed name+signature):	Manager: Hans Hu Hows FM				
Testing Laboratory Name: :	Shenzhen Huatongwei International Inspection Co., Ltd				
Address	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China				

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	Test Standards and Report version	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	Summary	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	Test frequency list	5
<u>3.</u>	Test Environment	6
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurements System Configuration	10
6.1.	SAR Measurement Set-up	10
6.2.	DASY5 E-field Probe System	11
6.3.	Phantoms	12
6.4.	Device Holder	12
<u>7.</u>	SAR Test Procedure	13
7.1.	Scanning Procedure	13
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Front-of-face	16
8.2.	Body Position	16
<u>9.</u>	SAR System Validation	17
<u>10.</u>	System Verification	18
10.1.	Tissue Dielectric Parameters	18
10.2.	SAR System Verification	20
<u>11.</u>	SAR Exposure Limits	24
<u>12.</u>	Conducted Power Measurement Results	25
<u>13.</u>	Maximum Tune-up Limit	26
<u>14.</u>	SAR Measurement Results	27
<u>15.</u>	TestSetup Photos	30
<u>16.</u>	Photos of the EUT	30

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

IEEE Std C95.1, 1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

<u>IEEE Std 1528™-2013</u>: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB 865664 D02 RF Exposure Reporting v01r02:</u> RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D01:General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 643646 D01:SAR Test for PTT Radios v01r03 :SAR Test Reduction Considerations for Occupational PTT Radios

1.2. Report version

Version No.	Date of issue	Description
00	Aug. 22, 2017	Original

2. <u>Summary</u>

2.1. Client Information

Applicant:	Ningbo Zhonghai Electrical Appliance Co.,Ltd
Address:	Jishan Industrial District, Xidian Town, Ninghai, Ningbo, 315613 China
Manufacturer:	Ningbo Zhonghai Electrical Appliance Co.,Ltd
Address:	Jishan Industrial District, Xidian Town, Ninghai, Ningbo, 315613 China

2.2. Product Description

Name of EUT:	Walkie Talkies					
Trade mark:	-					
Model/Type reference:	WT-1002					
Listed mode(s):	-					
Device Category:	Portable					
RF Exposure Environment:	General Pop	ulation / Unco	ontrolled			
Power supply:	6.0V from Int	ternal battery				
Maximum SAR Value						
Separation Distance:	Body:	Body: 0mm				
	Face: 25mm					
Maximun SAR Value (1g):	Body: 0.799W/Kg					
	Face: 0.390W/Kg					
PMR						
Operation Frequency Range:	GMRS/FRS:		462.5625MHz~462.7125MHz			
	FRS:		467.5625MHz~467.7125MHz			
	GMRS:		462.5500MHz~462.7250MHz			
Rated Output Power:	GMRS/FRS:		0.5W(27dBm)			
	FRS:		0.5W(27dBm)			
	GMRS:		0.5W(27dBm)			
Modulation Type:	FM					
Channel Separation:	25kHz	25kHz				

2.3. Test frequency list

When the frequency channels required for SAR testing are not specified in the published RF exposure KDB procedures, the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode:

$$N_{\rm c} = 2 * \text{roundup} [10^* (f_{\rm high} - f_{\rm low})/f_{\rm c}] + 1$$

fc: is the centre frequency of the band in hertz; fhigh: is the highest frequency in the band in hertz; flow: is the lowest frequency in the band in hertz; Nc: is the number of channels;

f: is the width of the transmit frequency band in hertz.

ModulationType	Operation Freuqency range	Test Channel	Test Frequency (MHz)
GMRS/FRS:	462.5625MHz~462.7125MHz	CH4	462.6375
GMRS:	462.5500MHz~462.7250MHz	CH19	462.6500
FRS:	467.5625MHz~467.7125MHz	CH11	467.6375

3. Test Environment

3.1. Address of the test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered byCertification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

4. Equipments Used during the Test

				Calib	ration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2017/07/26	1
E-field Probe	SPEAG	ES3DV3	3292	2016/09/02	1
System Validation Dipole D450V3	SPEAG	D450V3	1079	2016/02/28	3
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2016/10/25	1
Power sensor	Agilent	8481H	MY41095360	2016/10/25	1
Power sensor	Agilent	E9327A	US40441621	2016/10/25	1
Network analyzer	Agilent	8753E	US37390562	2016/10/24	1
Signal Generator	ROHDE & SCHWARZ	SMBV100A	258525	2016/10/22	1
Power Divider	ARRA	A3200-2	N/A	N/A	N/A
Dual Directional Coupler	Agilent	778D	50783	No	ote
Attenuator 1	PE	PE7005-10	N/A	No	ote
Attenuator 2	PE	PE7005-10	N/A	Note	
Attenuator 3	PE	PE7005-3	N/A	No	ote
Power Amplifier	AR	5S1G4M2	0328798	No	ote

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix A.

5. Measurement Uncertainty

						((_
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme										
1	Probe calibration	В	6.0%	Ν	1	1	1	6.0%	6.0%	00
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	ø
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	œ
5	Probe Linearity	В	4.70%	R	√3	1	1	2.70%	2.70%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	œ
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	œ
8	RF ambient conditions- reflection	В	0.00%	R	√3	1	1	0.00%	0.00%	œ
9	Response time	В	0.80%	R	√3	1	1	0.50%	0.50%	ø
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	×
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	œ
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	œ
Test Sampl	e Related		•	•	•	•	•	•	•	•
15	Test sample positioning	А	1.86%	Ν	1	1	1	1.86%	1.86%	~
16	Device holder uncertainty	А	1.70%	Ν	1	1	1	1.70%	1.70%	~
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
Phantom ar	nd Set-up	•			ı	ı	ı			
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	œ
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	~
20	Liquid conductivity (meas.)	A	0.50%	Ν	1	0.64	0.43	0.32%	0.26%	œ
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	~
22	Liquid cpermittivity (meas.)	A	0.16%	Ν	1	0.64	0.43	0.10%	0.07%	~

Report No: TRE17080050

Page: 9 of 30

Issued: 2017-08-22

Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$	/	/	/	/	9.79%	9.67%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$	R	K=2	/	/	19.57%	19.34%	8

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

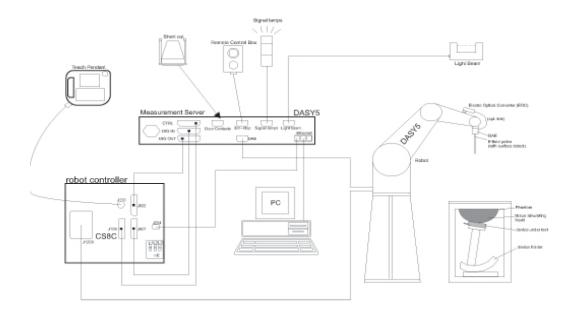
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

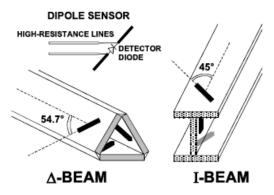
6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

• Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x5 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x5 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity: Conversion factor:	Normi, ai0, ai1, ai2 ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

	J
Vi:	compensated signal of channel ($i = x, y, z$)
Normi:	sensor sensitivity of channel ($i = x, y, z$),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

Report No: TRE17080050

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

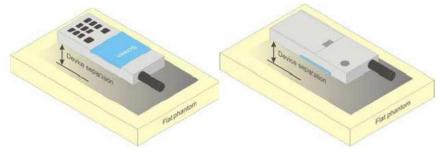
Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m]


ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. <u>Position of the wireless device in relation to the phantom</u>


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

9. SAR System Validation

Per FCC KDB 865664 D02,SAR system validadion status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	Probe		robe	Dielectric P	arameters	C	CW Validation	ſ	Modula	tion Validatio	n	
	Probe	type	Calibration		Conductivity	Permittivity	Sensitivity	Probe linearity	Probe Isotropy	Moduation type	Duty factor	PAR
ĺ	3292	ES3DV3	450	Head	0.89	43.64	PASS	PASS	PASS	4FSK/FM	PASS	N/A
	3292	ES3DV3	450	Body	0.95	56.50	PASS	PASS	PASS	4FSK/FM	PASS	N/A

SAR System	Validation	Summary
------------	------------	---------

NOTE:

While the probes have been calibrated for both CW and modulated signals,all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01 for scenarios when CW probe calibrations are used with other signal types.

10. System Verification

10.1. Tissue Dielectric Parameters

The liquid used for the frequency consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664 D01.

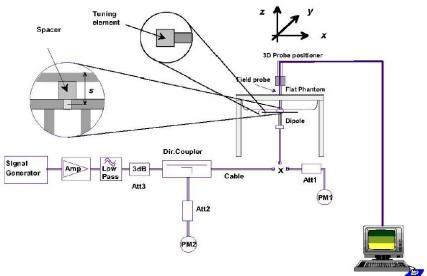
Table 1. Composition of the Tissue Equivalent Matter						
Tissue dielectric parameters for head and body phantoms						
Target Frequency	He	ead	E	Body		
(MHz)	٤r	σ(s/m)	٤r	σ(s/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800-2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5800	35.3	5.27	48.2	6.00		

Table 2. Targets for tissue simulating liquid

Frequency	Head 7	Head Tissue		Tissue
(MHz)	٦3	O' (S/m)	٦3	O' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

CheckResult:

	Dielectric performance of Head tissue simulating liquid					
Frequency	Description	DielectricPa	Temp			
(MHz)	Description	٤٢	σ(s/m)	°C		
450	Recommended result ±5% window	43.50 41.32 - 45.67	0.87 0.83–0.91	/		
	Measurement value 2017-08-16	43.64	0.89	21		


Dielectric performance of Body tissue simulating liquid					
Frequency	Description	DielectricPa	arameters	Temp	
(MHz)	Description	٤r	σ(s/m)	°C	
450	Recommended result ±5% window	56.7 53.87 - 59.53	0.94 0.89–0.98	/	
	Measurement value 2017-08-17	56.50	0.95	21	

10.2. SAR System Verification

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 26 dBm (398mW) before dipole is connected.

Photo of Dipole Setup

Check Result:

	System Validation Result for Head				
Frequency	Description	SAR(Temp		
(MHz) Description		1g	10g	°C	
450	Recommended result ±10% window	1.81 1.63 – 1.99	1.21 1.09 - 1.33	/	
450	Measurement value 2017-08-16	1.78	1.17	21	

	System Validation Result for Body					
Frequency	Description	SAR(Temp			
(MHz) Description		1g	10g	°C		
450	Recommended result ±10% window	1.74 1.57 – 1.91	1.16 1.04 - 1.27	/		
	Measurement value 2017-08-17	1.69	1.12	21		

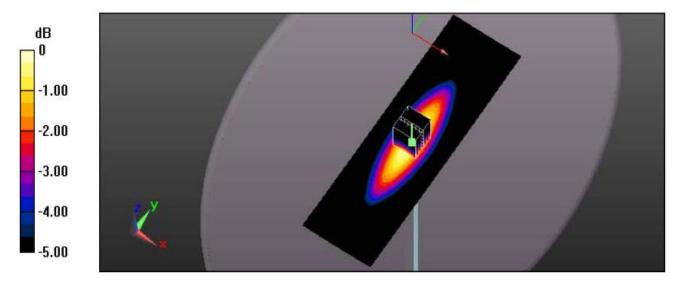
Note:

- the graph results see follow.
 Recommended Values used derive from the calibration certificate and 398mW is used asfeeding power to the calibrated dipole.

System Performance Check at 450 MHz Head

DUT: Dipole 450 MHz; Type: D450V3; Serial: 4d134

Date:2017-08-16 Communication System: CW; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 450 MHz; σ = 0.89 S/m; ϵ_r = 43.64; ρ = 1000 kg/m³


Phantom section: Flat Section

DASY5 Configuration: Probe: ES3DV3 - SN3292; ConvF(7.12, 7.12, 7.12); Calibrated: 02/09/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017 Phantom: ELI v4.0; Type: QDOVA001BB;

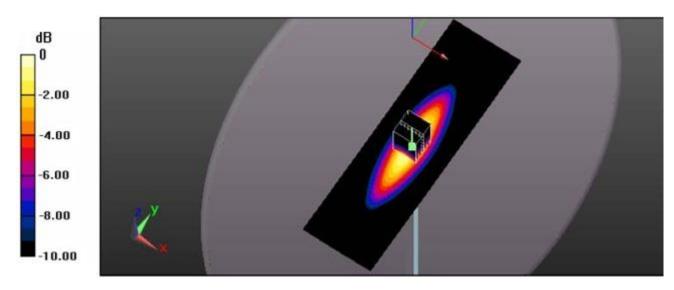
Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469) **Area Scan (61x171x1):**Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.58 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.994 V/m; Power Drift = 0.082 dB Peak SAR (extrapolated) = 3.542 W/kg

SAR(1 g) = 1.78 mW/gSAR(10 g) = 1.17 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

System Performance Check 450MHz 398mW

System Performance Check at 450 MHz Body


DUT: Dipole 450 MHz; Type: D450V3; Serial: 4d134

Date:2017-08-17 Communication System: CW; Frequency: 450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 450 MHz; σ = 0.95 S/m; ϵ_r = 56.50; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration: Probe: ES3DV3 - SN3292; ConvF(7.33, 7.33, 7.33); Calibrated: 02/09/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469) **Area Scan (61x171x1):**Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.15 mW/g **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.528 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.262 W/kg

SAR(1 g) = 1.69 mW/gSAR(10 g) = 1.12 mW/g

Maximum value of SAR (measured) = 3.24 mW/g

System Performance Check 450MHz Body 398mW

11. SAR Exposure Limits

	Limit (W/kg)			
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment		
Spatial Average SAR (whole body)	0.08	0.4		
Spatial Peak SAR (1g cube tissue for head and trunk)	1.60	8.0		
Spatial Peak SAR (10g for limb)	4.0	20.0		

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

12. Conducted Power Measurement Results

Mode	Channel	Frequency (MHz)	Conducted power (dBm)
GMRS/FRS:	CH4	462.6375	25.07
GMRS:	CH19	462.6500	24.85
FRS:	CH11	467.6375	24.94

13. Maximum Tune-up Limit

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01

Mode	Operation Frequency Range	Tune up power
GMRS/FRS:	462.5625MHz~462.7125MHz	25.50dBm
GMRS:	462.5500MHz~462.7250MHz	25.50dBm
FRS:	467.5625MHz~467.7125MHz	25.50dBm

14. SAR Measurement Results

					Face					
Test	Fre	quency	Conducted	Tune-	Tune-up	Power	Measured	Report	SAR 50%	Test
Position	СН	MHz	Power (dBm)	up limit	Scaling factor	Drift (dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	duty (W/kg)	Plot
Enclosed of	CH4	462.6375	25.07	25.50	1.10	-0.07	0.658	0.726	0.363	-
Front of Face	CH19	462.6500	24.85	25.50	1.16	0.03	0.672	0.780	0.390	AF1
Tacc	CH11	467.6375	24.94	25.50	1.14	-0.11	0.664	0.755	0.378	-

	Body-worn											
Teet	Frequency		Conducted	Tune-	Tune-up	Power	Measured	Report	SAR 50%	Test		
Test Position	СН	MHz	Power (dBm)	up limit	Scaling factor	Drift (dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	duty (W/kg)	Test Plot		
	CH4	462.6375	25.07	25.5	1.10	0.08	1.367	1.509	0.755	-		
Rear	CH19	462.6500	24.85	25.5	1.16	-0.06	1.376	1.598	0.799	AB1		
	CH11	467.6375	24.94	25.5	1.14	0.15	1.355	1.541	0.771	-		

Note:

1. The value with blue color is the maximum SAR Value of each test band.

2. Batteries are fully charged at the beginning of the SAR measurements

3. The EUT was tested for face-held SAR with a 2.5cm separation distance between the front of the EUT and the outer surface of the planer phantom

4. Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

SAR Test Data Plots

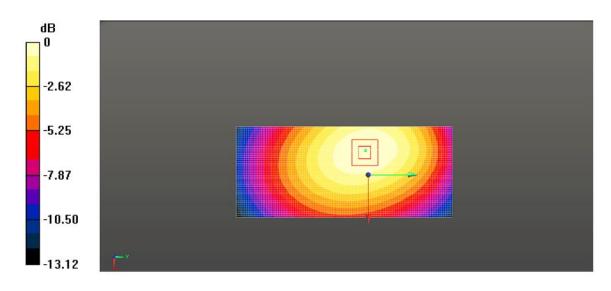
Report No:	TRE17080050	Page: 28 of 30	Issued: 2017-08-22	
Test Plot:	AF1	Test Position:	Front of Face	

Date:2017-08-16

Communication System: Customer System; Frequency: 462.6500MHz; Medium parameters used (interpolated): f = 462.6500MHz; $\sigma = 0.85$ S/m; $\epsilon r = 45.13$; $\rho = 1000$ kg/m3 Phantom section : Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(7.12, 7.12, 7.12); Calibrated: 02/09/2016;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 26/07/2017
Phantom: ELI v4.0; Type: QDOVA001BB


•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan(41x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.734 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =19.681 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.164 mW/g

SAR(1 g) = 0.672 mW/g; SAR(10 g) = 0.457 mW/g

Maximum value of SAR (measured) = 0.675 W/kg

Test Plot:	DB1	Test Position:	Body-worn

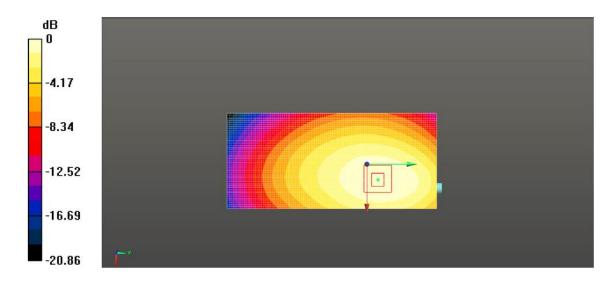
Date:2017-08-17

Communication System: Customer System; Frequency: 462.6500MHz; Medium parameters used (interpolated): f = 462.6500MHz; σ = 0.93 S/m; ϵ r = 57.87; ρ =1000 kg/m3 Phantom section : Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(7.33, 7.33, 7.33); Calibrated: 02/09/2016;
Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

• Phantom: ELI v4.0; Type: QDOVA001BB


•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan(41x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =1.401 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value =35.750 V/m; Power Drift = -0.06dB Peak SAR (extrapolated) = 9.893 mW/g

SAR(1 g) = 1.376 mW/g; SAR(10 g) =0.864 mW/g

Maximum value of SAR (measured) = 1.385 W/kg

15. TestSetup Photos

Liquid depth in the flat Phantom (450MHz) (15.3cm deep)

Face (25mm)

Rear Side (0mm)

16. Photos of the EUT

Please referce to the test report No.: TRE1708004901

-----End of Report------

1.1. Probe Calibration Certificate

Schmid & Partner Engineering AG Jeughausstrasse 43, 8004 Zuri	ry of ch, Switzerland	S S S S S S S S S S S S S S S S S S S	Schweizerischer Kalibrierdiens Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accredit the Swiss Accreditation Servic	e is one of the signatories t	to the EA	reditation No.: SCS 0108
Illent CIQ-SZ (Auder			ES3-3292_Sep16
CALIBRATION	CERTIFICATE		
ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:			
Object	ES3DV3 - SN:329	2	
Calibration procedure(s)		A CAL-12.v9, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.v6
Calibration date:	September 2, 2016	8	
		bability are given on the following pages and facility: environment temperature (22 ± 3)°C a	
	ucted in the closed laboratory		
All calibrations have been condu	ucted in the closed laboratory		
All calibrations have been condu Calibration Equipment used (M8	ucted in the closed laboratory	facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
All calibrations have been condu Calibration Equipment used (M8 Primary Standards	ucted in the closed laboratory ATE critical for calibration)	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Scheduled Calibration Apr-17 Apr-17
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291	ID SN: 104778 SN: 103244 SN: 103245	facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 08-Apr-16 (No. 217-02289)	Scheduled Calibration Apr-17 Apr-17 Apr-17
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	ID ID ID ID ID ID ID ID ID ID ID ID ID I	facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17
All calibrations have been conde Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013	Gal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 05-Apr-16 (No. 217-02293) 05-Apr-16 (No. 217-02293)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator	ID ID ID ID ID ID ID ID ID ID ID ID ID I	facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013	Gal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 05-Apr-16 (No. 217-02293) 05-Apr-16 (No. 217-02293)	Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17 Dec-16
All calibrations have been conde Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660	facility: environment temperature (22 ± 3)°C e Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. E53-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15)	Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID ID ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 660 ID	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. E53-3013_Dec15) 23-Dec-15 (No. DAE4-860_Dec15) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check.
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	ID ID ID ID ID ID ID ID ID ID ID ID ID I	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ID SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 52277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41499087	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02299) 03-Apr-16 (No. 217-02293) 31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. ES3-3013_Dec15) Check Date (in house) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been conde Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	LICED in the closed laboratory ID SN: 104778 SN: 104778 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02299) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. 217-02293) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Schaduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41499087 SN: 00110210 SN: US3642U01700	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02299) 03-Apr-16 (No. 217-02293) 31-Dec-15 (No. ES3-3013_Dec15) 23-Dec-15 (No. ES3-3013_Dec15) Check Date (in house) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been conde Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB	ID ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID SN: 6641293874 SN: MY41498087 SN: 000110210 SN: US37390585	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. DAE4-660_Dec15) 23-Dec-15 (No. DAE4-660_Dec15) Check Date (in house) 06-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-15)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been conde Calibration Equipment used (M8 Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB	LICE oritical for calibration) ID SN: 104778 SN: 103245 SN: 3013 SN: 560 ID SN: 660 ID SN: 6841293874 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. 217-02293) 05-Apr-16 (No. 217-02293) 06-Apr-16 (In house) 06-Apr-16 (In house) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 04-Aug-99 (In house check Jun-16) 18-Oct-01 (In house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Jun-18 Signature
All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	LICE oritical for calibration) ID SN: 104778 SN: 103245 SN: 3013 SN: 560 ID SN: 660 ID SN: 6841293874 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. 217-02293) 31-Dec-15 (No. 217-02293) 05-Apr-16 (No. 217-02293) 06-Apr-16 (In house) 06-Apr-16 (In house) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 06-Apr-16 (In house check Jun-16) 04-Aug-99 (In house check Jun-16) 18-Oct-01 (In house check Oct-15) Function	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Jun-18

Certificate No: ES3-3292_Sep16

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMX.y.z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization @	o rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., b = 0 is normal to probe axis

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques", June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

information used in DASY system to align probe sensor X to the robot coordinate system

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3292_Sep16

Page 2 of 11

ES3DV3 - SN:3292

September 2, 2016

Probe ES3DV3

SN:3292

Manufactured: Repaired: Calibrated: July 6, 2010 August 29, 2016 September 2, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ES3-3292_Sep16

Page 3 of 11

ES3DV3- SN:3292

September 2, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.94	0.95	0.93	± 10.1 %
DCP (mV) ^B	105.7	101.2	111.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	205.6	±3.5 %
		Y	0.0	0.0	1.0		212.6	
		Z	0.0	0.0	1.0		204.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E⁵-field uncertainty inside TSL (see Pages 5 and 6).
 ^a Numerical linearization parameter: uncertainty not required.
 ^c Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ES3-3292_Sep16

Page 4 of 11

ES3DV3- SN:3292

```
September 2, 2016
```

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	7.12	7.12	7.12	0.20	1.30	± 13.3 %
750	41.9	0.89	6.76	6.76	6.76	0.80	1.19	± 12.0 %
835	41.5	0.90	6.53	6.53	6.53	0.43	1.64	± 12.0 %
900	41.5	0.97	6.40	6.40	6.40	0.53	1.43	± 12.0 %
1750	40.1	1.37	5.54	5.54	5.54	0.80	1.15	± 12,0 %
1900	40.0	1.40	5.26	5.26	5.26	0.55	1.47	± 12.0 %
2450	39.2	1.80	4.97	4.97	4.97	0.64	1.41	± 12.0 %
2600	39.0	1.96	4.77	4.77	4.77	0.80	1.28	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

validity can be extended to \pm 110 MHz. ^{II} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^{II} Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

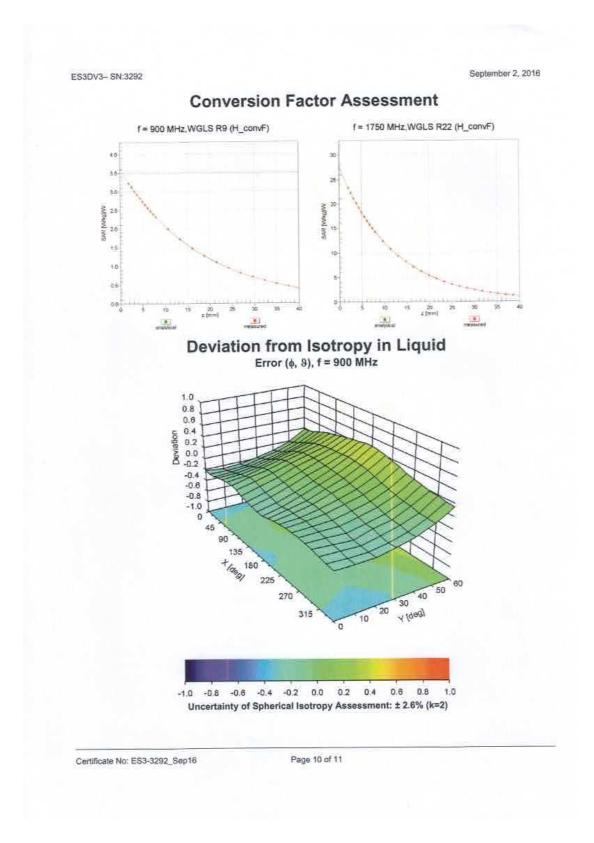
Certificate No: ES3-3292_Sep16

Page 5 of 11

ES3DV3- SN:3292

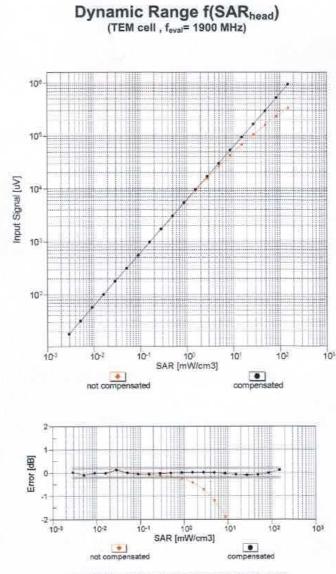
September 2, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292


f (MHz) ^c	Relative Permittivity ^r	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	7.33	7.33	7.33	0,13	1.50	± 13.3 %
750	55.5	0,96	6.25	6.25	6.25	0.38	1.66	± 12.0 %
835	55.2	0.97	6.27	6.27	6.27	0.47	1.56	± 12.0 %
900	55.0	1.05	6.16	6.16	6.16	0.80	1.15	± 12.0 %
1750	53.4	1.49	5.28	5.28	5.28	0.70	1.36	± 12.0 %
1900	53.3	1.52	5.05	5.05	5.05	0.64	1.44	± 12.0 %
2450	52.7	1.95	4.70	4.70	4.70	0.74	1.22	± 12.0 %
2600	52.5	2.16	4.52	4.52	4.52	0.80	1.13	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

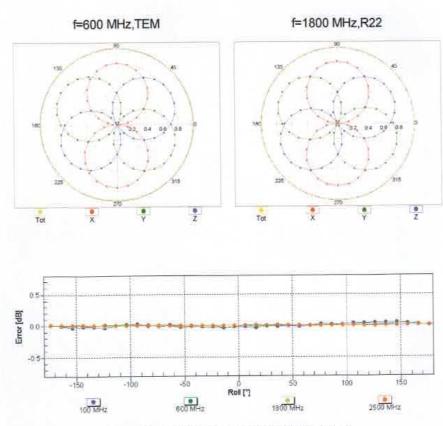
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity or be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to the ConvF uncertainty for indicated target fissue parameters. ^G AlphaTOPeth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: ES3-3292_Sep16

Page 6 of 11

ES3DV3-SN:3292

September 2, 2016

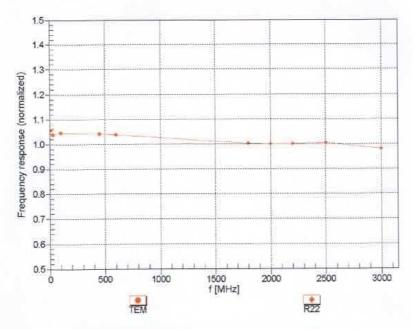

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3292_Sep16

Page 9 of 11

ES3DV3- SN:3292

September 2, 2016


Certificate No: ES3-3292_Sep16.

Page 8 of 11

ES3DV3- SN:3292

September 2, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3292_Sep16

Page 7 of 11

ES3DV3- SN:3292

September 2, 2016

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3292

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	36.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Certificate No: ES3-3292_Sep16

Page 11 of 11

1.2. D450V3 Dipole Calibration Certificate

Schmid & Partner Engineering AG	y of		Schweizerischer Kalibrierdien Service suisse d'étalonnage Servizio svizzero di taratura
Leughausstrasse 43, 8004 Zurich	h, Switzerland	The Addute I'MARATE S	Swiss Calibration Service
		Accreditation	No.: SCS 108
Accredited by the Swiss Accredita	e is one of the signatories	to the EA	
Multilateral Agreement for the re	ecognition of calibration		: D450V3-1079 Feb16
Client CIQ SZ (Auden)	Certificate No	: D450V3-1079_Feb10
CALIBRATION C	ERTIFICATE		
Object	D450V3 - SN: 10	79	
Calibration procedure(s)	QA CAL-15.v6		-
	Calibration proces	dure for dipole validation kits belo	ow 700 MHz
Calibration date:	February 28, 201	6	
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical un obability are given on the following pages ar y facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
The measurements and the unce	rtainties with confidence plotted in the closed laborator	obability are given on the following pages ar	id are part of the certificate. C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	rtainties with confidence protected in the closed laborator TE critical for calibration)	obability are given on the following pages an y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B	rtainties with confidence protected in the closed laborator TE critical for calibration)	obability are given on the following pages an y facility: environment temperature (22 ± 3) ^{or} Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087	obability are given on the following pages are y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B	rtainties with confidence protected in the closed laborator TE critical for calibration)	obability are given on the following pages an y facility: environment temperature (22 ± 3) ^{or} Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	obability are given on the following pages are y facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 30-Dec-15 (No. ET3-1507_Dec11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Dec-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power sensor E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Type-N mismatch combination	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 5047.3 / 06327	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: 55066 (20b) SN: 5507	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 30-Dec-15 (No. ET3-1507_Dec11)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Dec-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 5507 SN: 1507 SN: 654	Obability are given on the following pages are y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01168) 30-Dec-15 (No. ET3-1507_Dec11) 03-May-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5066 (20b) SN: 55066 (20b) SN: 5507 SN: 654 ID # MY41092317 100005	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01168) 30-Dec-15 (No. 217-01168) 30-Dec-15 (No. ET3-1507_Dec11) 03-May-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15) 04-Aug-99 (in house check Oct-15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: 55086 (20b) SN: 5047.3 / 06327 SN: 654 ID # MY41092317	Obability are given on the following pages are y facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01168) 30-Dec-15 (No. ET3-1507_Dec11) 03-May-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 5504 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01168) 30-Dec-15 (No. 217-01168) 30-Dec-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-15) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55056 (2cb) SN: 55056 (2cb) SN: 55056 (2cb) SN: 5507 SN: 654 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 30-Dec-15 (No. 217-01168) 30-Dec-15 (No. E13-1507_Dec11) 03-May-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&' Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence protected in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55054 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 55045 (3c) SN: 5504 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01369) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01168) 30-Dec-15 (No. 217-01168) 30-Dec-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-15) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 Scheduled Check In house check: Oct-16 In house check: Oct-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	rtainties with confidence pro- cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5066 (20b) SN: 6047.3 / 06327 SN: 654 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	Cal Date (Certificate No.) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 31-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01372) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01367) 29-Mar-15 (No. 217-01368) 30-Dec-15 (No. ET3-1507_Dec11) 03-May-15 (No. DAE4-654_May11) Check Date (in house) 18-Oct-02 (in house check Oct-15) 04-Aug-99 (in house check Oct-15) 18-Oct-01 (in house check Oct-15)	d are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Apr-16 Apr-16 Apr-16 Apr-16 Dec-16 May-16 <u>Scheduled Check</u> In house check: Oct-16 In house check: Oct-16 In house check: Oct-16

Engin	& Partne		ilac-mRA	SWISS CP Z RIBRATO	s C s	Schweizerischer Kalibrierdiens Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
The Swiss	Accreditation	Accreditation Service (SAS) n Service is one of the sign for the recognition of calibr	atories to the EA ration certificates		Ac	creditation No.: SCS 108
Glossa						
TSL		tissue simulating sensitivity in TSI	/ NORM x v z			
ConvF N/A		not applicable of	r not measured			
F	ebruary 2	ed in close proximit 2005				
"I E P S Additio	Evaluating lectroma Portable D Suppleme nal Docu	g Compliance with I gnetic Fields; Additi bevices with FCC Li nt C (Edition 01-01) mentation:	FCC Guidelines ional Information mits for Human B	or Human Exp for Evaluating	Com	chnology (FCC OET), e to Radiofrequency pliance of Mobile and equency Emissions",
Addition d) D Method	Evaluating Electroma Portable D Suppleme nal Docu DASY4/5 Is Applie Measurem	g Compliance with I gnetic Fields; Additi Devices with FCC Li nt C (Edition 01-01) Imentation: System Handbook d and Interpretation ment Conditions: Ful	FCC Guidelines f ional Information mits for Human B to Bulletin 65 on of Parameter ther details are a	for Human Exp for Evaluating Exposure to Ra 5: available from	the Va	e to Radiofrequency pliance of Mobile and
Addition d) D Method • A • A	Evaluating Electroma Portable D Suppleme DASY4/5 S S Applie Measurem of the cert Antenna F point exact	g Compliance with I gnetic Fields; Additi bevices with FCC Li nt C (Edition 01-01) mentation: System Handbook d and Interpretation ment Conditions: Fun ificate. All figures st Parameters with TS	FCC Guidelines f ional Information mits for Human B to Bulletin 65 on of Parameter ther details are a tated in the certif L: The dipole is r	or Human Exp for Evaluating Exposure to Ra s: available from icate are valid nounted with th	the Va at the	e to Radiofrequency pliance of Mobile and equency Emissions", alidation Report at the e
Addition d) D Method • A • A • A • A • A • A • A • A • A • A	Evaluating Electroma Portable D Suppleme nal Docu DASY4/5 Is Applie Measurem of the cert Antenna F point exact Darallel to Feed Point positioned measurem	g Compliance with I gnetic Fields; Additi bevices with FCC Li nt C (Edition 01-01) mentation: System Handbook d and Interpretatic <i>ment Conditions:</i> Fun- ificate. All figures st Parameters with TSI the body axis. In Impedance and Fi under the liquid fill ment at the SMA con	FCC Guidelines f ional Information mits for Human B to Bulletin 65 on of Parameters ther details are a tated in the certif L: The dipole is r r marking of the f Return Loss: These ed phantom. The nector to the fee	s: available from icate are valid nounted with the lat phantom se impedance si	the Va adiofre at the ne spa action are m tated	e to Radiofrequency pliance of Mobile and equency Emissions", alidation Report at the frequency indicated. acer to position its feed , with the arms oriented neasured with the dipole is transformed from the
Addition d) C Method • A • A • A • A • A • A • A • A • A • A	Evaluating Electroma Portable D Suppleme nal Docu DASY4/5 Is Applie <i>Measurem</i> of the cert <i>Antenna F</i> point exact barallel to <i>Feed Poir</i> positioned measurem reflected p <i>Electrical</i>	g Compliance with I gnetic Fields; Additi bevices with FCC Lint C (Edition 01-01) mentation: System Handbook d and Interpretation ment Conditions: Fundificate. All figures st Parameters with TSI catameters with TSI ty below the center the body axis. In Impedance and Fi under the liquid fill ment at the SMA corpower. No uncertain	FCC Guidelines f ional Information mits for Human B to Bulletin 65 on of Parameter of the details are a tated in the certif L: The dipole is r r marking of the f Return Loss: These ed phantom. The nector to the fea- nector to the fea- ty required.	s: available from icate are valid nounted with the lat phantom set impedance set appoint. The F	the Viat the viat the spirate	e to Radiofrequency pliance of Mobile and equency Emissions", alidation Report at the frequency indicated. acer to position its feed , with the arms oriented neasured with the dipole is transformed from the
Addition d) D Method • A • A • A • A • F • F • F • F	Evaluating Electroma Portable D Suppleme nal Docu DASY4/5 Is Applie <i>Measurem</i> of the cert <i>Antenna F</i> positioned measurem eflected p <i>Electrical</i> No uncert	g Compliance with I gnetic Fields; Additi bevices with FCC Li nt C (Edition 01-01) mentation: System Handbook d and Interpretation ment Conditions: Fun ificate. All figures st Parameters with TSJ etaly below the center the body axis. In Impedance and Fill under the liquid fill ment at the SMA con power. No uncertain Delay: One-way de	FCC Guidelines fional Information mits for Human B to Bulletin 65 on of Parameter of the details are a tated in the certif <i>L</i> : The dipole is r r marking of the f <i>Return Loss:</i> These ed phantom. The nector to the fee ty required. lay between the	or Human Exp for Evaluating Exposure to Ra available from icate are valid nounted with th lat phantom se e parameters e impedance s e d point. The F SMA connecto	the Vi adiofre the Vi at the he spa ection are m tated Return r and	a to Radiofrequency pliance of Mobile and equency Emissions", alidation Report at the of frequency indicated. acer to position its feed with the arms oriented heasured with the dipole is transformed from the Loss ensures low the antenna feed point
Addition d) D Method • A • A • A • A • A • A • A • A • A • A	Evaluating Electroma Portable D Suppleme nal Docu DASY4/5 Is Applie <i>Measurem</i> of the cert <i>Antenna F</i> point exact port exact positioned measurem reflected p <i>Electrical</i> No uncert <i>SAR mea</i>	g Compliance with I gnetic Fields; Additi bevices with FCC Li nt C (Edition 01-01) mentation: System Handbook d and Interpretation <i>hent Conditions:</i> Fun- ficate. All figures st Parameters with TSI thy below the center the body axis. In Impedance and Fi under the liquid fill hent at the SMA con bower. No uncertain Delay: One-way de ainty required. sured: SAR measur-	FCC Guidelines fional Information mits for Human B to Bulletin 65 on of Parameters ther details are a tated in the certif <i>L</i> : The dipole is r r marking of the f <i>Return Loss</i> : These ed phantom. The nector to the fee nector to the fee ty required. lay between the red at the stated	or Human Exp for Evaluating Exposure to Ra available from icate are valid nounted with the lat phantom se se parameters a impedance si ad point. The F SMA connector antenna input	the Via adiofra the Via the Via the via the space tion are m tated Return r and powe	a to Radiofrequency pliance of Mobile and equency Emissions", alidation Report at the of frequency indicated. acer to position its feed with the arms oriented heasured with the dipole is transformed from the Loss ensures low the antenna feed point

Measurement Conditions

ASY system configuration, as far as not DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

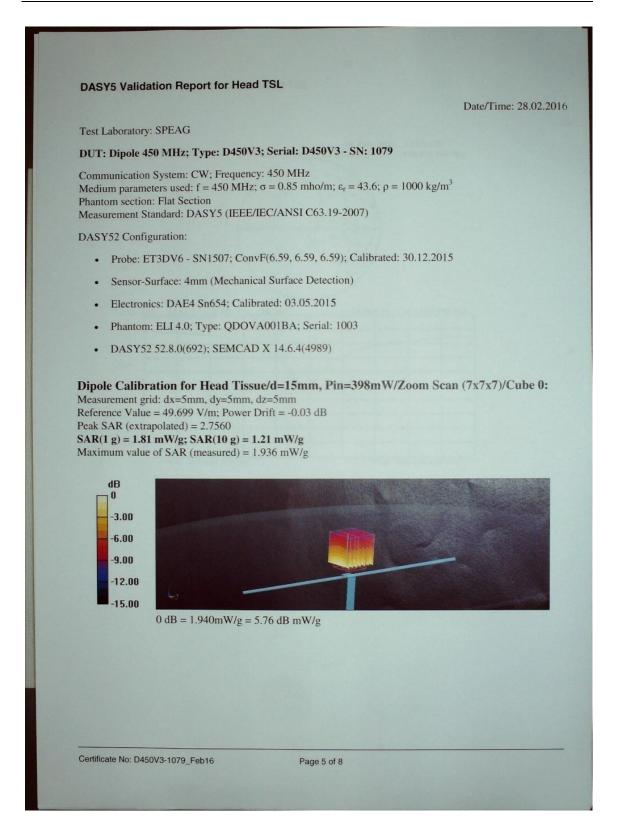
SAR result with Head TSL

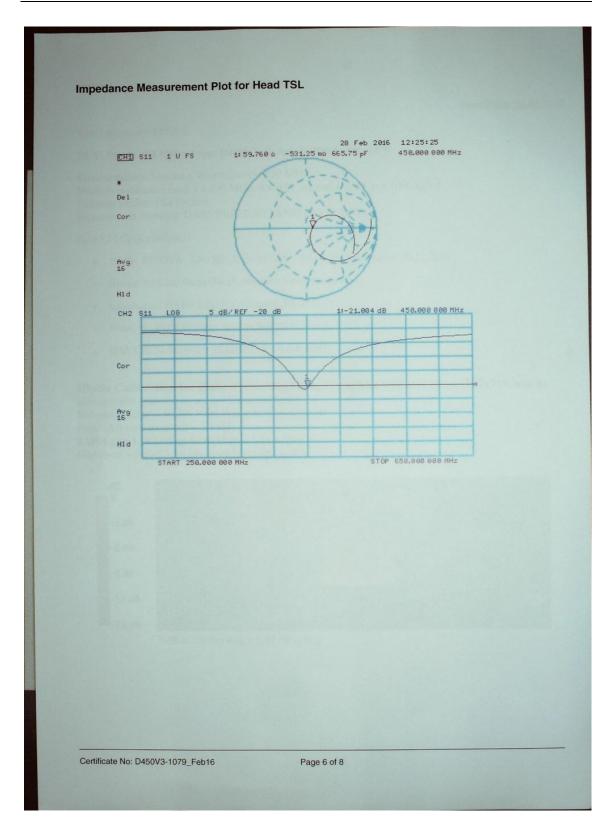
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	sale hard and the set of the ball
SAR measured	398 mW input power	1.81 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	4.63 mW /g ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 398 mW input power	1.21 mW / g

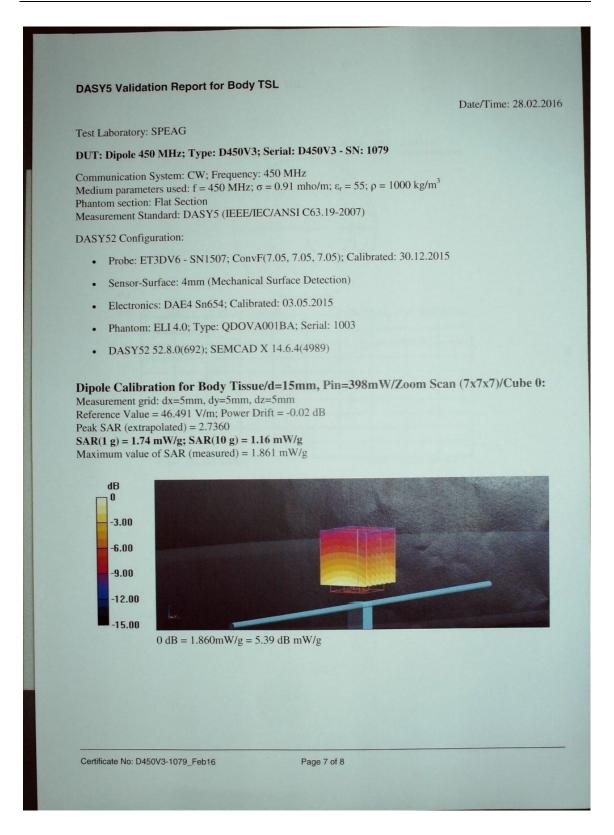
Body TSL parameters

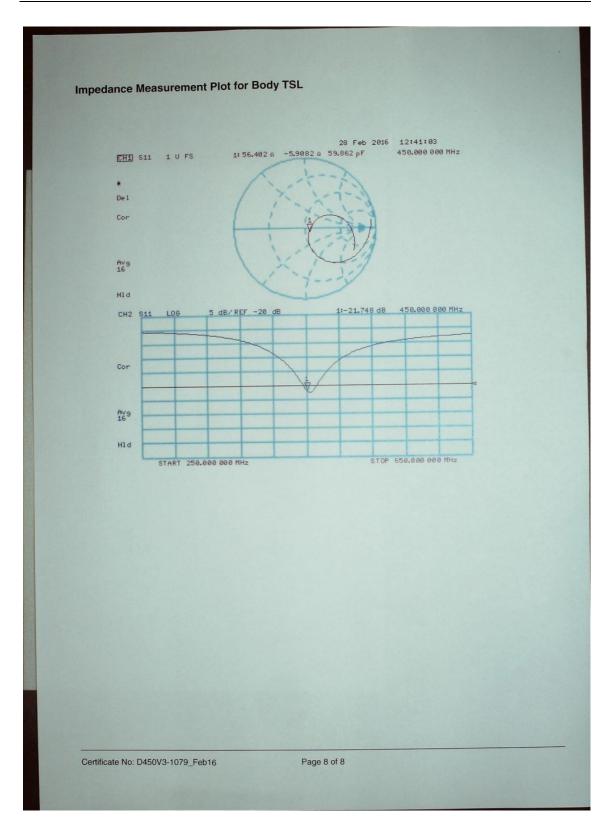
	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.91 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL


SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	398 mW input power	1.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	4.45 mW / g ± 18.1 % (k=2)


SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	398 mW input power	1.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	2.97 mW / g ± 17.6 % (k=2)


Certificate No: D450V3-1079_Feb16


Page 3 of 8

Impedance, transformed to feed point	59.8 Ω - 0.5 jΩ
Return Loss	- 21.0 dB
ntenna Parameters with Body TSL	
Impedance, transformed to feed point	56.4 Ω - 5.9 jΩ
Return Loss	- 21.7 dB
econd arm of the dipole. The antenna is therefore	I cable. The center conductor of the feeding line is directly connected to ore short-circuited for DC-signals. On some of the dipoles, small end ca
Measurement Conditions" paragraph. The SAR ecording to the Standard.	e matching when loaded according to the position as explained in the t data are not affected by this change. The overall dipole length is still e arms, because they might bend or the soldered connections near the
Measurement Conditions" paragraph. The SAR ecording to the Standard. b excessive force must be applied to the dipole edpoint may be damaged. dditional EUT Data	t data are not affected by this change. The overall dipole length is still e arms, because they might bend or the soldered connections near the
Measurement Conditions" paragraph. The SAR ecording to the Standard. o excessive force must be applied to the dipole edpoint may be damaged.	t data are not affected by this change. The overall dipole length is still
Measurement Conditions" paragraph. The SAR coording to the Standard. o excessive force must be applied to the dipole edpoint may be damaged. dditional EUT Data Manufactured by	t data are not affected by this change. The overall dipole length is still e arms, because they might bend or the soldered connections near the SPEAG

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

	Head						
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)	
2016-02-28	-21.0		59.8		0.5		
2017-02-27	-20.5	5.93	58.9	-0.9	0.8	0.3	

Body						
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)
2016-02-28	-21.7		56.4		5.9	
2017-02-27	-22.6	-9.84	55.7	-0.7	5.2	-0.7

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.

1.2. DAE4 Calibration Certificate

Client : CIQ	(Shenzhen)	//www.chinattl.cn Certificat	te No: Z17-97109		
CALIBRATION (CERTIFICAT	ΓE			
Object	DAE4	- SN: 1315			
Calibration Procedure(s)	Calibra	FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx)			
Calibration date:	Augus	August 15, 2017			
Calibration Equipment us		for calibration) al Date(Calibrated by, Certificate No.)) Scheduled Calib	ration	
humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753) Scheduled Calib June-18		
Calibration Equipment us Primary Standards	ID # Ca 1971018	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859)	June-18		
Calibration Equipment us Primary Standards	ID # Ca	al Date(Calibrated by, Certificate No.)			
Calibration Equipment us Primary Standards Process Calibrator 753	ID # Ca 1971018 Name	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function	June-18		
Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by:	ID # Ca 1971018 Name Yu Zongying	al Date(Calibrated by, Certificate No.) 27-Jun-17 (CTTL, No.J17X05859) Function SAR Test Engineer	June-18		

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97109

Page 2 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DC Voltage Measurement

 A/D - Converter Resolution nominal High Range:
 1LSB = 6.1 µV , full range = -100...+300 m³ Low Range:
 1LSB = 61nV , full range = -1.....+3mV

 DASY measurement parameters:
 Auto Zero Time: 3 sec; Measuring time: 3 sec

 -100...+300 mV

Calibration Factors	Х	Y	Z
High Range	405.175 ± 0.15% (k=2)	405.013 ± 0.15% (k=2)	404.971 ± 0.15% (k=2)
Low Range	3.99087 ± 0.7% (k=2)	3.98644 ± 0.7% (k=2)	3.98913 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	20.5° ± 1 °

Certificate No: Z17-97109

Page 3 of 3

-----End-----