🛕 TÜVRheinland®

Produkte Products

| Prüfbericht-Nr.:<br>Test Report No.:                                                                                                                                                                                                                                                                                                                                                                                                               | CN2218VL 001                                                                                              | Auftrags-Nr.:<br>Order No.:                                        | 158256203                                 | Seite 1 von 15<br>Page 1 of 15                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Kunden-Referenz-Nr.:<br>Client Reference No.:                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                                                                                                       | Auftragsdatum:<br>Order date:                                      | 26.05.2021                                |                                                      |
| Auftraggeber:<br>Client:                                                                                                                                                                                                                                                                                                                                                                                                                           | Arwin Technology Limited<br>Unit 541B, 5/F, Building 1W, 1 Science Park West Avenue, N.T.                 |                                                                    |                                           |                                                      |
| Prüfgegenstand:<br>Test item:                                                                                                                                                                                                                                                                                                                                                                                                                      | Indoor Air Quality Senso                                                                                  | or Device                                                          |                                           |                                                      |
| Bezeichnung / Typ-Nr.:<br>Identification / Type No.:                                                                                                                                                                                                                                                                                                                                                                                               | LRS10701                                                                                                  |                                                                    |                                           |                                                      |
| Auftrags-Inhalt:<br>Order content:                                                                                                                                                                                                                                                                                                                                                                                                                 | FCC Certification                                                                                         |                                                                    |                                           |                                                      |
| Prüfgrundlage:<br>Test specification:                                                                                                                                                                                                                                                                                                                                                                                                              | FCC Part 15 Subpart C,                                                                                    | ANSI C63.10-2013                                                   |                                           |                                                      |
| Wareneingangsdatum:<br>Date of receipt:                                                                                                                                                                                                                                                                                                                                                                                                            | 14.07.2022                                                                                                |                                                                    |                                           | 1                                                    |
| Prüfmuster-Nr.:<br>Test sample No.:                                                                                                                                                                                                                                                                                                                                                                                                                | A003300268 001~004                                                                                        |                                                                    |                                           |                                                      |
| Prüfzeitraum:<br>Testing period:                                                                                                                                                                                                                                                                                                                                                                                                                   | 04.08.2021 - 11.09.2022                                                                                   |                                                                    |                                           |                                                      |
| Ort der Prüfung:<br>Place of testing:                                                                                                                                                                                                                                                                                                                                                                                                              | Hong Kong                                                                                                 |                                                                    |                                           |                                                      |
| Prüflaboratorium:<br>Testing laboratory:                                                                                                                                                                                                                                                                                                                                                                                                           | TÜV Rheinland Hong<br>Kong Ltd.                                                                           |                                                                    |                                           |                                                      |
| Prüfergebnis*:<br>Test result*:                                                                                                                                                                                                                                                                                                                                                                                                                    | Pass                                                                                                      |                                                                    |                                           |                                                      |
| geprüft von / tested by:                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | kontrolliert von /                                                 | reviewed by:                              |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ø.                                                                                                        | <                                                                  |                                           | -                                                    |
| 10/12/2022 Eddy Tsa                                                                                                                                                                                                                                                                                                                                                                                                                                | ng / Engineer                                                                                             | 10/12/2022 Share                                                   | on Li / Senior Mana                       | ger                                                  |
| Datum Name / Stel                                                                                                                                                                                                                                                                                                                                                                                                                                  | lung Unterschrift                                                                                         | Datum Na                                                           | me / Stellung<br>me / Position            | Unterschrift<br>Signature                            |
| Sonstiges / Other: FC                                                                                                                                                                                                                                                                                                                                                                                                                              | C ID: 2AMWTLRS10701                                                                                       | 2010 110                                                           |                                           | c.griataro                                           |
| "Decision Rule" docume                                                                                                                                                                                                                                                                                                                                                                                                                             | nt announced in our websit                                                                                | e (https://www.tuv.coi                                             | n/landingpage/en/c                        | qm-gcn/)                                             |
| describes the statement                                                                                                                                                                                                                                                                                                                                                                                                                            | of conformity and its rule of                                                                             | f enforcement for test                                             | results are applica                       | ble throughout                                       |
| Zustand des Prüfgeger                                                                                                                                                                                                                                                                                                                                                                                                                              | etandes hei Anlieferung:                                                                                  | Prüfmuster vollstär                                                |                                           | diat                                                 |
| Condition of the test item                                                                                                                                                                                                                                                                                                                                                                                                                         | n at delivery:                                                                                            | Test item complete                                                 | and undamaged                             | aigt                                                 |
| * Legende: 1 = sehr gut                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 = gut 3 = befriedige                                                                                    | nd                                                                 | 4 = ausreichend                           | 5 = mangelhaft                                       |
| P(ass) = entspricht o<br>Legend: 1 = very good                                                                                                                                                                                                                                                                                                                                                                                                     | .g. Prüfgrundlage(n) F(ail) = entspr<br>2 = good 3 = satisfactor<br>test specification(s) F(ail) = failed | icht nicht o.g. Prüfgrundlage(n<br>y<br>a.m. test specification(s) | ) N/A = nicht anwendbar<br>4 = sufficient | N/T = nicht getestet<br>5 = poor<br>N/T = not tested |
| r (ass) - passed a.m                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                    |                                           |                                                      |
| Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht<br>auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.<br>This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted<br>to be duplicated in extracts. This test report does not entitle to carry any test mark. |                                                                                                           |                                                                    |                                           |                                                      |

## **Table of Content**

## Page

| Cover Page                                                          | 1              |
|---------------------------------------------------------------------|----------------|
| Table of Content                                                    | 2              |
| Product information                                                 | 4              |
| Manufacturers declarations                                          | .4             |
| Product function and intended use                                   | .4             |
| Submitted documents                                                 | .4             |
| Independent Operation Modes                                         | .4             |
| Related Submittal(s) Grants                                         | .4             |
| Remark                                                              | .4             |
| Test Set-up and Operation Mode                                      | 5              |
| Principle of Configuration Selection                                | . 5            |
| Test Operation and Test Software                                    | . 5            |
| Special Accessories and Auxiliary Equipment                         | . 5            |
| Countermeasures to achieve EMC Compliance                           | .5             |
| Test Methodology                                                    | 6              |
| Radiated Emission                                                   | .6             |
| Field Strength Calculation                                          | .6             |
| Test Setup Diagram                                                  | 7              |
| Test Facility                                                       | 8              |
| Test Laboratory Information                                         | .8             |
| List of Test and Measurement Instruments                            | 9              |
| Measurement Uncertainty1                                            | 0              |
| Results FCC Part 15 – Subpart C1                                    | 1              |
| FCC 15.203 – Antenna Requirement 1 Pass                             | 11             |
| FCC 15.204 – Antenna Requirement 2                                  | 11             |
| FCC 15.207 / RSS-Gen 8.8 – Conducted Emission on AC Mains           | 1              |
| FCC 15.247 (a) – Receiver Input Bandwidth                           | 1              |
| FCC 15.247 (a)(2) – 6dB Bandwidth Measurement                       | 12             |
| FCC 15.247(b)(3) – Maximum conducted (average) output powerPassPass | 12             |
| FCC 15.247(e) – Power Spectral Density                              | 13             |
| FCC 15.247(d) – Spurious Conducted Emissions                        | 14             |
| FCC 15.205 – Radiated Emissions in Restricted Frequency Bands Pass  | 15             |
| Appendix 1 – Test protocols 23 page                                 | <del>)</del> S |



| Appendix 2 – Test setup              | 3 pages |
|--------------------------------------|---------|
| Appendix 3 – EUT External Photos     | 5 pages |
| Appendix 4 – EUT Internal Photos     |         |
| Appendix 5 – RF exposure information | 2 pages |



## **Product information**

#### Manufacturers declarations

|                                         | Transceiver              |
|-----------------------------------------|--------------------------|
| Operating frequency range               | 903.0 - 914.2 MHz        |
| Type of modulation                      | DSSS modulation          |
| Number of channels                      | 8                        |
| Channel separation                      | 1.6 MHz                  |
| Type of antenna                         | Internal Antenna         |
| Antenna gain (dBi)                      | -2.32 dBi                |
| Power level                             | fix                      |
| Type of equipment                       | Stand-alone Radio Device |
| Connection to public utility power line | No                       |
| Nominal voltage                         | 7.2 VDC                  |
| Independent Operation Modes             | Transceiver              |

#### Product function and intended use

The equipment under test (EUT) is a LoRa Radio Module.

| Models   | Product description              | Authorized Antenna |
|----------|----------------------------------|--------------------|
| LRS10701 | Indoor Air Quality Sensor Device | YP-A200-JK-015     |

#### Submitted documents

Circuit Diagram Block Diagram Technical Description User manual Label

#### **Independent Operation Modes**

The basic operation modes are:

- Transceiver mode.

For further information refer to User Manual

#### Related Submittal(s) Grants

- This is a single application for certification of the Transceiver Module.

#### Remark

The test results in this test report are only relevant to the tested sample and does not involve any assessment in the production.

FCC\_15.247\_DTS\_v2.0



### **Test Set-up and Operation Mode**

#### **Principle of Configuration Selection**

**Emission:** The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use.

#### **Test Operation and Test Software**

Test operation should refer to test methodology.

- During test, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power is fixed.

#### **Special Accessories and Auxiliary Equipment**

- Nil

#### **Countermeasures to achieve EMC Compliance**

- Nil



## Test Methodology

#### **Radiated Emission**

The radiated emission measurements of the transmitter part were performed according to the procedures in ANSI C63.10-2013.

For measurement below 1GHz - the equipment under test (EUT) was placed at the middle of the 80 cm height turntable. For measurement above 1GHz - the EUT was placed at the middle of the 1.5 m height turntable and RF absorbing material was placed on ground plane between turntable and measuring antenna. During the testing, the EUT was operated standalone and arranged for maximum emissions. The EUT was tested in three orthogonal planes.

The investigation is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations. Repeat the measurement steps until the maximum emissions were obtained.

All radiated tests were performed at an antenna to EUT with 3 meters distance, unless stated otherwise in particular parts of this test report.

#### Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + AF + CF + FA - PA

Where FS = Field Strength in dBuV/m at 3 meters.

- R = Reading of Spectrum Analyzer in dBuV.
- AF = Antenna Factor in dB.
- CF = Cable Attenuation Factor in dB.
- FA = Filter Attenuation Factor in dB.
- PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.



## **Test Setup Diagram**

#### Diagram of Measurement Configuration for Radiation Test



Note: Measurements above 1 GHz are done with a table height of 1.5m. In addition, there is RF absorbing material on the floor of the test site for above 1GHz measurement.

Diagram of Measurement Equipment Configuration for Mains Conduction Measurement (if applicable)





## Test Facility

#### **Test Laboratory Information**

TÜV Rheinland Hong Kong Ltd. Address: 3-4/F, Fou Wah Industrial Building, 10-16 Pun Shan Street, Tsuen Wan, N.T., Hong Kong· Tel.: +852 2192 1000 Fax: +852 2192 1001 Email <u>service-gc@tuv.com</u>

The test facility is recognized or accredited by the following organizations:

#### FCC

Test Firm Registration Number : 371735



## List of Test and Measurement Instruments

### Hong Kong Productivity Council

#### Radiated Emission

| Equipment                                    | Manufacturer             | Туре                      | Cal. Date | Due Date  |
|----------------------------------------------|--------------------------|---------------------------|-----------|-----------|
| Multi-functional Anechoic<br>Chamber (SVSWR) | Albatross                | N/A                       | 04 Jan 21 | 04 Jan 23 |
| Standard Gain Horn                           | ETS-Lindgren             | 3160-07                   | 24 Nov 20 | 24 Nov 22 |
| Standard Gain Horn                           | ETS-Lindgren             | 3160-08                   | 24 Nov 20 | 24 Nov 22 |
| Standard Gain Horn                           | ETS-Lindgren             | 3160-10                   | 30 Nov 20 | 30 Nov 22 |
| Double-Ridged Waveguide Horn                 | EMCO                     | 3116                      | 30 Nov 20 | 30 Nov 22 |
| Double-Ridged Waveguide Horn                 | EMCO                     | 3117                      | 11 Nov 20 | 11 Nov 22 |
| Test Receiver                                | R&S                      | ESU26                     | 07 Oct 21 | 07 Oct 22 |
| Coaxial cable                                | Huber+Suhner             | SF118/11N/11N<br>/12000MM | 07 Jan 21 | 07 Jan 23 |
| Microwave Preamplifier                       | COM-POWER<br>Corporation | PAM-118A                  | 06 Mar 21 | 06 Mar 23 |
| Preamplifier 18GHz to 40GHz with cable       | A.H. Systems,<br>Inc.    | PAM-1840VH                | 29 Jan 21 | 29 Jan 23 |
| High Pass Filter (cutoff freq.<br>=1000MHz)  | Trilithic                | 23042                     | 30 Oct 19 | 30 Oct 22 |
| High Frequency Cable                         | Pasternack               | PE3VNA4001-3M             | 29 Jan 21 | 29 Jan 23 |
| Multi-functional Anechoic<br>Chamber (NSA)   | Albatross                | Nil                       | 6-Jan-21  | 6-Jan-23  |
| Bi-conical Antenna                           | R&S                      | HK116                     | 15-Sep-20 | 15-Sep-22 |
| Log Periodic Antenna                         | R&S                      | HL223                     | 15-Sep-20 | 15-Sep-22 |
| Coaxial cable                                | Huber+Suhner             | SF118/11N/11N<br>/12000MM | 7-Jan-21  | 7-Jan-23  |
| Active Loop Antenna                          | EMCO                     | 6502                      | 3-Nov-20  | 3-Nov-22  |

## TÜV Rheinland Hong Kong Ltd.

#### Radio Test

| Equipment         | Manufacturer | Туре  | Cal. Date | Due Date  |
|-------------------|--------------|-------|-----------|-----------|
| Spectrum Analyzer | R&S          | FSV40 | 10 Jun 22 | 10 Jun 23 |



### **Measurement Uncertainty**

The estimated combined standard uncertainty for power-line conducted emissions measurements is ±2.42dB.

The estimated combined standard uncertainty for radiated emissions measurements is  $\pm 4.81$ dB (9kHz to 30MHz) and  $\pm 4.62$ dB (30MHz to 200MHz) and  $\pm 5.67$ dB (200MHz to 1000MHz) and is  $\pm 5.07$ dB (1GHz to 8.2GHz) and  $\pm 4.58$ dB (8.2GHz to 12.4GHz) and  $\pm 4.78$ dB (12.4GHz to 18GHz)

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for the level of confidence is approximately 95%.



## **Results FCC Part 15 – Subpart C**

| FCC 15.203 – Antenna Requirement 1 |                                                                                             | Pass                 |  |
|------------------------------------|---------------------------------------------------------------------------------------------|----------------------|--|
| FCC Requirement:                   | No antenna other than that furnished by the responsible party shall be used with the device |                      |  |
| Results :                          |                                                                                             |                      |  |
| Antenna 1                          | a) Antenna type:                                                                            | Internal PCB Antenna |  |
|                                    | b) Manufacturer and model no:                                                               | JIAKANG TECHNOLOGY   |  |
|                                    |                                                                                             | YP-A200-JK-015       |  |
|                                    | c) Peak Gain:                                                                               | -2.32 dBi            |  |
| Verdict:                           | Pass                                                                                        |                      |  |

#### FCC 15.204 – Antenna Requirement 2

FCC Requirement:An intentional radiator may be operated only with the antenna with which it is authorized.<br/>If an antenna is marketed with the intentional radiator, it shall be of a type which is<br/>authorized with the intentional radiator.Results:Only one authorized antennas can be used.

Verdict: Pass

#### FCC 15.207 / RSS-Gen 8.8 – Conducted Emission on AC Mains

N/A

Pass

Pass

There is no AC power input or output ports on the EUT.

#### FCC 15.247 (a) – Receiver Input Bandwidth

**FCC Requirement:** The associated receiver(s) complies with the requirement that its input bandwidth matches the bandwidth of the transmitted signal.

Refer to LoRa Specification



| FCC 15.247 (a)(2) -                                                                 | FCC 15.247 (a)(2) – 6dB Bandwidth Measurement Pass                                                                                                                              |                         |             |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------|--|
| FCC Requirement:                                                                    | Systems using digital modulation techniques may operate in the 902 – 928 MHz, 2400 – 2483.5 MHz, and 5725 – 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500kHz. |                         |             |  |
| Test Specification:Test date:Mode of operation:Supply voltage:Temperature:Humidity: | Specification : ANSI C63.10 – 2013   date : 04.09.2021   of operation : Tx mode   ly voltage : 7.2 VDC   berature : 23°C   dity : 51%                                           |                         |             |  |
| Results:                                                                            | or test protocols ple                                                                                                                                                           | ase refer to Appendix 1 |             |  |
| Channel frequ                                                                       | uency (MHz)                                                                                                                                                                     | 6dB bandwidth (kHz)     | Limit (kHz) |  |
| 903                                                                                 | 5.0                                                                                                                                                                             | 631.0                   | 500         |  |
| 909                                                                                 | 0.4                                                                                                                                                                             | 631.0                   | 500         |  |
| 914                                                                                 | 2                                                                                                                                                                               | 630.9                   | 500         |  |
| FCC 15.247(b)(3) – Maximum conducted (average) output power Pass                    |                                                                                                                                                                                 |                         |             |  |

| FCC 15.247(b)(3) – Maximum conducted (average) output power Pass                                                                                   |                                 |                                      |                    |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|--------------------|---------|
| FCC Requirement: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-<br>5850MHz bands: 1 Watt (30dBm)              |                                 |                                      |                    |         |
| Test Specification : ANSI C63.10 - 2013Test date : 08.09.2021Mode of operation : Tx modeSupply voltage : 7.2 VDCTemperature : 23°CHumidity : 51%   |                                 |                                      |                    |         |
| Results: For test protocols please refer to Appendix 1                                                                                             |                                 |                                      |                    |         |
| Frequency<br>(MHz)                                                                                                                                 | Measured<br>Band Power<br>(dBm) | Average Output Power<br>(dBm)   (mW) | Limit<br>(dBm   W) | Verdict |
| 903.0                                                                                                                                              | -3.69                           | 18.77   75.34                        | 30.0   1           | Pass    |
| 909.4                                                                                                                                              | -3.96                           | 18.51   65.01                        | 30.0   1           | Pass    |
| 914.2                                                                                                                                              | -4.33                           | 18.13   25.64                        | 30.0   1           | Pass    |
| Duty cycle < 98% and the transmissions exhibit a constant duty cycle during the measurement duration, therefore method AVGPSD-2 applied.           |                                 |                                      |                    |         |
| Average output power is calculated by adding [10 log (1 / D)] dB to Measured Band Power,<br>where D is duty cycle, 1 / D = period / pulse duration |                                 |                                      |                    |         |

where D is duty cycle, 1 / D = period / pulse duration

| Frequency<br>(MHz) | Pulse duration<br>(ms) | Period<br>(ms) | 1 / Duty Cycle | 10 log (1 / D)<br>(dB) |
|--------------------|------------------------|----------------|----------------|------------------------|
| 903.0              | 28.36                  | 5001           | 176.340        | 22.46                  |
| 909.4              | 28.34                  | 5002           | 176.450        | 22.47                  |
| 914.2              | 28.35                  | 5000           | 176.367        | 22.46                  |

| FCC Requirement: For systems using digital modulation, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.   Test Specification : ANSI C63.10 – 2013   Test date : 15.07.2021 |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Test Specification : ANSI C63.10 – 2013                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Test Specification:ANSI C63.10 - 2013Test date:15.07.2021Mode of operation:Tx modeSupply voltage:7.2 VDCTemperature:23°CHumidity:51%                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Results: For test protocols please refer to Appendix 1.                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Frequency<br>(MHz)Measured<br>PSD<br>(dBm)10 log (1 / D)<br>(dB)Average Power<br>Spectral Density<br>(dBm)Limit<br>(dBm)Verdict                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| 903.0 -3.69 22.46 -1.19 8.0 Pass                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| 909.4 -3.96 22.47 -1.59 8.0 Pass                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| 914.2 -4.33 22.46 -1.71 8.0 Pass                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| Duty cycle < 98% and the transmissions exhibit a constant duty cycle during the measurement duration, therefore method AVGPSD-2 applied.                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |

where D is duty cycle, 1 / D = period / pulse duration

| FCC 15.247(d) -                                                                                                                                                                                                                                                                                                                                                                                                            | FCC 15.247(d) – Spurious Conducted Emissions Pass |                                                                                                                                                                                                                         |                             |                |                |         |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|----------------|---------|--|--|--|--|--|--|--|
| Test Specification : ANSI C63.10 – 2013   Test date : 15.07.2021 (DTS)   Mode of operation : Tx mode   Supply voltage : 7.2 VDC   Temperature : 25°C   Humidity : 56%                                                                                                                                                                                                                                                      |                                                   |                                                                                                                                                                                                                         |                             |                |                |         |  |  |  |  |  |  |  |
| <b>FCC Requirement:</b> In any 100 kHz bandwidth outside the frequency band in which the spread spectrur digitally modulated intentional radiator is operating, the radio frequency power that produced by the intentional radiator shall be at least 20 dB below that in the 100 kH bandwidth within the band that contains the highest level of the desired power, bas either an RF conducted or a radiated measurement. |                                                   |                                                                                                                                                                                                                         |                             |                |                |         |  |  |  |  |  |  |  |
| Results:                                                                                                                                                                                                                                                                                                                                                                                                                   | Pre-scan has<br>combinations<br>Only the wors     | Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and data rate.<br>Only the worst cases is shown below. For test protocols refer to Appendix 1 |                             |                |                |         |  |  |  |  |  |  |  |
| Operating<br>frequency<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                            | Spurious<br>frequency<br>(MHz)                    | Spurious<br>Level<br>(dBm)                                                                                                                                                                                              | Reference<br>value<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Verdict |  |  |  |  |  |  |  |
| 903.0                                                                                                                                                                                                                                                                                                                                                                                                                      | 459.96                                            | -48.52                                                                                                                                                                                                                  | 18.86                       | -1.14          | 47.38          | Pass    |  |  |  |  |  |  |  |
| 903.0                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,822.25                                          | -46.38                                                                                                                                                                                                                  | 18.86                       | -1.14          | 45.24          | Pass    |  |  |  |  |  |  |  |
| 903.0                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,971.85                                          | -42.77                                                                                                                                                                                                                  | 18.86                       | -1.14          | 41.63          | Pass    |  |  |  |  |  |  |  |
| 903.0                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,981.15                                          | -42.81                                                                                                                                                                                                                  | 18.86                       | -1.14          | 41.67          | Pass    |  |  |  |  |  |  |  |
| 909.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 468.60                                            | -47.74                                                                                                                                                                                                                  | 18.56                       | -1.44          | 46.30          | Pass    |  |  |  |  |  |  |  |
| 909.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,903.35                                          | -45.32                                                                                                                                                                                                                  | 18.56                       | -1.44          | 43.88          | Pass    |  |  |  |  |  |  |  |
| 909.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,884.95                                          | -42.77                                                                                                                                                                                                                  | 18.56                       | -1.44          | 41.33          | Pass    |  |  |  |  |  |  |  |
| 909.4                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,998.45                                          | -42.48                                                                                                                                                                                                                  | 18.56                       | -1.44          | 41.04          | Pass    |  |  |  |  |  |  |  |
| 914.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 733.73                                            | -47.22                                                                                                                                                                                                                  | 18.20                       | -1.80          | 45.42          | Pass    |  |  |  |  |  |  |  |
| 914.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,729.16                                          | -46.06                                                                                                                                                                                                                  | 18.20                       | -1.80          | 44.26          | Pass    |  |  |  |  |  |  |  |
| 914.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,639.96                                          | -42.77                                                                                                                                                                                                                  | 18.20                       | -1.80          | 40.97          | Pass    |  |  |  |  |  |  |  |
| 914.2                                                                                                                                                                                                                                                                                                                                                                                                                      | 6,990.05                                          | -42.38                                                                                                                                                                                                                  | 18.20                       | -1.80          | 40.58          | Pass    |  |  |  |  |  |  |  |

| FCC 15.205 – Radiated Emissions                                                                                                                                                                                                                                                                  | in Restricted Frequency Bands                                                                                                                                                                                                                                         | Pass                      |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|
| Test Specification: ANSI C63.10 - 2Test date: 04.08.2021Mode of operation: Tx modeFrequency range: 9kHz - 10GHzSupply voltage: 7.2 VDCTemperature: 25.2°CHumidity: 50%                                                                                                                           | 2013                                                                                                                                                                                                                                                                  |                           |  |  |  |  |  |  |  |  |  |
| FCC Requirement: In any 100kHz<br>level of the des<br>bands must als                                                                                                                                                                                                                             | <b>FCC Requirement:</b> In any 100kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission general limits. |                           |  |  |  |  |  |  |  |  |  |
| Results:Pre-scan has been conducted to determine the worst-case mode from all possible<br>combinations between available modulations and data rate.<br>All three transmit frequency modes comply with the field strength within the restricted<br>bands. There is no spurious found below 30MHz. |                                                                                                                                                                                                                                                                       |                           |  |  |  |  |  |  |  |  |  |
| Mode: 903.0 MHz TX                                                                                                                                                                                                                                                                               | Vertical Polarization                                                                                                                                                                                                                                                 |                           |  |  |  |  |  |  |  |  |  |
| Frequency<br>MHz                                                                                                                                                                                                                                                                                 | Level<br>dBuV/m                                                                                                                                                                                                                                                       | Limit/ Detector<br>dBuV/m |  |  |  |  |  |  |  |  |  |
| 855.680                                                                                                                                                                                                                                                                                          | 24.2                                                                                                                                                                                                                                                                  | 46.0 / QP                 |  |  |  |  |  |  |  |  |  |
| 1806.000                                                                                                                                                                                                                                                                                         | 35.0                                                                                                                                                                                                                                                                  | 74.0 / PK                 |  |  |  |  |  |  |  |  |  |
| 1806.000                                                                                                                                                                                                                                                                                         | 20.8                                                                                                                                                                                                                                                                  | 54.0 / AV                 |  |  |  |  |  |  |  |  |  |
| Mode: 903.0 MHz TX Horizontal Polarization                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                       |                           |  |  |  |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       | Limit/ Detector           |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                       |                           |  |  |  |  |  |  |  |  |  |
| 1806.000                                                                                                                                                                                                                                                                                         | 23.0                                                                                                                                                                                                                                                                  | 54.0 / AV                 |  |  |  |  |  |  |  |  |  |
| Mode: 909.4 MHz TX                                                                                                                                                                                                                                                                               | Vertical Polarization                                                                                                                                                                                                                                                 | 07.07/11                  |  |  |  |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                 | Limit/ Detector           |  |  |  |  |  |  |  |  |  |
| ЙНz                                                                                                                                                                                                                                                                                              | dBuV/m                                                                                                                                                                                                                                                                | dBuV/m                    |  |  |  |  |  |  |  |  |  |
| 887.480                                                                                                                                                                                                                                                                                          | 27.8                                                                                                                                                                                                                                                                  | 46.0 / QP                 |  |  |  |  |  |  |  |  |  |
| 1818.800                                                                                                                                                                                                                                                                                         | 41.8                                                                                                                                                                                                                                                                  | 74.0 / PK                 |  |  |  |  |  |  |  |  |  |
| 1818.800                                                                                                                                                                                                                                                                                         | 24.1                                                                                                                                                                                                                                                                  | 54.0 / AV                 |  |  |  |  |  |  |  |  |  |
| Mode: 909.4 MHz TX                                                                                                                                                                                                                                                                               | Horizontal Polarization                                                                                                                                                                                                                                               |                           |  |  |  |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                 | Limit/ Detector           |  |  |  |  |  |  |  |  |  |
| MHz                                                                                                                                                                                                                                                                                              | dBuV/m                                                                                                                                                                                                                                                                | dBuV/m                    |  |  |  |  |  |  |  |  |  |
| 882.230                                                                                                                                                                                                                                                                                          | 25.4                                                                                                                                                                                                                                                                  | 46.0 / QP                 |  |  |  |  |  |  |  |  |  |
| 1818.800                                                                                                                                                                                                                                                                                         | 46.6                                                                                                                                                                                                                                                                  | 74.0 / PK                 |  |  |  |  |  |  |  |  |  |
| Mode: 914.2 MHz TX                                                                                                                                                                                                                                                                               | Vertical Polarization                                                                                                                                                                                                                                                 | 54.07 AV                  |  |  |  |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                 | Limit/ Detector           |  |  |  |  |  |  |  |  |  |
| MHz                                                                                                                                                                                                                                                                                              | dBuV/m                                                                                                                                                                                                                                                                | dBuV/m                    |  |  |  |  |  |  |  |  |  |
| 898.970                                                                                                                                                                                                                                                                                          | 24.0                                                                                                                                                                                                                                                                  | 46.0 / QP                 |  |  |  |  |  |  |  |  |  |
| 1828.400                                                                                                                                                                                                                                                                                         | 43.9                                                                                                                                                                                                                                                                  | 74.0 / PK                 |  |  |  |  |  |  |  |  |  |
| 1828.400                                                                                                                                                                                                                                                                                         | 26.1                                                                                                                                                                                                                                                                  | 54.0 / AV                 |  |  |  |  |  |  |  |  |  |
| Mode: 914.2 MHz TX                                                                                                                                                                                                                                                                               | Horizontal Polarization                                                                                                                                                                                                                                               |                           |  |  |  |  |  |  |  |  |  |
| Frequency                                                                                                                                                                                                                                                                                        | Level                                                                                                                                                                                                                                                                 | Limit/ Detector           |  |  |  |  |  |  |  |  |  |
| MHz                                                                                                                                                                                                                                                                                              | dBuV/m                                                                                                                                                                                                                                                                | dBuV/m                    |  |  |  |  |  |  |  |  |  |
| 1828.400                                                                                                                                                                                                                                                                                         | 49.3                                                                                                                                                                                                                                                                  | 74.0 / PK                 |  |  |  |  |  |  |  |  |  |
| 1828.400                                                                                                                                                                                                                                                                                         | 29.9                                                                                                                                                                                                                                                                  | 54.0 / AV                 |  |  |  |  |  |  |  |  |  |



# Appendix 1 Test Results



## **Transmission Period**

#### TX Frequency 903.0MHz



Date: 11.SEP.2022 16:44:29

#### TX Frequency : 909.4MHz



Date: 11.SEP.2022 16:46:27



#### TX Frequency 914.2MHz



Date: 11.SEP.2022 16:49:34



## **Transmission Pulse Duration**

#### TX Frequency 903.0MHz

| Md dam         |           |         |         |                  |      |                 |          |
|----------------|-----------|---------|---------|------------------|------|-----------------|----------|
| a della martin |           |         |         | M1[1] 18.0<br>10 |      |                 |          |
|                |           |         |         | and and all and  | 1000 | 28              | .36000 r |
| 10 dBm TI      | RG 10.000 | dBm     |         |                  |      | and and a star  |          |
| 0 dBm          |           |         |         |                  |      | - Barris        |          |
| -10 dBm        |           |         |         |                  | -    | 167 (a) 176 184 | D2       |
| -20 dBm        |           |         |         |                  |      |                 | 4        |
| -30 dBm        |           |         | _       |                  | -    |                 |          |
| -40 dBm        | _         |         |         |                  | -    |                 | <b>1</b> |
| 50 dBm         |           |         | _       | _                | -    | -               |          |
| 50 dBm         | _         |         | -       |                  | -    |                 |          |
| CF 903.0 MH    | łz        |         | 3001 pt | s                |      |                 | 3.0 ms   |
| Type Ref       | Trc       | X-value | Y-value | Function         | Fur  | nction Result   | -        |

Date: 11.SEP.2022 11:38:49

#### TX Frequency : 909.4MHz

| Spect                   | rum             |                    |                |                    |                        |          |   |          |                                                                                                                 |
|-------------------------|-----------------|--------------------|----------------|--------------------|------------------------|----------|---|----------|-----------------------------------------------------------------------------------------------------------------|
| Ref Lo<br>Att<br>SGL TR | evel<br>RG: VIC | 30.00 dBm<br>40 dB | <b>e SWT</b> 3 | 🖷 R<br>0 ms 🖷 V    | BW 1 MHz<br>BW 3 MHz   |          |   |          |                                                                                                                 |
| O1AP M                  | lax             |                    |                |                    |                        |          |   |          |                                                                                                                 |
| M1 dBm                  |                 |                    |                |                    |                        | M1[1]    |   |          | 18.42 dBm<br>30.00 µs<br>-27.73 dB                                                                              |
|                         |                 |                    |                |                    |                        |          |   |          | 28.34000 ms                                                                                                     |
| 10 dBm                  | τ               | RG 10.000          | dBm            |                    |                        |          |   |          |                                                                                                                 |
| 0 dBm—                  | _               |                    |                |                    |                        |          |   |          |                                                                                                                 |
| -10 dBm                 | n               | -                  |                | -                  |                        |          |   |          | 02                                                                                                              |
| -20 dBm                 | 1-              |                    |                | _                  |                        | -        |   |          |                                                                                                                 |
| -30 dBm                 |                 |                    |                |                    | -                      | _        | _ |          |                                                                                                                 |
| -40 dBm                 | 1-              | _                  |                |                    | -                      | -        |   |          | in the second |
| 50 dBm                  |                 | _                  |                |                    |                        |          |   |          |                                                                                                                 |
| 50 dBm                  | -               | _                  | _              |                    |                        |          |   | _        |                                                                                                                 |
| CF 909                  | .4 Mł           | łz                 |                |                    | 3001 p                 | ts       |   |          | 3.0 ms/                                                                                                         |
| Marker                  |                 |                    |                |                    |                        |          |   |          |                                                                                                                 |
| Type                    | Ref             | Trc                | X-value        | e                  | Y-value                | Function | 1 | Function | n Result                                                                                                        |
| M1<br>D2                | M1              | 1                  | 28             | 30.0 µs<br>1.34 ms | 18.42 dBm<br>-27.73 dB |          |   |          |                                                                                                                 |

Date: 11.SEP.2022 11:41:56



#### TX Frequency 914.2MHz

| Spectr  | rum     |           |                     |           |          |        |                                                                                                                 |
|---------|---------|-----------|---------------------|-----------|----------|--------|-----------------------------------------------------------------------------------------------------------------|
| Ref Le  | evel    | 30.00 dBm | -                   | RBW 1 MHz |          |        |                                                                                                                 |
| Att     |         | 40 dB     | 🖷 SWT 30 ms 🖷 '     | VBW 3 MHz |          |        |                                                                                                                 |
| SGL TR  | IG: VIE | )         |                     |           |          |        |                                                                                                                 |
| O LAP M | ax      |           |                     |           |          |        | 10.17.40.                                                                                                       |
| M1      |         |           |                     |           | willi    |        | 20.00 µs                                                                                                        |
| 20 dBm- |         |           |                     |           |          |        | -40.28 dB                                                                                                       |
| 10.10   | _       | -         | A.1.                |           | 1        | 1 1    | 28.35000 ms                                                                                                     |
| 10 apm  | 1       | RG 10.000 | dBm                 |           |          | -      |                                                                                                                 |
| 0 dBm—  | -       |           |                     | _         |          |        |                                                                                                                 |
| -10 dBm |         | _         |                     |           |          |        |                                                                                                                 |
| -20 dBm | -       |           |                     | -         | -        |        |                                                                                                                 |
| -30 dBm |         |           |                     |           |          |        |                                                                                                                 |
| -40 dBm |         |           |                     |           |          |        | a la companya da companya d |
| 50 dBm  | -       |           |                     |           |          |        |                                                                                                                 |
| 50 dBm  | -       | _         |                     |           | -        |        |                                                                                                                 |
| CF 914  | .2 M    | lz        |                     | 3001 pt   | 5        |        | 3.0 ms/                                                                                                         |
| Marker  |         |           |                     |           |          |        |                                                                                                                 |
| Туре    | Ref     | Trc       | X-value             | Y-value   | Function | Functi | on Result                                                                                                       |
| D2      | M1      | 1         | 20.0 µs<br>28.35 ms | -40.28 dB |          |        |                                                                                                                 |

Date: 11.SEP.2022 11:44:01



## 6 dB Bandwidth Measurement

#### TX Frequency 903.0MHz

| Spect         | rum   |                   |            |        |                            |                      |     |                                                       |
|---------------|-------|-------------------|------------|--------|----------------------------|----------------------|-----|-------------------------------------------------------|
| Ref Le<br>Att | vel 3 | 0.00 dBn<br>50 dB | 3 SWT 18.9 | ps = V | BW 100 kHz<br>BW 300 kHz N | lode Auto FFT        |     |                                                       |
| 01Pk Ma       | ах    |                   |            |        |                            |                      |     |                                                       |
| 20 dBm        |       |                   |            | 02     |                            | M1[1]<br>M1<br>D2[1] | 3   | 18.79 dBm<br>903.22290 MHz<br>-5.79 dB<br>-538.40 kHz |
| 10 dBm        |       |                   |            | 1      |                            |                      |     |                                                       |
| 0 dBm—        | _     |                   |            | /      |                            |                      |     |                                                       |
| -10 dBm       | -     |                   |            | -      | -                          |                      |     |                                                       |
| -20 dBm       | -     | /                 |            | _      |                            |                      | _   |                                                       |
| -30 dBr       | -     | ~                 |            |        |                            |                      |     |                                                       |
| -40 dBm       |       |                   |            |        |                            |                      | -   |                                                       |
| -50 dBm       |       | _                 |            | -      |                            |                      |     |                                                       |
| -60 dBm       |       | -                 |            | _      |                            |                      |     |                                                       |
| CF 903        | .0 MH | Iz                |            |        | 691 pt                     | s                    |     | Span 2.0 MHz                                          |
| Marker        |       |                   |            |        |                            | 1                    |     |                                                       |
| Туре          | Ref   | Trc               | X-value    | O MUL  | Y-value                    | Function             | Fun | ction Result                                          |
| M1<br>D2      | M1    | 1                 | 903.222    | 4 kHz  | -5.70 dBm                  |                      |     |                                                       |
| D3            | M1    | 1                 | 92         | 6 kHz  | -5.84 dB                   |                      |     |                                                       |

Date: 4.SEP.2022 09:44:01

#### TX Frequency : 909.4MHz

| Spect         | rum    |                   |          |                 |                            |              |            |                                                      |
|---------------|--------|-------------------|----------|-----------------|----------------------------|--------------|------------|------------------------------------------------------|
| Ref Le<br>Att | vel 3  | 0.00 dBm<br>50 dB | SWT 18.9 | e Re<br>μs e Vi | 3W 100 kHz<br>3W 300 kHz M | ode Auto FFT |            |                                                      |
| 01Pk M        | ах     |                   |          |                 |                            |              |            |                                                      |
| 20 dBm        | _      |                   |          | DZ              | M1                         | M1[1]        | <b>D</b> 3 | 18.50 dBm<br>909,18290 MHz<br>-5.81 dB<br>-98,40 kHz |
| 10 dBm        | -      | -                 |          | P               |                            |              | 4          |                                                      |
| 0 dBm—        |        |                   |          | /               |                            | -            |            |                                                      |
| -10 dBm       | n      | -                 | /        |                 |                            |              |            | 6                                                    |
| -20 dBm       | n      |                   |          |                 |                            |              |            |                                                      |
| -30 dBm       | 2      | ~                 |          |                 |                            |              |            |                                                      |
| -40 dBm       | n      | -                 |          |                 |                            |              | _          |                                                      |
| -50 dBm       | n      | -                 |          |                 |                            |              |            |                                                      |
| -60 dBm       | n      |                   |          |                 |                            |              |            |                                                      |
| CF 909        | 0.4 MH | Iz                |          |                 | 691 pt                     | 5            |            | Span 2.0 MHz                                         |
| Marker        |        | ·                 |          |                 |                            |              |            |                                                      |
| Туре          | Ref    | Trc               | X-value  |                 | Y-value                    | Function     | Fun        | iction Result                                        |
| M1<br>D2      | M1     | 1                 | 909.182  |                 | 18,50 dBm<br>-5,81 dB      |              |            |                                                      |
| D3            | M1     | 1                 | 532      | .6 kHz          | -5.91 dB                   |              | 1          |                                                      |

Date: 4.SEP.2022 11:14:23



#### TX Frequency 914.2MHz

| Spect         | rum    |                   |                      |                              |               |       |                                                       |
|---------------|--------|-------------------|----------------------|------------------------------|---------------|-------|-------------------------------------------------------|
| Ref Le<br>Att | vel 3  | 0.00 dBm<br>50 dB | <b>SWT</b> 18.9 μs 🖷 | RBW 100 kHz<br>VBW 300 kHz M | lode Auto FFT |       |                                                       |
| 01Pk M        | ах     |                   |                      |                              |               |       |                                                       |
| 20 dBm        | -      |                   | DZ                   | M1                           | M1[1]         |       | 18.12 dBm<br>914.01770 MHz<br>-5.90 dB<br>-133.10 kHz |
| 10 dBm        |        |                   |                      |                              |               |       |                                                       |
| 0 dBm-        | -      |                   |                      |                              |               |       |                                                       |
| -10 dBn       | n      | -                 |                      |                              |               |       |                                                       |
| -20 dBn       | n.——   | ~                 |                      |                              |               |       |                                                       |
| _30 dBn       |        |                   |                      |                              |               | -     |                                                       |
| -40 dBn       | n      | _                 |                      |                              | -             |       |                                                       |
| -50 dBn       | n      |                   |                      |                              |               |       |                                                       |
| -60 dBn       | n      | _                 |                      |                              |               |       |                                                       |
| CF 914        | 1.2 MH | Iz                |                      | 691 pt                       | s             |       | Span 2.0 MHz                                          |
| Marker        |        |                   |                      | 1                            |               |       |                                                       |
| Туре          | Ref    | Trc               | X-value              | Y-value                      | Function      | Funct | tion Result                                           |
| D2            | M1     | 1                 | -133.1 kHz           | -5.90 dB                     |               |       |                                                       |
| D3            | M1     | 1                 | 497.8 kHz            | -5.93 dB                     |               | 1     |                                                       |

Date: 4.SEP.2022 11:23:29



## Conducted (Average) Output power



TX Frequency 903.0MHz

Date: 8.SEP.2022 11:54:57

#### TX Frequency : 909.4MHz



Date: 8.SEP.2022 13:25:26



#### TX Frequency 914.2MHz



Date: 8.SEP.2022 13:30:58



## **Power Spectral Density**

#### TX Frequency 903.0MHz



Date: 8.SEP.2022 12:03:41

#### TX Frequency : 909.4MHz



Date: 8.SEP.2022 12:14:02



#### TX Frequency 914.2MHz

| Spectrum                        |                                 |                                   |                           |               |                              |              |
|---------------------------------|---------------------------------|-----------------------------------|---------------------------|---------------|------------------------------|--------------|
| Ref Level<br>Att<br>SGL Count 2 | 30.00 dBm<br>40 dB<br>00000/20( | n - F<br>8 SWT 632 µs - V<br>0000 | RBW 3 kHz<br>/BW 10 kHz M | lode Auto FFT |                              |              |
| 1Rm AvgPwi                      |                                 |                                   |                           |               |                              |              |
|                                 |                                 |                                   |                           | M1[1]         | -24.17 dBm<br>913.977200 MHz |              |
| 20 dBm                          |                                 |                                   |                           |               |                              |              |
| 10 dBm                          | _                               |                                   |                           |               |                              |              |
| 0 dBm                           |                                 |                                   |                           |               |                              |              |
| -10 dBm                         |                                 |                                   |                           |               |                              |              |
| -20 dBm                         |                                 | Mi                                |                           |               |                              |              |
| -30 dBm                         |                                 | / / / /                           |                           |               | m                            |              |
| -40 dBm                         |                                 |                                   | -                         |               |                              |              |
| -50 dBm                         | ,                               |                                   |                           |               |                              |              |
| -60 dBm                         | NNNNN                           |                                   |                           |               |                              | wwww         |
| CF 914.2 MH                     | Iz                              | I                                 | 1001 p                    | ots           |                              | Span 1.0 MHz |
| Marker                          |                                 |                                   |                           |               |                              |              |
| Type Ref<br>M1                  | Trc<br>1                        | X-value<br>913.9772 MHz           | Y-value<br>-24.17 dBm     | Function      | Functio                      | n Result     |

Date: 8.SEP.2022 13:37:27



## **Spurious Conducted Emissions**





Date: 8.SEP.2022 14:35:12

#### TX Frequency 903.0MHz \_ 1M~1GHz

| Spectr        | um          |                  |                         |                 |                          |        |         |                     |                                         | ₽   |
|---------------|-------------|------------------|-------------------------|-----------------|--------------------------|--------|---------|---------------------|-----------------------------------------|-----|
| Ref Le<br>Att | evel 30     | .00 dBm<br>40 dB | n<br>B SWT 10,          | = F<br>1 ms = V | BW 100 kHz<br>BW 300 kHz | Mode A | uto Swe | ер                  |                                         |     |
| 1AP Ma        | эх          |                  |                         |                 |                          |        |         |                     |                                         |     |
| 20 dBm-       | -           |                  |                         | _               |                          | N      | 11[1]   |                     | dBm<br>MHz<br>dBm<br>MHz                |     |
| 10 dBm-       | -           |                  |                         |                 | -                        |        | 1       |                     |                                         |     |
| 0 dBm—        | -           | _                |                         |                 |                          | _      | -       |                     |                                         | _   |
| -10 dBm       |             | -                | -                       | -               |                          | -      | -       | -                   |                                         |     |
| -20 dBm       |             |                  |                         | -               |                          |        |         | -                   |                                         | _   |
| -30 dBm       |             | -                |                         | -               |                          |        |         |                     |                                         |     |
| -40 dBm       | -           | -                |                         | -               | M2                       | -      |         | -                   |                                         |     |
| -50id9m       | ant or lite | the set          | likele por solo-mon & d |                 | - In the second          |        | -       | un let a la company | A 11, 11 and any Holman de la haite and |     |
| -60 dBm-      | -           | -                |                         | -               |                          |        |         |                     |                                         | _   |
| CF 501.       | .0 MHz      | _                |                         | _               | 10001                    | pts    |         |                     | Span 1.0 (                              | GHz |
| Marker        | netla       | Two I            | Vuslus                  | - 1             | M unlug                  | 1 Free | tion 1  |                     | unation Desult                          | -   |
| M1            | Ref         | 1                | x-value<br>903.         | ) MHz           | 18.85 dB                 | m Fun  | LIUII   | F                   | unction Result                          |     |
| M2            |             | 1                | 459,9                   | 5 MHz           | -48.52 dB                | m      |         |                     |                                         |     |

Date: 8.SEP.2022 15:22:14



| Spectr                        | rum      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     |                                                             |  |
|-------------------------------|----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------|--|
| Ref Le                        | evel 3   | 0.00 dBm<br>40 dB     | swr 36,4 ms =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RBW 1 MHz<br>VBW 3 MHz Mi                                                                                      | ode Auto Swee                                                                                                   | D   |                                                             |  |
| O1AP Ma                       | ax       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     |                                                             |  |
| 1<br>20 dBm-                  | -        | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | D2[1] -52<br>5.94480<br>M1[1] 18.6<br>903.00                                                                    |     |                                                             |  |
| 10 dBm-                       |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                              |                                                                                                                 | -   |                                                             |  |
| 0 dBm—                        | +        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     |                                                             |  |
| -10 dBm                       |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | -                                                                                                               | -   |                                                             |  |
| -20 dBm                       |          | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     |                                                             |  |
| -30 dBm                       | -        | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | D2                                                                                                              |     |                                                             |  |
| Min dam                       | and seek | . Alexandread Barriel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     | an chuir an air ann an Anna Aile In Anna Aine an an an Aile |  |
| and and an and a state of the |          | Menton pullin         | I for the spin of | the second s | and the party of the second |     | The state part of the plant of the second                   |  |
| -60 dBm                       | 1        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                 |     |                                                             |  |
| Start 9                       | 00.0 M   | 1Hz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9101 pt                                                                                                        | s                                                                                                               | ;   | Stop 10.0 GHz                                               |  |
| Marker                        |          |                       | the factor of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                                                 |     |                                                             |  |
| Type                          | Ref      | Trc                   | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y-value                                                                                                        | Function                                                                                                        | Fun | ction Result                                                |  |
| M1<br>D2                      | M1       | 1                     | 903.0 MHz<br>5.9448 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.68 dBm<br>-52.03 dB                                                                                         |                                                                                                                 |     |                                                             |  |

TX Frequency : 903.0MHz \_ Pre-Scan

Date: 11.SEP.2022 10:11:03

| Spect         | rum    |           |                 |                               |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|--------|-----------|-----------------|-------------------------------|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Le        | evel : | 30.00 dBr | n 👄 1           | RBW 100 kHz                   |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL<br>1 AD M | lav    | 40 0      | 8 SWT 30,1 ms 📟 | VBW 300 KHZ N                 | <b>Node</b> Auto Swee                   | p                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1<br>20 dBm-  |        | _         |                 |                               | M2[1]                                   |                       | -46.38 dBm<br>3.8222526 GHz<br>18.47 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 dBm        | _      |           |                 |                               |                                         |                       | 903.0000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0 dBm—        | +      | _         |                 |                               | _                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm       | n      |           |                 |                               | _                                       | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm       | n      | -         |                 |                               |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm       | n      |           |                 |                               |                                         | +                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm       | n      | -         |                 |                               |                                         | -                     | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |        |           |                 | annetitel settentions and set | No. Sparshered on a sparse shirt of all | and the second second | and the state of t |
| -60 dBm       | n      | -         |                 |                               |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 9       | 00.0   | MHz       |                 | 30001 pt                      | ts                                      | _                     | Stop 3.9 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Type          | Ref    | Trel      | X-value         | Y-value                       | Function                                | Fun                   | ction Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| M1            | ING1   | 1         | 903.0 MHz       | 18.47 dBm                     | runction                                | 1 dill                | octorr no suit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M2            |        | 1         | 3.822253 GHz    | -46.38 dBm                    |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### TX Frequency 903.0MHz \_ 900M~3.9GHz

Date: 11.SEP.2022 09:47:13



| Spectrum         |                    |                        |                             |               |        |                             |
|------------------|--------------------|------------------------|-----------------------------|---------------|--------|-----------------------------|
| Ref Level<br>Att | 30.00 dBm<br>40 dB | SWT 30,1 ms 💻          | RBW 100 kHz<br>VBW 300 kHz  | Mode Auto Swe | ер     |                             |
| 1AP Max          |                    |                        |                             |               |        |                             |
|                  |                    |                        |                             | M1[1]         | 100.00 | -42.77 dBm<br>6.8718500 GHz |
| 20 dBm           |                    |                        |                             |               |        |                             |
| 10 dBm           |                    |                        |                             |               | -      |                             |
| 0 dBm            |                    |                        |                             |               | -      |                             |
| -10 dBm          |                    |                        |                             |               |        |                             |
| -20 dBm          |                    | -                      | -                           |               |        |                             |
| -30 dBm          | -                  |                        |                             |               |        |                             |
| -40 dBm          | _                  |                        |                             |               |        | M1                          |
| -SO ORW-         | dulanteraine.      |                        | A CARE A LEAST OF LEAST AND |               |        |                             |
| -60 dBm          |                    | _                      |                             |               |        |                             |
| Start 3.9 G      | Hz                 |                        | 30001 p                     | its           | _      | Stop 6.9 GHz                |
| Marker           |                    |                        |                             |               |        |                             |
| Type Ref         | Trc<br>1           | X-value<br>6.87185 GHz | Y-value<br>-42.77 dBm       | Function      | Funct  | ion Result                  |

TX Frequency 903.0MHz \_ 3.9~6.9GHz

Date: 11.SEP.2022 09:56:27

#### TX Frequency 903.0MHz \_ 6.9~9.9GHz

| Spectrum         |                    |                                 |                            |                              |                             |
|------------------|--------------------|---------------------------------|----------------------------|------------------------------|-----------------------------|
| Ref Level<br>Att | 30.00 dBm<br>40 dB |                                 | RBW 100 kHz<br>VBW 300 kHz | Mode Auto Swee               | эр                          |
| 1AP Max          |                    |                                 |                            |                              |                             |
|                  | -                  |                                 |                            | M1[1]                        | -42.81 dBm<br>6.9811500 GHz |
| 20 dBm           |                    |                                 |                            |                              |                             |
| 10 dBm           |                    |                                 |                            |                              |                             |
| 0 dBm            | -                  |                                 |                            |                              |                             |
| -10 dBm          | -                  |                                 |                            |                              |                             |
| -20 dBm          |                    |                                 | -                          |                              |                             |
| -30 dBm          | -                  |                                 |                            |                              |                             |
| -40 dBm          |                    |                                 |                            |                              |                             |
| -50 dBm          |                    | Alter distriction in the second |                            | And the second second second |                             |
| -60 dBm          |                    |                                 |                            |                              |                             |
| Start 6.9 GH     | z                  |                                 | 30001 p                    | its                          | Stop 9.9 GHz                |
| Marker           |                    |                                 |                            |                              |                             |
| M1 M1            | 1<br>1             | 6.98115 GHz                     | Y-value<br>-42.81 dBm      | Function                     | Function Result             |

Date: 11.SEP.2022 10:06:12



| Spect    | rum  |                    | _                      | Ū                          |               |         |                                                           |
|----------|------|--------------------|------------------------|----------------------------|---------------|---------|-----------------------------------------------------------|
| Ref Le   | evel | 30.00 dBm<br>40 dB | е<br>SWT 18,9 µs 🖷     | RBW 100 kHz<br>VBW 300 kHz | Mode Auto FFT |         |                                                           |
| ●1AP M   | ax   |                    |                        |                            |               |         |                                                           |
| 20 dBm·  | _    |                    |                        |                            | M2[1]         | MI      | -31.69 dBm<br>902,00000 MHz<br>18.75 dBm<br>903.00000 MHz |
| 10 dBm   | -    |                    |                        |                            |               |         | 1                                                         |
| 0 dBm—   | +    | -                  |                        |                            |               | 192.0   |                                                           |
| -10 dBm  | n    | -                  |                        |                            |               |         |                                                           |
| -20 dBm  |      | _                  |                        |                            | /             |         |                                                           |
| -30 dBm  |      |                    |                        | M2                         | $\sim$        |         | ~                                                         |
| -40 dBm  | 1-   |                    |                        |                            |               |         |                                                           |
| -50 dBm  | 1-   | _                  |                        |                            |               |         |                                                           |
| -60 dBm  | 1    |                    |                        |                            |               |         |                                                           |
| Start 9  | 00.0 | MHz                | · · · ·                | 1001 pt                    | s             |         | Stop 904.0 MHz                                            |
| Marker   |      |                    |                        |                            |               |         |                                                           |
| Туре     | Ref  | Trc                | X-value                | Y-value                    | Function      | Functio | on Result                                                 |
| M1<br>M2 |      | 1                  | 903.0 MHz<br>902.0 MHz | -31.69 dBm                 |               |         |                                                           |

#### TX Frequency : 903.0MHz \_ Band Edge 902MHz

Date: 11.SEP.2022 11:32:36



#### TX Frequency 903.0MHz \_ Band Edge 928MHz

Date: 11.SEP.2022 11:28:39



| Spectrun          |                     | _                        |                            |              |       |                           |
|-------------------|---------------------|--------------------------|----------------------------|--------------|-------|---------------------------|
| Ref Leve<br>Att   | 1 30.00 dBr<br>40 d | n – R<br>B SWT 19 µs – V | BW 100 kHz<br>BW 300 kHz M | ode Auto FFT |       |                           |
| ●1AP Max          |                     |                          |                            |              |       |                           |
| 45 <sub>0</sub>   |                     |                          |                            | M1[1]        |       | 18.56 dBr<br>909.56900 MH |
| 20 dBm-           |                     | (                        |                            |              |       |                           |
| 10 dBm            |                     |                          |                            |              |       |                           |
| 0 dBm             |                     |                          | _                          |              |       |                           |
| -10 dBm—          |                     |                          |                            |              |       |                           |
| -20 dBm           |                     |                          |                            |              |       |                           |
| -30 dBm—          | -                   |                          |                            |              |       |                           |
| -40 dBm           |                     |                          |                            |              |       |                           |
| -50 dBm           |                     |                          |                            |              |       |                           |
| -60 dBm           |                     |                          |                            |              |       |                           |
| CF 909.4 M        | MHz                 |                          | 201 p                      | ts           |       | Span 2.0 MHz              |
| Marker<br>Type Re | f Trc               | X-value                  | Y-value                    | Function     | Funct | ion Result                |
| M1                | 1                   | ANA'222 ANAS             | 18.56 dBm                  |              |       |                           |

#### TX Frequency 909.4MHz \_ Reference

Date: 8.SEP.2022 14:22:17

#### TX Frequency 909.4MHz \_ 1M~1GHz



Date: 8.SEP.2022 15:10:20



| Spectru          | m                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 A A                                                                                                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Ref Leve         | el 30.00 dBr                                                                                                    | m 🗕 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RBW 1 MHz                                                                                                       | 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Att              | 40 d                                                                                                            | B SWT 36,4 ms 🖷 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VBW 3 MHz MC                                                                                                    | de Auto Sweep                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| 1AP Max          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | M2[1]                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -33.14 dBm                        |
| 20 dBm-          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | MILII                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 68 dBm                         |
|                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | witt r1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 909,400 MHz                       |
| 10 dBm-          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| 100 C            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| n dBm            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| -                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| -10 dBm-         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| 10 00111         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| -20 d8m-         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1                         |
| 20 0011          | 1                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| -20 dBm-         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | M2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| -30 000          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | Turner and the                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Man damath       | . I de anno anno                                                                                                | and the state of t | New States of the second states of the                                                                          |                                         | No. and a fair of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | And a standard and a stand of     |
| 1. Contraction   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | And Annual states and the states of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Internet Service | and the state of the | an and a state of the state of  | and the state of the |                                         | the shall be a state of the sta | And provide a state of the second |
| COL IN.          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                 |
| -60 08m-         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|                  | la se sere                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Start 900        | .0 MHz                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9101 pt                                                                                                         | s                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | top 10.0 GHz                      |
| Marker           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Type   R         | ef   Trc                                                                                                        | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value                                                                                                         | Function                                | Function Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sult                              |
| M1               | 1                                                                                                               | 909.4 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.68 dBm                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| M2               | 1                                                                                                               | 6.8758 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -33.14 dBm                                                                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |

#### TX Frequency : 909.4MHz \_ Pre-Scan

Date: 8.SEP.2022 18:01:02



#### TX Frequency 909.4MHz \_ 900M~3.9GHz

Date: 8.SEP.2022 18:09:52



#### Spectrum Ref Level 30.00 dBm 🖷 RBW 100 kHz Att 40 dB SWT 30.1 ms 🖷 VBW 300 kHz Mode Auto Sweep ●1AP Max M1[1] -42.77 dBm 6.8849500 GHz 20 dBm 10 dBm-0 dBm -10 dBm -20 dBm--30 dBm 40 dBm U GBD -60 dBm-Start 3.9 GHz 30001 pts Stop 6.9 GHz Marker Type | Ref | Trc | X-value Y-value Function **Function Result** M1 6.88495 GHz -42.77 dBm 1

TX Frequency 909.4MHz \_ 3.9~6.9GHz

Date: 8.SEP.2022 18:18:25

#### TX Frequency 909.4MHz \_ 6.9~9.9GHz



Date: 8.SEP.2022 18:29:51



| Spect         | rum  |                    |                        |                           |             |                                                                  |
|---------------|------|--------------------|------------------------|---------------------------|-------------|------------------------------------------------------------------|
| Ref Lo<br>Att | evel | 30.00 dBm<br>40 dB | e RB<br>SWT 19 μs e VB | W 100 kHz<br>W 300 kHz Mo | de Auto FFT |                                                                  |
| 1AP M         | lax  |                    |                        |                           |             |                                                                  |
| 20 dBm        | -    |                    |                        |                           | M2[1]       | -49.34 dBm<br>902.00000 MH<br>1 <u>8.42 d</u> Bm<br>909.40000 MH |
| 10 dBm        |      |                    |                        |                           |             |                                                                  |
| 0 dBm—        | -    | _                  |                        | -                         |             |                                                                  |
| -10 dBm       | n    |                    |                        |                           |             |                                                                  |
| -20 dBm       | n    |                    |                        |                           |             |                                                                  |
| -30 dBm       | n    |                    |                        |                           |             | mann                                                             |
| -40 dBm       | n    | M                  | 2                      | m                         | mon         |                                                                  |
| -50 984       | Kun  | man and            | hannen                 |                           |             |                                                                  |
| -60 dBm       | n    |                    | * :**                  |                           |             |                                                                  |
| Start 9       | 00.0 | MHz                | + 422 +                | 1001 pt                   | s           | Stop 910.0 MHz                                                   |
| Marker        |      |                    |                        |                           |             |                                                                  |
| Type          | Ref  | Trc                | X-value                | Y-value                   | Function    | Function Result                                                  |
| M1<br>M2      | -    | 1                  | 909.4 MHz<br>902.0 MHz | 18.42 dBm<br>-49.34 dBm   |             |                                                                  |

#### TX Frequency : 909.4MHz Band Edge 902MHz

Date: 11.SEP.2022 11:03:21



#### TX Frequency 909.4MHz \_ Band Edge 928MHz

Date: 11.SEP.2022 11:17:14



| Spectrum          |                  |                             |                           |             |        |                            |
|-------------------|------------------|-----------------------------|---------------------------|-------------|--------|----------------------------|
| Ref Level<br>Att  | 30.00 dB<br>40 d | m 🖷 RB<br>IB SWT 19 µs 🖷 VB | W 100 kHz<br>W 300 kHz Mo | de Auto FFT |        |                            |
| ●1AP Max          |                  |                             |                           |             |        |                            |
| 194 <sub>10</sub> |                  | M                           |                           | M1[1]       |        | 18.20 dBm<br>913.96100 MHz |
| 20 dBm-           |                  |                             |                           |             |        |                            |
| 10 dBm            | _                |                             |                           |             |        |                            |
| 0 dBm             | -                |                             |                           |             |        |                            |
| -10 dBm           |                  |                             |                           |             |        |                            |
| -20 dBm           | /                |                             |                           |             |        |                            |
| -30 dBm           |                  |                             |                           |             |        |                            |
| -40 dBm           |                  |                             |                           |             |        |                            |
| -50 dBm           |                  |                             |                           |             |        |                            |
| -60 dBm           |                  |                             |                           |             |        |                            |
| CF 914.2 M        | Ηz               |                             | 201 pt                    | 5           |        | Span 2.0 MHz               |
| Marker            |                  |                             |                           |             |        |                            |
| Type Ref<br>M1    | Trc<br>1         | X-value<br>913.961 MHz      | Y-value<br>18.20 dBm      | Function    | Functi | on Result                  |

TX Frequency 914.2MHz \_ Reference

Date: 8.SEP.2022 14:19:35

#### TX Frequency 914.2MHz \_ 1M~1GHz



Date: 8.SEP.2022 15:36:35



| Spect            | rum         |                    |                                                                                                                  | 1.1.1                    |                                 |                     |                                                                                                                 |
|------------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Ref Le           | evel        | 30.00 dBr<br>40 dl | n 🗧<br>B <b>SWT</b> 36,4 ms 🖷                                                                                    | RBW 1 MHz<br>VBW 3 MHz M | ode Auto Swee                   | p                   |                                                                                                                 |
| O1AP M           | lax         |                    |                                                                                                                  |                          |                                 |                     |                                                                                                                 |
| 20 dBm·          | -           |                    |                                                                                                                  |                          | M1[1]<br>M2[1]                  |                     | 18.44 dBm<br>914.200 MHz<br>-33.05 dBm<br>7.008829 GHz                                                          |
| 10 dBm-          | -           |                    |                                                                                                                  | -                        |                                 |                     |                                                                                                                 |
| 0 dBm—           | -           | _                  |                                                                                                                  | -                        |                                 | -                   |                                                                                                                 |
| -10 dBm          | n           | _                  |                                                                                                                  |                          | _                               | -                   |                                                                                                                 |
| -20 dBm          | n           |                    |                                                                                                                  |                          |                                 | _                   |                                                                                                                 |
| -30 dBm          | n           |                    |                                                                                                                  |                          |                                 | M2                  |                                                                                                                 |
| and a well to    |             | and a solution     | and the second | فما خروفي وينارك         | and dilling and the second      | No. of controls all | in a second data and the second |
| land as a stream | م الأراد مع |                    | a particular and a second s  |                          | and an an and the second second | a summer and        | Internet and the particular second                                                                              |
| -60 dBm          | n           |                    |                                                                                                                  |                          |                                 |                     | 1000 U                                                                                                          |
| CF 5.4           | 5 GHz       |                    |                                                                                                                  | 9101 pt                  | s                               |                     | Span 9.1 GHz                                                                                                    |
| Marker           |             |                    |                                                                                                                  |                          |                                 |                     |                                                                                                                 |
| Туре             | Ref         | Trc                | X-value                                                                                                          | Y-value                  | Function                        | Fund                | ction Result                                                                                                    |
| M1<br>M2         | _           | 1                  | 914.2 MHz                                                                                                        | 18.44 dBm                |                                 |                     |                                                                                                                 |
| 1412             |             | ÷                  | 1.000023 GHZ                                                                                                     | 55705 UBIII              |                                 |                     |                                                                                                                 |

#### TX Frequency : 914.2MHz \_ Pre-Scan

Date: 8.SEP.2022 15:49:11



#### TX Frequency 914.2MHz \_ 900M~3.9GHz

Date: 8.SEP.2022 16:13:22



#### Spectrum Ref Level 30.00 dBm 🖷 RBW 100 kHz Att 40 dB SWT 30.1 ms 🖷 VBW 300 kHz Mode Auto Sweep ●1AP Max M1[1] 42.77 dBm 6.6399600 GHz 20 dBm 10 dBm-0 dBm -10 dBm--20 dBm--30 dBm 40 dBm 7 U OBM -60 dBm-Start 3.9 GHz 30001 pts Stop 6.9 GHz Marker Type | Ref | Trc | X-value Y-value Function **Function Result** M1 6.63996 GHz -42.77 dBm 1

#### TX Frequency 914.2MHz \_ 3.9~6.9GHz

Date: 8.SEP.2022 16:24:54

#### TX Frequency 914.2MHz \_ 6.9~9.9GHz



Date: 8.SEP.2022 16:49:02



|         | <u> </u> | _         | _                              | Ũ            |                                          |          | (m             |
|---------|----------|-----------|--------------------------------|--------------|------------------------------------------|----------|----------------|
| Spect   | rum      |           |                                |              |                                          |          |                |
| Ref L   | evel     | 30.00 dBm | 🖷 RB                           | ₩ 100 kHz    | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |          |                |
| Att     |          | 40 dB     | SWT 19 µs 🖷 VB                 | W 300 kHz Mo | de Auto FFT                              |          |                |
| DIAP M  | lax      |           |                                |              |                                          |          |                |
| -       |          |           |                                |              | M2[1]                                    |          | -49.37 dBm     |
| 00 d0m  |          |           |                                |              |                                          |          | 905'0080 WHS   |
| 20 ubm  |          |           |                                |              | M1[1]                                    |          | 18.25 dBm      |
|         |          |           |                                |              | 4                                        | 1 1      | 914.2000 MHz   |
| 10 dBm  | -        |           |                                |              |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| 0 dBm-  | -        |           |                                | -            |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| -10 dBm | n        |           |                                |              |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| -20 dBm | n        |           |                                |              |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| -20 dBm |          |           |                                |              |                                          |          |                |
| 30 001  |          |           |                                |              |                                          | monaring | man            |
| 40 d0m  |          |           |                                |              | N                                        |          | 5.5            |
| -40 080 | 0        |           |                                |              | Arrow .                                  |          |                |
| Anna    | 1        | M2        |                                | A            | - nerona                                 |          |                |
| -50 dBm | n        |           | when a second a for the second |              |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| -60 dBm | n        |           |                                |              |                                          |          |                |
|         |          |           |                                |              |                                          |          |                |
| Start 9 | 00.0     | MHz       |                                | 1001 pt      | 5                                        |          | Stop 915.0 MHz |
| Marker  |          |           |                                |              |                                          |          |                |
| Type    | Ref      | Trc       | X-value                        | Y-value      | Function                                 | Functi   | on Result      |
| M1      |          | 1         | 914.2 MHz                      | 18.25 dBm    |                                          |          |                |
| M2      |          | 1         | 902.0 MHz                      | -49.37 dBm   |                                          |          |                |

#### TX Frequency : 914.2MHz Band Edge 902MHz

Date: 11.SEP.2022 16:28:26



#### TX Frequency 914.2MHz \_ Band Edge 928MHz

Date: 11.SEP.2022 11:22:55



## Appendix 2

## **Test Setup Photos**

Test Report No.: CN2218VL 001





Set up for Radiated Emission Above 1G



Set up for Radiated Emission Below 200M~1G



Set up for Radiated Emission 30M~200MHz



Set up for Radiated Emission Below 30MHz



# Appendix 3 EUT External Photos

FCC ID: 2AMWTLRS10701



























## Appendix 4

## **EUT Internal Photos**

FCC ID: 2AMWTLRS10701



































![](_page_52_Picture_4.jpeg)

![](_page_53_Picture_1.jpeg)

![](_page_53_Picture_2.jpeg)

![](_page_53_Figure_4.jpeg)

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_55_Picture_1.jpeg)

## **Appendix 5**

## **RF Exposure Information**

FCC ID: 2AMWTLRS10701

![](_page_56_Picture_1.jpeg)

#### Maximum Effective Radiated Power

According to KDB 447498 D04, MPE based exemption is determine in § 1.1307(b)(3)(i)(C) :

A single RF source is exempt if using Table 1 of § 1.1307(b)(3)(i)(C) and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency.

| RF Source frequency (MHz) | Threshold ERP (watts)   |
|---------------------------|-------------------------|
| 300 ~ 1,500               | 0.0128 R <sup>2</sup> f |
| 1,500 ~ 100,000           | 19.2 R <sup>2</sup>     |

Table 1 of § 1.1307(b)(3)(i)(C)

Where R = 20cm, the minimum distance mentioned in module datasheet.

For the exemption in Table 1 to apply, R must be at least  $\lambda/2\pi$ , where  $\lambda$  is the free-space operating wavelength in meters

For Frequency between 300MM~1,500M, Max. ERP is no more than the Threshold ERP =  $0.0128 \times (0.2m)^2 \times f$  (in MHz)

 $\lambda/2\pi$  and Threshold ERP is calculated in below table

| Frequency<br>(MHz) | Wavelength λ<br>(m) | λ/2π<br>(cm) | R<br>(cm) | Threshold<br>ERP (W) |
|--------------------|---------------------|--------------|-----------|----------------------|
| 903.0              | 0.332               | 5.29         | 20        | 0.4623               |
| 909.4              | 0.330               | 5.25         | 20        | 0.4656               |
| 914.2              | 0.328               | 5.22         | 20        | 0.4681               |

Result :

Max. ERP (dBm) = P + T + G Where

P = Maximum pear output power

T = Maximum tune up tolerance declare by customer

G = Antenna Gain relative to half-wave dipole (dBd)

| Frequency<br>(MHz) | Maximum<br>Output power<br>(dBm) | Maximum Tune<br>Up Tolerance<br>(dB) | Antenna Gain relative<br>to half-wave dipole<br>(dBd) | Max.<br>ERP<br>(dBm) | Max.<br>ERP (W) | Threshold<br>ERP (W) |
|--------------------|----------------------------------|--------------------------------------|-------------------------------------------------------|----------------------|-----------------|----------------------|
| 903.0              | 18.77                            | +2                                   | -4.47                                                 | 16.30                | 0.0427          | 0.4623               |
| 909.4              | 18.51                            | +2                                   | -4.47                                                 | 16.04                | 0.0402          | 0.4656               |
| 914.2              | 18.13                            | +2                                   | -4.47                                                 | 15.66                | 0.0368          | 0.4681               |

Note :

- highest antenna gain within the operating range of the antenna is taken
- dBd = dBi 2.15dB as per KDB 447498 D04 note 10

#### Conclusion:

Max. ERP of all frequencies lower than Threshold ERP No SAR is required.