

FSC-BT691

BLE 5.1 Single Mode Bluetooth Module DatasheetVersion 1.1

Copyright © 2013-2020 Feasycom Technology. All Rights Reserved.

Feasycom Technology reserves the right to make corrections, modifications, and other changes to its products, documentation and services at anytime. Customers should obtain the newest relevant information before placing orders. To minimize customer product risks, customers should provide adequate design and operating safeguards. Without written permission from Feasycom Technology, reproduction, transfer, distribution or storage of part or all of the contents in this document in any form is prohibited.

Revision History

Version	Data	Notes	
1.0	2020/07/25	Initial Version	Fish
1.1	2020/9/24	Update General Specification	Marsh

Contact Us

Shenzhen Feasycom Technology Co.,LTD

Email: sales@feasycom.com

Address: Room 2004A,20th Floor, Huichao Technology Building, Jinhai Road,

Xixiang ,Baoan District,Shenzhen ,China.

Tel: 86-755-27924639

Tel: 86-755-23062695 (Overseas)

Contents

FSC-BT691 Datasheet

1.	. INTRODUCTION	3
2.	2. GENERAL SPECIFICATION	5
3.	. HARDWARE SPECIFICATION	6
٥.		
	3.1 BLOCK DIAGRAM AND PIN DIAGRAM	
	3.2 PIN Definition Descriptions	
4.	PHYSICAL INTERFACE	7
	4.1 POWER SUPPLY	7
	4.2 RESET	7
	4.3 GENERAL PURPOSE ANALOG IO	7
	4.4 GENERAL PURPOSE DIGITAL IO	8
	4.5 RF INTERFACE	8
	4.6 Serial Interfaces	
	4.6.1 UART	
	4.6.2 I ² C Interface	9
5.	s. ELECTRICAL CHARACTERISTICS	10
	5.1 ABSOLUTE MAXIMUM RATINGS	10
	5.2 DC ELECTRICAL CHARACTERISTICS (RECOMMENDED)	10
	5.3 AC ELECTRICAL CHARACTERISTICS	10
6.	5. MSL & ESD	11
7.	7. RECOMMENDED TEMPERATURE REFLOW PROFILE	11
8.	B. MECHANICAL DETAILS	12
	8.1 MECHANICAL DETAILS	12
9.). HARDWARE INTEGRATION SUGGESTIONS	13
	9.1 SOLDERING RECOMMENDATIONS	13
	9.2 Layout Guidelines (Internal Antenna)	13
	9.3 LAYOUT GUIDELINES(EXTERNAL ANTENNA)	14
	9.3.1 Antenna Connection and Grounding Plane Design	15
10	.0. PRODUCT PACKAGING INFORMATION	16
	10.1 Default Packing	16
	10.2 PACKING BOX(OPTIONAL)	
11		
11	1. WARNING	18

1. INTRODUCTION

Overview

FSC-BT691 is Bluetooth Low Energy (BLE) 5.1 Module.

integrating a 2.4 GHz transceiver and an ARM® Cortex-M0+TM microcontroller with a RAM of 48 kB and a One-Time Programmable (OTP) memory of 32 kB. It can be used as a standalone application processor or as a data pump in hosted systems.

Very low active RF, MCU current and low-power mode current consumption provide excellent battery lifetime and allow for operation on small coin cell batteries and in energy-harvesting applications.

The BLE firmware includes the L2CAP service layer protocols, Security Manager (SM), Attribute Protocol (ATT), the Generic Attribute Profile (GATT), and the Generic Access Profile (GAP). All profiles published by the Bluetooth® SIG as well as custom profiles are supported.

The device is suitable for disposables, wireless sensor nodes, beacons, proximity tags and trackers, smart HID devices (stylus, keyboards, mice, and trackpads), toys, and medical and industrial applications.

Features

- 2.4-GHz RF Transceiver Compatible With Bluetooth Low Energy (BLE) 5.1
- Supports up to three BLE connections
- Typical cold boot to radio active 35 ms
- 16 MHz 32-bit ARM® Cortex-M0+ with SWD interface
- Dedicated Link Layer Processor
- AES-128 Encryption Processor
- 32 kB One-Time-Programmable (OTP)
- 48 kB Retainable System RAM
- 144 kB ROM
- Clock-less hibernation mode: 270 nA
- 10-bit ADC for battery voltage monitoring
- Built-in temperature sensor for die temperature monitoring

- TX: 3.5 mA, RX: 2.2 mA (system currents with DC-DC, VBAT HIGH =3 V and 0 dBm)
- Programmable transmit output power from -19.5 dBm to +2.5 dBm
- -94 dBm receiver sensitivity
- Support SPI, UART, I2C interface
- Support the OTA upgrade
- Wide Operating Voltage Range: 1.65V to 3.6V
- Operating Temperature: -40°C to +85°C

Application

- Medical applications
- Disposables
- Beacons
- Proximity tags and trackers
- Smartwatches
- Human interface devices (HID)
- Industrial appliances

Module picture as below showing

Figure 1: FSC-BT691 Picture

2. General Specification

Table 1: General Specifications

Categories	Features	Implementation			
	Bluetooth Version	Bluetooth Low Energy 5.1			
	Frequency	2.400 - 2.483.5 GHz			
Wireless	Transmit Power	-19.5 dBm to +2.5 dBm			
Specification	Receive Sensitivity	-94 dBm (Typical)			
	Modulation	GFSK			
		TX, RX, CTS, RTS			
		General Purpose I/O			
	UART Interface	Default 115200,N,8,1			
		Baudrate support from 1200 to 921600			
		5, 6, 7, 8 data bit character			
		6 (maximum – configurable) lines			
	GPIO	Pull-up resistor (33 KΩ) control			
Host Interface and		Read pin-level			
Peripherals	I2C Interface	2 (configurable from GPIO total). Up to 400 kbps			
		Analog input voltage range: 0.4V ~ 1.4V(or 2.4V) based on configure			
	ADC bet aufa a	Supports single 10-bit SAR ADC conversion			
	ADC Interface	2 channels (configured from GPIO total)			
		Up to 200MSPS conversion			
		2 PWM outputs			
	PWM	Supports edge-alignment or center-alignment			
		Supports fault detection			
Profiles	Class Bluetooth	No Support			
Profiles	Bluetooth Low Energy	GATT Client & Peripheral - Any Custom Services			
Maximum	Classic Bluetooth	Supports up to three BLE connections			
Connections					
FW upgrade		J-Link			
Supply Voltage		1.65V ~ 3.6V (Wide)			
Supply Voltage		1.8V ~ 3.3V (Recommended)			
Power Consumption		1.6uA (Sleep)			
Physical	Dimensions	10mm X 11.9mm X 2mm; Pad Pitch 0.8mm			
Environmental	Operating	-40°C to +85°C			
Liiviioiiiieiitai	Storage	-50°C to +150°C			
Miscellaneous	Lead Free	Lead-free and RoHS compliant			
Wilscellaneous	Warranty	One Year			
Humidity		10% ~ 90% non-condensing			
MSL grade:		MSL 3			
ESD grade:	Human Body Model	±2000V			
LJD grade.	Charged Device Model	±2500V			

3. HARDWARE SPECIFICATION

3.1 Block Diagram and PIN Diagram

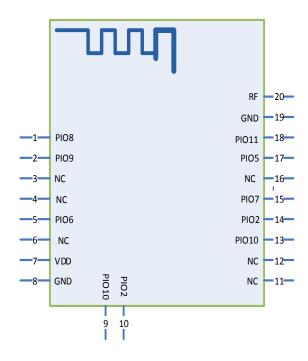


Figure 2: FSC-BT691 PIN Diagram(Top View)

3.2 PIN Definition Descriptions

Table 2: Pin definition

Pin	Pin Name	Type	Pin Descriptions Notes	S		
1	PIO8	I/O	Programmable input/output line			
	UART_TX	Ο	Serial Transmitter Data			
2	PIO9	1/0	Programmable input/output line			
	UART_RX	1	Serial Receiver Data			
3	NC		NC (Do not connect to any pin)			
4	NC		NC (Do not connect to any pin)			
5	PIO6	1/0	Programmable input/output line			
	ADC2	1	Analog to Digital Converter input 2.			
6	NC		NC (Do not connect to any pin)			
7	VDD	VDD	Power supply voltage 1.8V-3.3V			
8	GND	Vss	Power Ground			
9, 13	PIO10	1/0	Programmable input/output line			
	SWDIO	I/O	Alternative Function: JTAG Data input/output. Bidirectional data			
			and control communication (by default).			
10,14	PIO2	I/O	Programmable input/output line			

	ADC1	I	Alternative Function: Analog to Digital Converter input 1.
	SWDCLK		Alternative Function: JTAG clock signal (by default).
11,12	NC		NC (Do not connect to any pin)
15	PIO7	1/0	Programmable input/output line
	ADC3	- 1	Alternative Function: Analog to Digital Converter input 3.
16	NC		NC (Do not connect to any pin)
17	PIO5	1/0	Programmable input/output line
18	PIO11	1/0	Programmable input/output line
19	GND	Vss	Power Ground
20	RF	0	RF signal output .

4. PHYSICAL INTERFACE

4.1 Power Supply

The transient response of the regulator is important. If the power rails of the module are supplied from an external voltage source, the transient response of any regulator used should be $20\mu s$ or less. It is essential that the power rail recovers quickly.

4.2 Reset

Comprises a reset (RST) pad which is active high. It contains an RC filter with a resistor of 65 k Ω and a capacitor of 3.5 pF to suppress spikes. It also contains a 25 k Ω pull-down resistor. This pad should be driven externally by a field-effect transistor (FET) or a single button connected to VBAT. The typical latency of the RST pad is in the range of 2 μ s.

4.3 General Purpose Analog IO

The FSC-BT691 is equipped with a high-speed ultra-low-power 10-bit general purpose Analog-to-Digital Converter (GPADC). It can operate in unipolar (single ended) mode as well as in bipolar (differential) mode. The ADC has its own voltage regulator (LDO) of 0.9 V, which represents the full-scale reference voltage.

- 10-bit dynamic ADC with 125 ns typical conversion time
- Maximum sampling rate 1 Msample/s
- 128x averaging; conversion time 1 ms, up to 11b ENOB
- Ultra-low power (20 uA typical supply current at 100 ksample/s)
- Two single-ended or two differential external input channels (GPIOs)
- Battery, DCDC outputs, and the internal VDD monitoring channels
- Chopper function
- Offset adjust
- Common-mode input level adjust
- Configurable attenuator: 1x, 2x, 3x and 4x
- Input shifter

4.4 General Purpose Digital IO

There are 6 general purpose digital IOs defined in the module. All these GPIOs can be configured by software to realize various functions, such as button controls, LED drives or interrupt signals to host controller, etc. Do not connect them if not use.

The I/O type of each I/O pins can be configured by software individually as Input or Push-pull output mode. After the chip is reset, the I/O mode of all pins is input mode with no pull-up and pull-down enable. Each I/O pin has an individual pull-up and pull-down resistor which is about 30 k Ω ~ 50 k Ω for VDD and Vss.

4.5 RF Interface

The Radio Transceiver implements the RF part of the BLE protocol. Together with the Bluetooth 5.1 PHY layer, it provides up to 93 dB RF link budget for a reliable wireless communication. All RF blocks are supplied by on-chip low-drop out-regulators (LDOs). The bias scheme is programmable per block and optimized for minimum power consumption.

- Single ended RFIO interface, 50Ω matched
- Alignment free operation
- -94 dBm receiver sensitivity
- Configurable transmit output power from -19.5 dBm up to 2.5 dBm
- Ultra-low power consumption
- Fast frequency tuning minimizes overhead

4.6 Serial Interfaces

4.6.1 **UART**

FSC-BT691 provides one channels of Universal Asynchronous Receiver/Transmitters (UART)(Full-duplex asynchronous communications). The UART Controller performs a serial-to-parallel conversion on data received from the peripheral and a parallel-to-serial conversion on data transmitted from the CPU.

This is a standard UART interface for communicating with other serial devices. The UART interface provides a simple mechanism for communicating with other serial devices using the RS232 protocol.

When the module is connected to another digital device, UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators.

This module output is at 3.3V CMOS logic levels (tracks VCC). Level conversion must be added to interface with an RS-232 level compliant interface.

Some serial implementations link CTS and RTS to remove the need for handshaking. We do not recommend linking CTS and RTS except for testing and prototyping. If these pins are linked and the host sends data when the FSC-BT691 deasserts its RTS signal, there is significant risk that internal receive buffers will overflow, which could lead to an internal processor crash. This drops the connection and may require a power cycle to reset the module. We

recommend that you adhere to the correct CTS/RTS handshaking protocol for proper operation.

Table 3: Possible UART Settings

Parameter	Possible Values		
	Minimum	1200 baud (≤2%Error)	
Baudrate	Standard	115200bps(≤1%Error)	
	Maximum	921600bps(≤1%Error)	
Flow control		RTS/CTS, or None	
Parity		None, Odd or Even	
Number of stop bits		1 /1.5/2	
Bits per channel		5/6/7/8	

When connecting the module to a host, please make sure to follow.

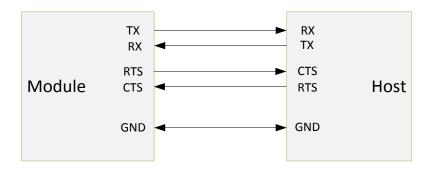


Figure 4: UART Connection

4.6.2 I²C Interface

The I2C Interface is a programmable control bus that provides support for the communications link between Integrated Circuits in a system. It is a simple two-wire bus with a software-defined protocol for system control, which is used in temperature sensors and voltage level translators to EEPROMs, general-purpose I/O, and A/D and D/A converters.

- Two-wire I2C serial interface consisting of a serial data line (SDA) and a serial clock (SCL)
- Clock synchronization
- 32 locations deep transmit/receive FIFOs (32× 8-bit Rx and 32× 10-bit Tx)
- Master transmit and Master receive operation
- Slave transmit and Slave receive operation
- 7-bit or 10-bit addressing
- 7-bit or 10-bit combined format transfers
- Bulk transmit mode
- Default slave address of 0x055
- Interrupt or polled-mode operation
- Handles bit and byte waiting at both bus speeds
- Programmable SDA hold time
- DMA support

5. ELECTRICAL CHARACTERISTICS

5.1 Absolute Maximum Ratings

Absolute maximum ratings for supply voltage and voltages on digital and analogue pins of the module are listed below. Exceeding these values causes permanent damage.

The average PIO pin output current is defined as the average current value flowing through any one of the corresponding pins for a 100mS period. The total average PIO pin output current is defined as the average current value flowing through all of the corresponding pins for a 100mS period. The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.

Table 4: Absolute Maximum Rating

Symbol	Description	Min	Trp	Max	Unit
VDD	BT Input voltage	-0.2	=	3.6	V
VI	Input voltage	-0.2	-	3.6	V
VO	Output voltage	VSS	=	VDD_H	V
TOP	Operating Temperature	-40	=	85	°C
TSTG	Storage Temperature	-50	-	150	°C

Note: Exceeding one or more of the limiting values may cause permanent damage to FSC-BT691.

Caution: Electrostatic sensitive device, comply with protection rules when operating.

5.2 DC Electrical Characteristics (Recommended)

Table 5: Voltage and current

Symbol	Parameter	Min	Туре	Max	Unit	Test Conditions
V_{DD} - V_{SS} -	DC Power Supply	1.8		3.3	V	TA=25°C
T _A -	Operating Temperature	-40	25	+85	°C	-
l1	Standby Current in Sleep mode	=	1.6	-	uA	48K+RCX
VOH	Output high level voltage	VDD-0.3	-	VDD	V	-
VOL	Output low level voltage	VSS	-	VSS+0.3	V	-
VIH	Input high level voltage	1.8	-	3.3	V	-
VIL	Input low level voltage	VSS	-	VSS+0.3	V	-

5.3 AC Electrical Characteristics

Table 6: RF

Symbol	Parameter	Min	Type	Max	Unit
General frequency					
Fop	Operating frequency	2400	-	2483.5	MHz
Nсн	number of channels	-	40	=	1

Transmitter					
PRF	Output power	-19.5	-	2.5	dBm
PBW	20dB Bandwidth for Modulated Carrier at 1Mbps	-	1.5	-	MHz
Receiver					
RXSENS	Sensitivity (0.1%BER) @1Mbps	-	-94	-	dBm

6. MSL & ESD

Table 7: MSL and ESD

Parameter	Value	
MSL grade:	MSL 3	
CCD grade.	Human Body Model	±2000V
ESD grade:	Charged Device Model	±2500V

7. RECOMMENDED TEMPERATURE REFLOW PROFILE

Prior to any reflow, it is important to ensure the modules were packaged to prevent moisture absorption. New packages contain desiccate (to absorb moisture) and a humidity indicator card to display the level maintained during storage and shipment. If directed to bake units on the card, please check the Picture below and follow instructions specified by IPC/JEDEC J-STD-033.

Note: The shipping tray cannot be heated above 65°C. If baking is required at the higher temperatures displayed in the Picture below, the modules must be removed from the shipping tray.

Any modules not manufactured before exceeding their floor life should be re-packaged with fresh desiccate and a new humidity indicator card. Floor life for MSL (Moisture Sensitivity Level) 3 devices is 168 hours in ambient environment 30°C/60%RH.

Table 8: Recommended baking times and temperatures

	125°C Baking Temp.		90°C/≤ 5%RH Baking Temp.		40°C/ ≤ 5%RH Baking Temp.		
MSL	Saturated @	Floor Life Limit	Saturated @	Floor Life Limit	Saturated @	Floor Life Limit	
IVISL	30°C/85%	+ 72 hours @	30°C/85%	+ 72 hours @	30°C/85%	+ 72 hours @	
		30°C/60%		30°C/60%		30°C/60%	
3	9 hours	7 hours	33 hours	23 hours	13 days	9 days	

Feasycom surface mount modules are designed to be easily manufactured, including reflow soldering to a PCB. Ultimately it is the responsibility of the customer to choose the appropriate solder paste and to ensure oven temperatures during reflow meet the requirements of the solder paste. Feasycom surface mount modules conform to J-STD-020D1 standards for reflow temperatures.

The soldering profile depends on various parameters necessitating a set up for each application. The data here is given only for guidance on solder reflow.

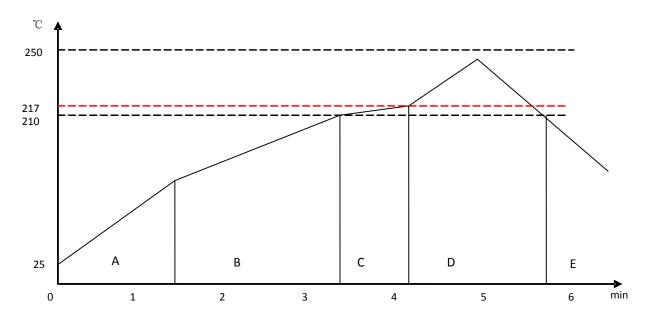


Figure 5: Typical Lead-free Re-flow

Pre-heat zone (A) — This zone raises the temperature at a controlled rate, **typically 0.5 – 2 °C/s**. The purpose of this zone is to preheat the PCB board and components to $120 \sim 150$ °C. This stage is required to distribute the heat uniformly to the PCB board and completely remove solvent to reduce the heat shock to components.

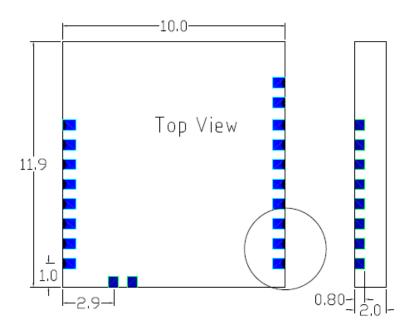
Equilibrium Zone 1 (B) — In this stage the flux becomes soft and uniformly encapsulates solder particles and spread over PCB board, preventing them from being re-oxidized. Also with elevation of temperature and liquefaction of flux, each activator and rosin get activated and start eliminating oxide film formed on the surface of each solder particle and PCB board. **The temperature is recommended to be 150° to 210° for 60 to 120 second for this zone.**

Equilibrium Zone 2 (C) (optional) — In order to resolve the upright component issue, it is recommended to keep the temperature in 210 - 217° for about 20 to 30 second.

Reflow Zone (D) — The profile in the figure is designed for Sn/Ag3.0/Cu0.5. It can be a reference for other lead-free solder. The peak temperature should be high enough to achieve good wetting but not so high as to cause component discoloration or damage. Excessive soldering time can lead to intermetallic growth which can result in a brittle joint. The recommended peak temperature (Tp) is 230 $^{\sim}$ 250 $^{\circ}$ C. The soldering time should be 30 to 90 second when the temperature is above 217 $^{\circ}$ C.

Cooling Zone (E) — The cooling ate should be fast, to keep the solder grains small which will give a longer-lasting joint. Typical cooling rate should be 4 $^{\circ}$ C.

8. MECHANICAL DETAILS


8.1 Mechanical Details

■ Dimension: 10mm(W) x 11.9mm(L) x 2 mm(H) Tolerance: ±0.2mm

■ Module size: 10mm X 11.9mm Tolerance: ±0.2mm■ Pad size: 0.9mmX0.6mm Tolerance: ±0.1mm

■ Pad pitch: 1.1mm Tolerance: ±0.1mm

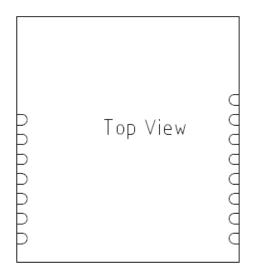


Figure 6: FSC-BT691 footprint

9. HARDWARE INTEGRATION SUGGESTIONS

9.1 Soldering Recommendations

FSC-BT691 is compatible with industrial standard reflow profile for Pb-free solders. The reflow profile used is dependent on the thermal mass of the entire populated PCB, heat transfer efficiency of the oven and particular type of solder paste used. Consult the datasheet of particular solder paste for profile configurations.

Feasycom will give following recommendations for soldering the module to ensure reliable solder joint and operation of the module after soldering. Since the profile used is process and layout dependent, the optimum profile should be studied case by case. Thus following recommendation should be taken as a starting point guide.

9.2 Layout Guidelines (Internal Antenna)

It is strongly recommended to use good layout practices to ensure proper operation of the module. Placing copper or any metal near antenna deteriorates its operation by having effect on the matching properties. Metal shield around the antenna will prevent the radiation and thus metal case should not be used with the module. Use grounding vias separated max 3 mm apart at the edge of grounding areas to prevent RF penetrating inside the PCB and causing an unintentional resonator. Use GND vias all around the PCB edges.

The mother board should have no bare conductors or vias in this restricted area, because it is not covered by stop mask print. Also no copper (planes, traces or vias) are allowed in this area, because of mismatching the on-board antenna.

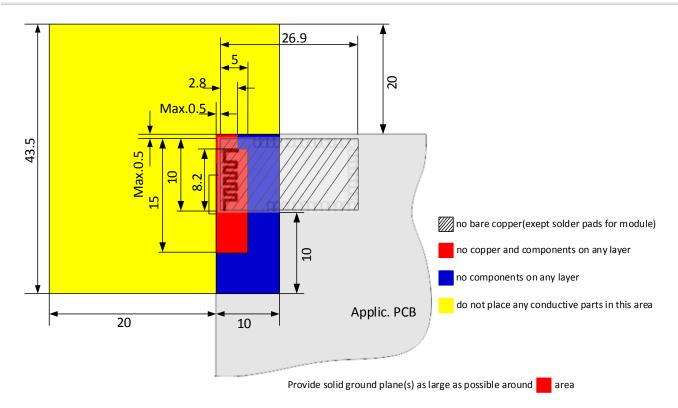


Figure 7: Restricted Area (Design schematic, for reference only. Unit: mm)

Following recommendations helps to avoid EMC problems arising in the design. Note that each design is unique and the following list do not consider all basic design rules such as avoiding capacitive coupling between signal lines. Following list is aimed to avoid EMC problems caused by RF part of the module. Use good consideration to avoid problems arising from digital signals in the design.

Ensure that signal lines have return paths as short as possible. For example if a signal goes to an inner layer through a via, always use ground vias around it. Locate them tightly and symmetrically around the signal vias. Routing of any sensitive signals should be done in the inner layers of the PCB. Sensitive traces should have a ground area above and under the line. If this is not possible, make sure that the return path is short by other means (for example using a ground line next to the signal line).

9.3 Layout Guidelines(External Antenna)

Placement and PCB layout are critical to optimize the performances of a module without on-board antenna designs. The trace from the antenna port of the module to an external antenna should be 50Ω and must be as short as possible to avoid any interference into the transceiver of the module. The location of the external antenna and RF-IN port of the module should be kept away from any noise sources and digital traces. A matching network might be needed in between the external antenna and RF-IN port to better match the impedance to minimize the return loss.

As indicated in picture below, RF critical circuits of the module should be clearly separated from any digital circuits on the system board. All RF circuits in the module are close to the antenna port. The module, then, should be placed in this way that module digital part towards your digital section of the system PCB.

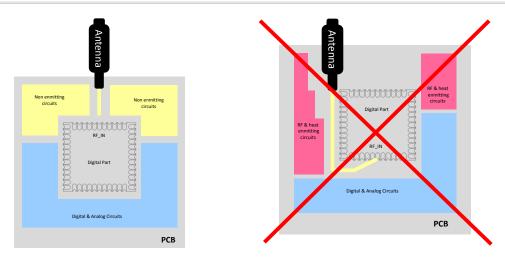


Figure 8: Placement the Module on a System Board

9.3.1 Antenna Connection and Grounding Plane Design

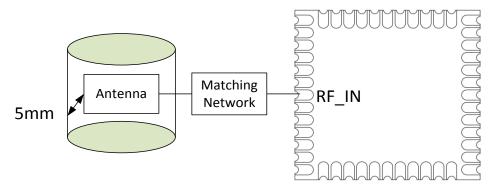


Figure 9: Leave 5mm Clearance Space from the Antenna

General design recommendations are:

- The length of the trace or connection line should be kept as short as possible.
- Distance between connection and ground area on the top layer should at least be as large as the dielectric thickness.
- Routing the RF close to digital sections of the system board should be avoided.
- To reduce signal reflections, sharp angles in the routing of the micro strip line should be avoided. Chamfers or fillets are preferred for rectangular routing; 45-degree routing is preferred over Manhattan style 90-degree routing.

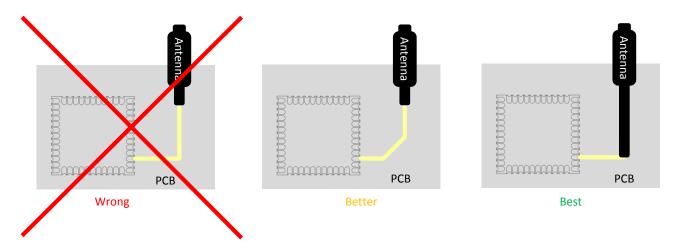


Figure 10: Recommended Trace Connects Antenna and the Module

- Routing of the RF-connection underneath the module should be avoided. The distance of the micro strip line to the ground plane on the bottom side of the receiver is very small and has huge tolerances. Therefore, the impedance of this part of the trace cannot be controlled.
- Use as many vias as possible to connect the ground planes.

10. PRODUCT PACKAGING INFORMATION

10.1 Default Packing

a, Tray vacuum

b, Tray Dimension: 180mm * 195mm

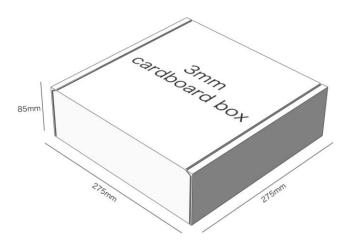


Figure 11: Tray vacuum

10.2 Packing box(Optional)

- * If require any other packing, must be confirmed with customer
- * Package: 2000PCS Per Carton (Min Carton Package)

Figure 12: Packing Box

11. Warning

FCC Statements

(OEM) Integrator has to assure compliance of the entire end-product incl. the integrated RF Module. For 15 B (§15.107 and if applicable §15.109) compliance, the host manufacturer is required to show compliance with 15 while the module is installed and operating.

Furthermore the module should be transmitting and the evaluation should confirm that the module's intentional emissions (15C) are compliant (fundamental / out-of-band). Finally the integrator has to apply the appropriate equipment authorization (e.g. Verification) for the new host device per definition in §15.101.

Integrator is reminded to assure that these installation instructions will not be made available to the end-user of the final host device.

The final host device, into which this RF Module is integrated" has to be labeled with an auxiliary label stating the FCC ID of the RF Module, such as "Contains FCC ID: 2AMWOFSC-BT691

"This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

(1)this device may not cause harmful interference, and

(2)this device must accept any interference received, including interference that may cause undesired operation."

"Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment."

the Integrator will be responsible to satisfy SAR/ RF Exposure requirements, when the module integrated into the host device.

RF Exposure Warning Statements:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment shall be installed and operated with minimum distance 20cm between the radiator & body.

IC Statements

The final host device, into which this RF Module is integrated" has to be labeled with an auxiliary label stating the IC of the RF Module, such as" Contains transmitter module IC: 23872-FSCBT691

Le périphérique hôte final, dans lequel ce module RF est intégré "doit être étiqueté avec une étiquette

auxiliaire indiquant le CI du module RF, tel que Contient le module émetteur IC: 23872-FSCBT691

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- (1) This device may not cause interference.
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) L' appareil ne doit pas produire de brouillage;
- (2) L' appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d' en compromettre le fonctionnement.

Radio Frequency Exposure Statement for IC

The device has been evaluated to meet general RF exposure requirements. The device can be used in mobile exposure conditions. The min separation distance is 20cm.

Déclaration d'exposition aux radiofréquences pour IC

L'appareil a été évalué pour répondre aux exigences générales en matière d'exposition aux RF. L'appareil peut être utilisé dans des conditions d'exposition mobiles. La distance de séparation minimale est de 20 cm.

Integration instructions for host product manufacturers according to KDB 996369 D03 OEM Manual v01

2.2 List of applicable FCC rules

FCC Part 15.247

2.3 Specific operational use conditions

his transmitter/module and its antenna(s) must not be co-located or operating in conjunction with any transmitter. This information also extends to the host manufacturer's instruction manual.

2.4 Limited module procedures

not applicable

2.5 Trace antenna designs

It is "not applicable" as trace antenna which is not used on the module.

2.6 RF exposure considerations

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This compliance to FCC radiation exposure limits for an uncontrolled environment, and minimum of 20cm separation between antenna and body.

The host product manufacturer would provide the above information to end users in their end-product manuals.

2.7 Antennas

PCB Antenna; 2dBi; 2.402 GHz~2.480GHz

2.8 Label and compliance information

The end product must carry a physical label or shall use e-labeling followed KDB784748D01 and KDB 784748 stating "Contains Transmitter Module FCC ID: 2AMWOFSC-BT691".

2.9 Information on test modes and additional testing requirements

For more information on testing, please contact the manufacturer.

2.10 Additional testing, Part 15 Subpart B disclaimer

The modular transmitter is only FCC authorized for the specific rule parts (FCC Part 15.247) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed when contains digital circuity.