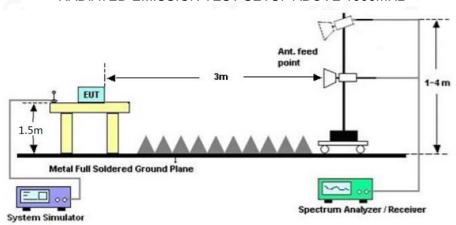


10.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Report No.: AGC03285200502FE03

Page 42 of 68

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

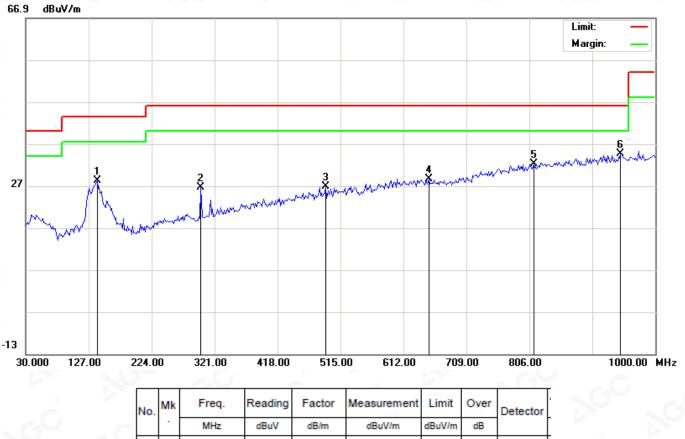
Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

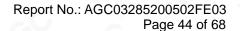
No emission found between lowest internal used/generated frequencies to 30MHz.



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

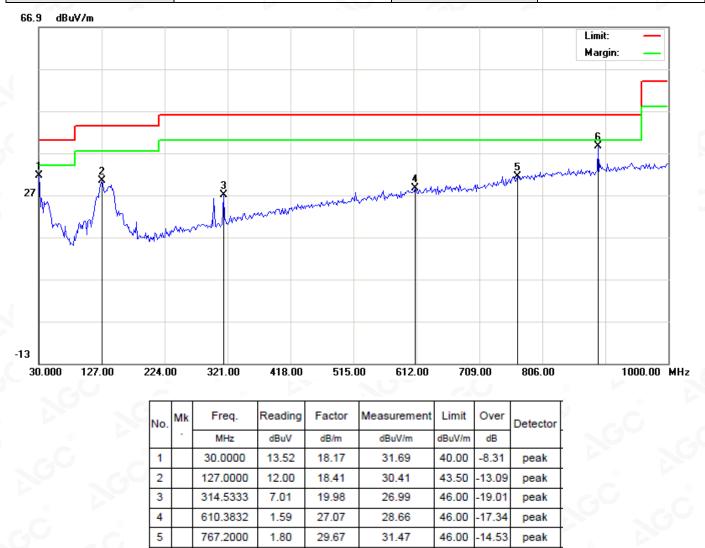
RADIATED EMISSION BELOW 1GHZ

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	
1		139.9333	9.07	19.23	28.30	43.50	-15.20	peak
2		299.9833	7.15	19.47	26.62	46.00	-19.38	peak
3		492.3667	1.94	24.84	26.78	46.00	-19.22	peak
4		650.8000	1.02	27.56	28.58	46.00	-17.42	peak
5		812.4667	1.68	30.57	32.25	46.00	-13.75	peak
6	*	946.6500	2.41	32.10	34.51	46.00	-11.49	peak

RESULT: PASS



 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

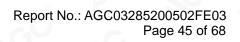
7.06

891.6833

2. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

38.65

46.00

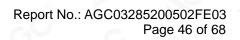

-7.35

peak

31.59

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

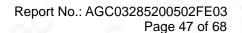
RADIATED EMISSION ABOVE 1GHZ


EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.000	45.92	0.08	46	74	-28	peak
4804.000	37.51	0.08	37.59	54	-16.41	AVG
7206.000	40.28	2.21	42.49	74	-31.51	peak
7206.000	32.43	2.21	34.64	54	-19.36	AVG
G	2.0			100	20	
emark:			· · · · · · · · · · · · · · · ·			6
ctor = Anter	nna Factor + Cabl	e Loss - Pre-	amplifier.			

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.000	44.59	0.08	44.67	74	-29.33	peak
4804.000	36.17	0.08	36.25	54	-17.75	AVG
7206.000	39.47	2.21	41.68	74	-32.32	peak
7206.000	30.12	2.21	32.33	54	-21.67	AVG
Remark:						
Factor = Anter	nna Factor + Cable	Loss - Pre-	amplifier.			


EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal

Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
45.28	0.14	45.42	74	-28.58	peak
38.46	0.14	38.6	54	-15.4	AVG
41.27	2.36	43.63	74	-30.37	peak
34.59	2.36	36.95	54	-17.05	AVG
			8	<u> </u>	
	®				®
	(dBµV) 45.28 38.46 41.27	(dBµV) (dB) 45.28 0.14 38.46 0.14 41.27 2.36	(dBμV) (dB) (dBμV/m) 45.28 0.14 45.42 38.46 0.14 38.6 41.27 2.36 43.63	(dBμV) (dB) (dBμV/m) (dBμV/m) 45.28 0.14 45.42 74 38.46 0.14 38.6 54 41.27 2.36 43.63 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 45.28 0.14 45.42 74 -28.58 38.46 0.14 38.6 54 -15.4 41.27 2.36 43.63 74 -30.37

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4882.000	45.92	0.14	46.06	74	-27.94	peak
4882.000	37.48	0.14	37.62	54	-16.38	AVG
7323.000	40.28	2.36	42.64	74	-31.36	peak
7323.000	31.46	2.36	33.82	54	-20.18	AVG
	(8)					

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Tree
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.000	46.28	0.22	46.5	74	-27.5	peak
4960.000	38.26	0.22	38.48	54	-15.52	AVG
7440.000	41.07	2.64	43.71	74	-30.29	peak
7440.000	32.64	2.64	35.28	54	-18.72	AVG
				0	<u> </u>	
emark:	- 0	0		< G	- 0	· · · · · · · · · · · · · · · · · · ·
ctor = Anter	nna Factor + Cable	Loss - Pre-	-amplifier.			

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Ten
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.000	45.26	0.22	45.48	74	-28.52	peak
4960.000	38.13	0.22	38.35	54	-15.65	AVG
7440.000	41.07	2.64	43.71	74	-30.29	peak
7440.000	33.54	2.64	36.18	54	-17.82	AVG
mark:		100		· ·		

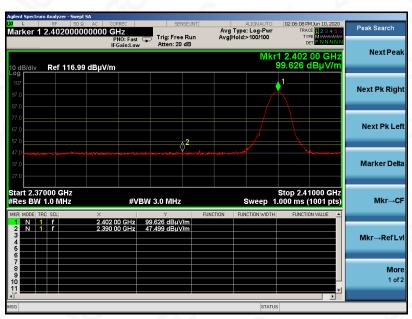
RESULT: PASS

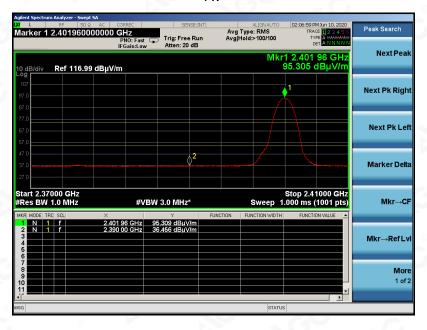
Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

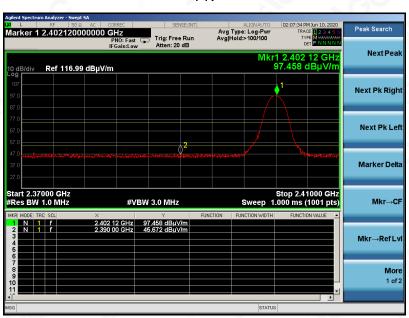


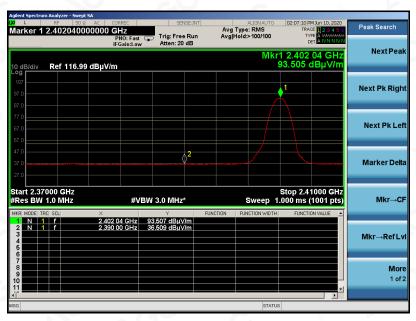

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

PK

ΑV


RESULT: PASS



EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

PK

ΑV

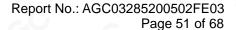
RESULT: PASS

Attestation of Global Compliance(Shenzhen)Co.,Ltd.



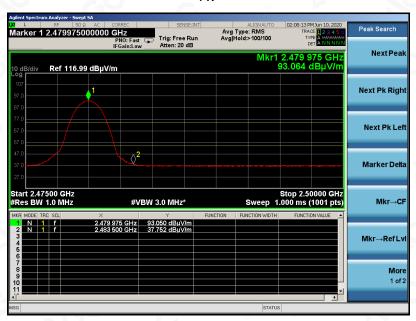
EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

PK


ΑV

RESULT: PASS

Attestation of Global Compliance(Shenzhen)Co.,Ltd.



EUT	Bluetooth Module	Model Name	FSC-BT1006
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

PK

ΑV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

11. NUMBER OF HOPPING FREQUENCY

11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Report No.: AGC03285200502FE03

Page 53 of 68

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

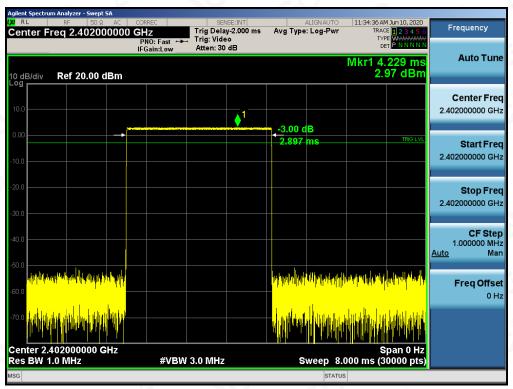
Same as described in section 8.2

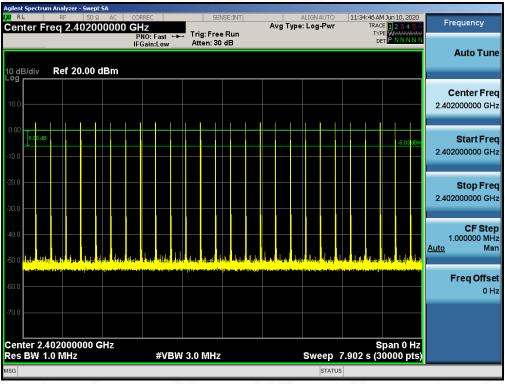
12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

12.4. LIMITS AND MEASUREMENT RESULT

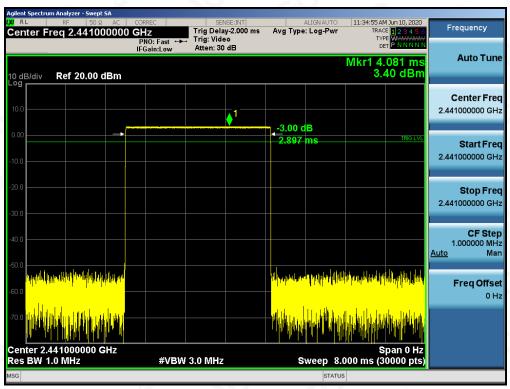
Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.897	26*4	301.29	400
Middle	2.897	27*4	312.88	400
High	2.897	26*4	301.29	400


Note: The 8DPSK modulation is the worst case and recorded in the report.



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

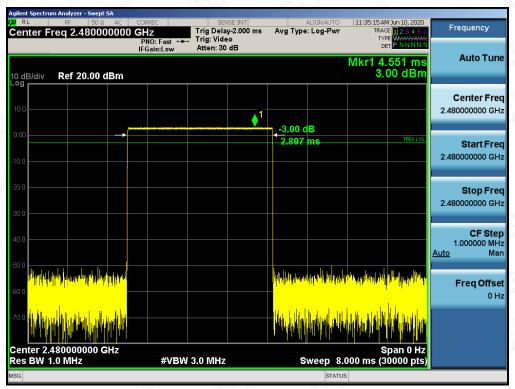
TEST PLOT OF LOW CHANNEL

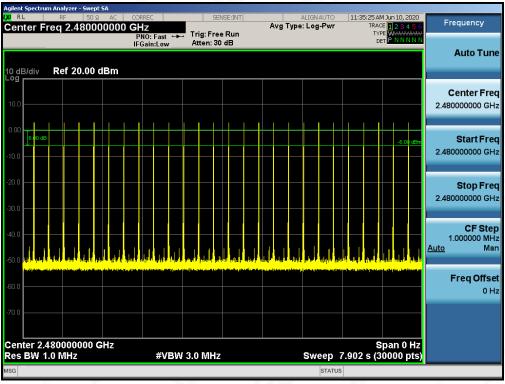




Attestation of Global Compliance(Shenzhen)Co.,Ltd.

TEST PLOT OF MIDDLE CHANNEL





E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

TEST PLOT OF HIGH CHANNEL

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2


13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

13.4. LIMITS AND MEASUREMENT RESULT

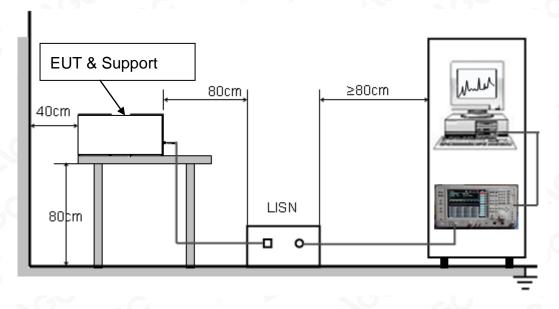
CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	Dane .
CH01-CH02	1000	>=25 KHz or 2/3 20 dB BW	Pass

TEST PLOT FOR FREQUENCY SEPARATION

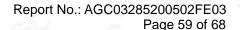
Note: The 8DPSK modulation is the worst case and recorded in the report.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

14. FCC LINE CONDUCTED EMISSION TEST


14.1. LIMITS OF LINE CONDUCTED EMISSION TEST

	Maximum R	F Line Voltage
Frequency	Q.P.(dBuV)	Average(dBuV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50


Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

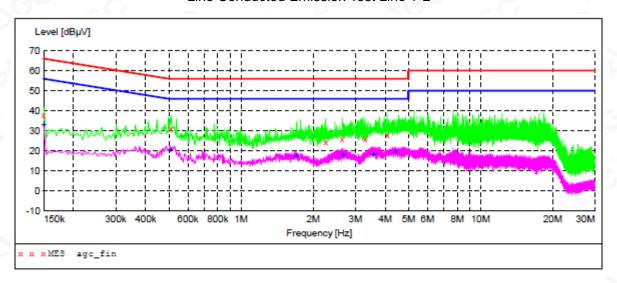
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 3.3V power from control board which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- The test data of the worst case condition(s) was reported on the Summary Data page.



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

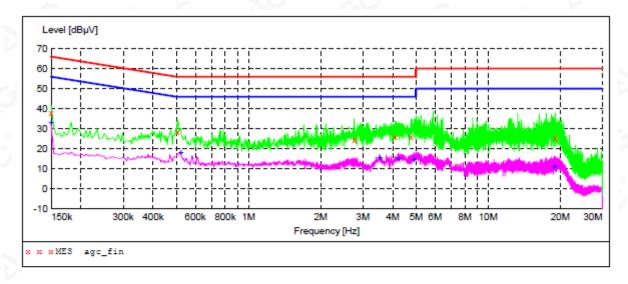
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT: "agc_fin"

2020/5/19 20:43									
Frequenc MH	-	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE		
0.15000	0 37.90	11.3	66	28.1	QP	Ll	GND		
0.51000	0 30.80	11.3	56	25.2	QP	Ll	GND		
2.25800	0 24.70	11.3	56	31.3	QP	L1	GND		
2.64600	0 26.10	11.4	56	29.9	QP	L1	GND		
3.29800	0 26.20	11.4	56	29.8	QP	L1	GND		
4.07000	0 28.00	11.4	56	28.0	QP	Ll	GND		

MEASUREMENT RESULT: "agc fin2"


2020/5/19 20:43									
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE		
0.150000	32.90	11.3	56	23.1	AV	L1	GND		
0.506000	20.30	11.3	46	25.7		Ll	GND		
1.698000	17.70	11.3	46	28.3	AV	L1	GND		
2.658000	18.00	11.4	46	28.0	AV	L1	GND		
3.566000	18.20	11.4	46	27.8	AV	L1	GND		
4.410000	19.50	11.4	46	26.5	AV	L1	GND		

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "agc fin"

2020/5/19 20:47									
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE		
0.150000	38.00	11.3	66	28.0	OP	N	GND		
0.506000	28.40	11.3	56	27.6	QP	N	GND		
2.766000	24.60	11.4	56	31.4	QP	N	GND		
4.094000	25.90	11.4	56	30.1	QP	N	GND		
4.774000	25.80	11.4	56	30.2	QP	N	GND		
19.066000	25.30	12.2	60	34.7	QP	N	GND		

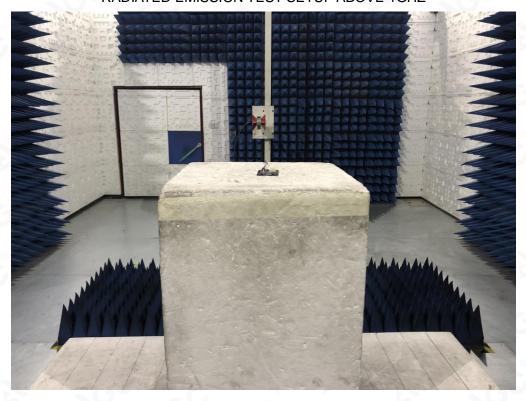
MEASUREMENT RESULT: "agc fin2"

19 20:47	7						
nency MHz	Level I dBµV	ransd dB	Limit dBµV	Margin dB	Detector	Line	PE
50000	32.90	11.3	56	23.1	AV	N	GND
22000	18.00	11.3	46	28.0	AV	N	GND
26000	15.70	11.4	46	30.3	AV	N	GND
14000	14.90	11.4	46	31.1	AV	N	GND
98000	14.30	11.4	46	31.7	AV	N	GND
30000	11.10	12.2	50	38.9	AV	N	GND
֡	MHz 50000 22000 26000 14000 98000	MHz dBμV 50000 32.90 22000 18.00 26000 15.70 14000 14.90 98000 14.30	1ency Level Transd dBμV dB dB dBμV dB dB dBμV dB dB dBμV dB dB dB dBμV dB dB dB dB dBμV dB	lency Level Transd Limit MHz dBμV dB dBμV 50000 32.90 11.3 56 22000 18.00 11.3 46 26000 15.70 11.4 46 14000 14.90 11.4 46 98000 14.30 11.4 46	lency Level Transd dB	nency Level Transd Limit Margin Detector MHz dBμV dB dBμV dB 50000 32.90 11.3 56 23.1 AV 22000 18.00 11.3 46 28.0 AV 26000 15.70 11.4 46 30.3 AV 14000 14.90 11.4 46 31.1 AV 98000 14.30 11.4 46 31.7 AV	nency Level Transd Limit Margin Detector Line 60000 32.90 11.3 56 23.1 AV N 22000 18.00 11.3 46 28.0 AV N 26000 15.70 11.4 46 30.3 AV N 14000 14.90 11.4 46 31.1 AV N 98000 14.30 11.4 46 31.7 AV N

RESULT: PASS

Note: All the test modes had been tested, the mode 1 was the worst case. Only the data of the worst case would be record in this test report.

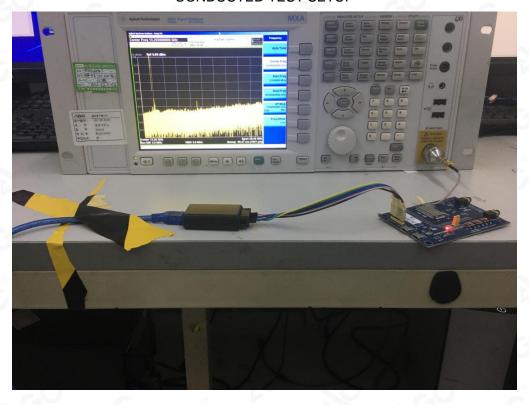
Attestation of Global Compliance(Shenzhen)Co.,Ltd.



APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 1GHZ

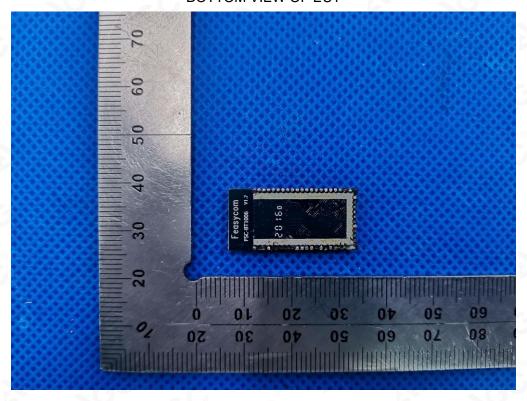
RADIATED EMISSION TEST SETUP ABOVE 1GHZ


Attestation of Global Compliance(Shenzhen)Co.,Ltd.

CONDUCTED EMISSION TEST SETUP

CONDUCTED TEST SETUP

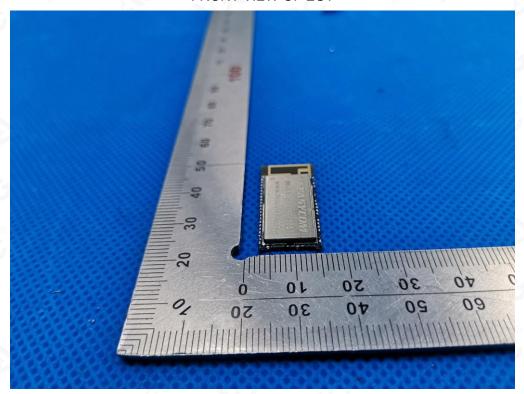
Attestation of Global Compliance(Shenzhen)Co.,Ltd.



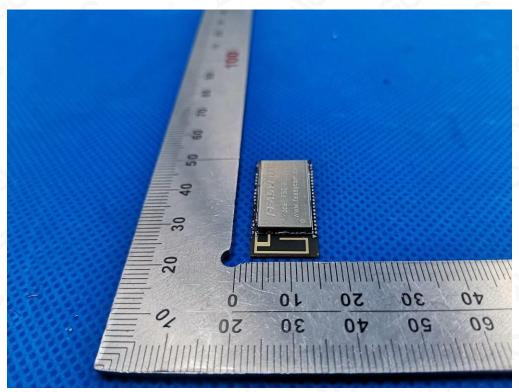
APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

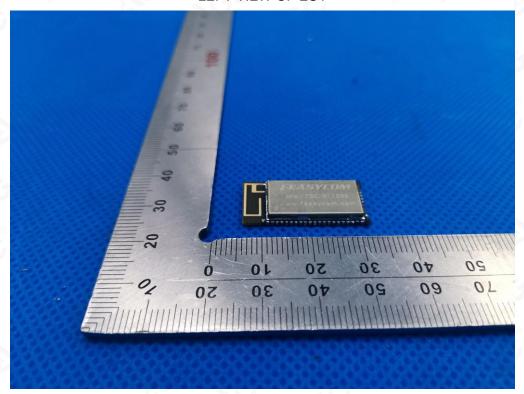


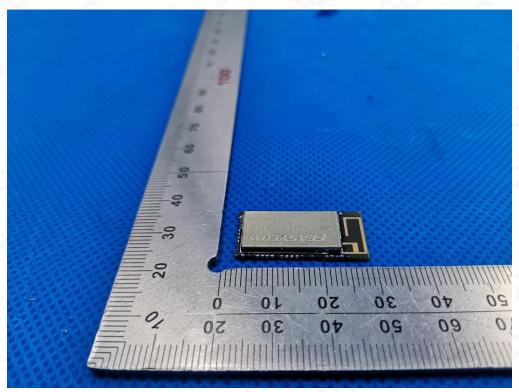
Attestation of Global Compliance(Shenzhen)Co.,Ltd.


E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

FRONT VIEW OF EUT

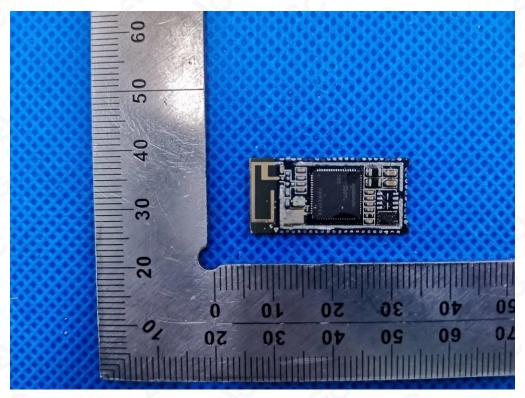
BACK VIEW OF EUT

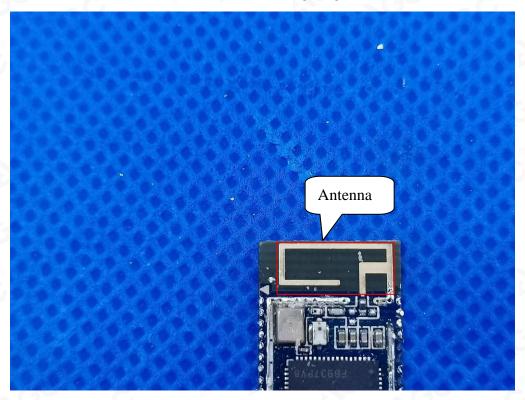



Attestation of Global Compliance(Shenzhen)Co.,Ltd.

LEFT VIEW OF EUT

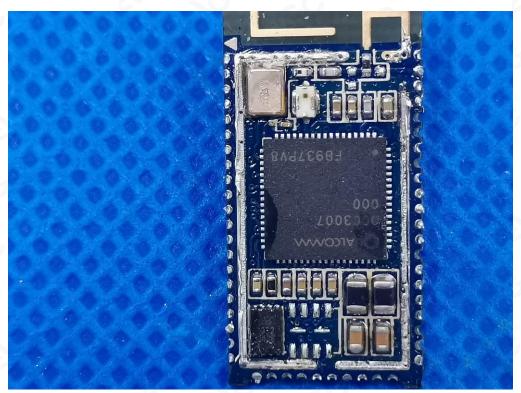
RIGHT VIEW OF EUT




Attestation of Global Compliance(Shenzhen)Co.,Ltd.

INTERNAL VIEW-1 OF EUT

INTERNAL VIEW-2 OF EUT


Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Tel: +86-755 2523 4088

E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/

INTERNAL VIEW-3 OF EUT

----END OF REPORT----

Tel: +86-755 2523 4088

E-mail: agc@agc-cert.com Web: http://cn.agc-cert.com/