FCC TEST REPORT

For

Dong Guan City Qi Xing Electronics Technology Co., LTD

WiFi Smart Socket

Test Model No.: W-US001

Serial Model.: W-US003, W-US003S

Prepared for Address	:	Dong Guan City Qi Xing Electronics technology co., LTD JieYing Science & Technology Park 7 BiHu Road, FengGang DongGuan Guangdong Province, P.R.China
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	June 23, 2017
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	June 23, 2017~July 12, 2017
Date of Report	:	July 12, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 51

FCC TEST REPORT FCC CFR 47 PART 15 C(15.247)

Report Reference No: :	LCS170712003AE
Date of Issue :	July 12, 2017
Testing Laboratory Name: :	Shenzhen LCS Compliance Testing Laboratory Ltd.
:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Full application of Harmonised standards ■
Testing Location/ Procedure	Partial application of Harmonised standards Other standard testing method
Applicant's Name: :	Dong Guan City Qi Xing Electronics technology co., LTD
Address :	JieYing Science & Technology Park 7 BiHu Road, FengGang DongGuan Guangdong Province, P.R.China
Test Specification	
Standard::	FCC CFR 47 PART 15 C(15.247)
Test Report Form No :	LCSEMC-1.0
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF:	Dated 2011-03
This publication may be reproduced i Shenzhen LCS Compliance Testing L material. Shenzhen LCS Compliance	g Laboratory Ltd. All rights reserved. n whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the Testing Laboratory Ltd. takes no responsibility for and will not g from the reader's interpretation of the reproduced material due to its
<u> </u>	

EUT Description :	WiFi Smart Socket
Trade Mark :	N/A
Model/ Type reference :	W-US001
Serial Model	W-US003, W-US003S
Ratings: :	Input:100-125V AC, 60Hz, 10A
Result:	Positive

Compiled by:

Ace chai

Ace Chai/ File administrators

Supervised by:

Calvin Weng

Approved by:

Gavin Liang/ Manager

Galvin Weng/ Technique principal

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 51

FCC -- TEST REPORT

Test Report No. :	LCS170712003AE	July 12, 2017 Date of issue	
EUT Type / Model			
Applicant	: Dong Guan City Qi Xir	ng Electronics technology co., LTD	
Address	: JieYing Science & Technology Park 7 BiHu Road, FengGang DongGuan Guangdong Province, P.R.China		
Telephone	:/		
Fax	: /		
Manufacturer	: Dong Guan City Qi Xir	ng Electronics technology co., LTD	
Address	: JieYing Science & Technology Park 7 BiHu Road, FengGang DongGuan Guangdong Province, P.R.China		
Telephone			
Fax	: /		
Factory	: Dong Guan City Qi Xir	ng Electronics technology co., LTD	
Address	: JieYing Science & Tech	nology Park 7 BiHu Road, FengGang	
	DongGuan Guangdong	Province, P.R.China	
Telephone	: /		
Fax	: /		

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By	
00	July 12, 2017	Initial Issue	Gavin Liang	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 51

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	
1.3. External I/O Cable 1.4. Description of Test Facility	
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	0
1.6. MEASUREMENT UNCERTAINTY	7
1.7. DESCRIPTION OF TEST MODES	7
2. TEST METHODOLOGY	8
2.1. EUT CONFIGURATION	8
2.2. EUT EXERCISE	8
2.3. GENERAL TEST PROCEDURES	
3. SYSTEM TEST CONFIGURATION	9
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.3. Special Accessories	9
3.5. EQUIPMENT MODIFICATIONS	9
3.6. TEST SETUP	
3.0. TEST SETUP	9
4. SUMMARY OF TEST RESULTS	
	10
 4. SUMMARY OF TEST RESULTS	10 11
 4. SUMMARY OF TEST RESULTS	10 11 11 13
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE	10 11 11 13 15
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE	10 11 11 13 15 19
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT	10 11 11 13 15 19 23
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 	10 11 11 13 15 19 23 34 41
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS 	10 11 11 13 15 19 23 34 41 43
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS. 5.9. ANTENNA REQUIREMENTS. 	.10 .11 .13 .15 .19 .23 .34 .41 .43 .48
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS. 5.9. ANTENNA REQUIREMENTS. 	 10 11 11 13 15 19 23 34 41 43 48 50
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS. 5.9. ANTENNA REQUIREMENTS. 	 10 11 11 13 15 19 23 34 41 43 48 50
 4. SUMMARY OF TEST RESULTS. 5. TEST RESULT. 5.1. ON TIME AND DUTY CYCLE. 5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT. 5.3. POWER SPECTRAL DENSITY MEASUREMENT. 5.4. 6 DB SPECTRUM BANDWIDTH MEASUREMENT. 5.5. RADIATED EMISSIONS MEASUREMENT. 5.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST. 5.7. AC POWER LINE CONDUCTED EMISSIONS. 5.8. BAND-EDGE MEASUREMENTS FOR RADIATED EMISSIONS. 5.9. ANTENNA REQUIREMENTS. 	10 11 13 15 19 23 34 41 43 48 50 51

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

E LI T	
EUT	: WiFi Smart Socket
Model Number	: W-US003, W-US003S
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Test Model	: W-US001
Hardware version	: qx-x3-VER01
Software version	: X3-QX-VER1.0.1
Power Supply	: Input: 100-125V AC, 60Hz, 10A
WLAN Technology	
WLAN	: Supports IEEE 802.11b/802.11g/802.11n
WILLAN ECC Operation	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation	: IEEE 802.11g:2412-2462MHz
Frequency	IEEE 802.11n HT20:2412-2462MHz
WLAN Channel Number	: 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20)
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN Modulation Technology	: IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)
Antenna Type	: Internal Antenna
Antenna Gain	: 3.0dBi (Max.)
Extreme temp. Tolerance	: -20°C to +50°C

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate

1.3. External I/O Cable

I/O Port Description	Quantity	Cable

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
	:	200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 KHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, which was determined to be IEEE 802.11b mode (High Channel).

Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11b mode(High Channel). Pre-test AC conducted emission at AC mains mode, recorded worst case.

Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/50Hz, recorded worst case.

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11b Mode: 1 Mbps, DSSS.

IEEE 802.11g Mode: 6 Mbps, OFDM.

IEEE 802.11n Mode HT20: MCS0, OFDM.

Channel List & Frequency

IEEE 802.11b/g/n HT20

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
2412~2462MHz	1	2412	7	2442
	2	2417	8	2447
	3	2422	9	2452
	4	2427	10	2457
	5	2432	11	2462
	6	2437		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 51

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition. The duty cycle is 100% and the average correction factor is 0.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (Win10_MP_Kit_Smart tool) provided by application.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

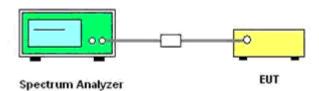
3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C				
FCC Rules	Description of Test	Result		
§15.247(b)	Maximum Conducted Output Power	Compliant		
§15.247(e)	Power Spectral Density	Compliant		
§15.247(a)(2)	6dB Bandwidth	Compliant		
§15.247(a)	Occupied Bandwidth	Compliant		
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant		
§15.205	Emissions at Restricted Band	Compliant		
§15.207(a)	Conducted Emissions	Compliant		
§15.203	Antenna Requirements Compliant			
§15.247(i)§2.1093	RF Exposure	Compliant		

5. TEST RESULT


- 5.1. On Time and Duty Cycle
- 5.1.1. Standard Applicable

None; for reporting purpose only.

5.1.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

- 5.1.3. Test Procedures
- 1. Set the center frequency of the spectrum analyzer to the transmitting frequency;
- 2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
- 3. Detector = peak;
- 4. Trace mode = Single hold.
- 5.1.4. Test Setup Layout

5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.1.6. Test result

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW (KHz)
IEEE 802.11b	5	5	1	100	0	0.010
IEEE 802.11g	5	5	1	100	0	0.010
IEEE 802.11n HT20	5	5	1	100	0	0.010

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AMVL-WUS001	Report No.: LCS170712003AE

On Time and Duty Cycle					d Duty Cycle
Agilent Spectrum Analyzer - Swept SA	50M3-044-91	#SNAUTO	10:03:10 PM 3J/09, 2017		Agilent System Analyzer - Swept SA. SD 82 SD 82 SD 82 SD 82 AL301AUTO 10:04:12 PM 3409, 2017 To a second
	PNO: Fast C Trig: Free Run	Avg Type: RMS Avg[Hold>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET A NNNNN	Trace/Detector	PNO: East (
Ref Offset 0.5 dB	IFGain:Low #Atten: 20 dB		2019-11111	Select Trace	IFGelact.ow #Atten: 20 dB Select Trace
10 dB/div Ref 10.00 dBm					10 dB/dv Ref 10.00 dBm
0.00				Clear Write	0.00 berturner and the second se
-10.0				Trace Average	-100 Trace Average
-20.0				The Average	-20.0
-30.0					300
-40.0				Max Hold	400 Max Hold
-50.0					40.0
				Min Hold	Min Hold
-60.0				Marca Blanda	
-70.0				View Blank Trace On	700 View Blank Trace On
-80.0					
Center 2.437000000 GHz			Span 0 Hz	More 1 of 3	Center 2.437000000 GHz Span 0 Hz 1 of 3
Res BW 8 MHz	#VBW 50 MHz*	·	.000 ms (1001 pts)		Res BW 8 MHz #VBW 50 MHz* Sweep 1.000 ms (1001 pts)
MSG STATUS					
	IEEE 8	02.11b			IEEE 802.11g
Agilent Spectrum Analyzer - Swept SA 30 89 50 9 AC	SINSEPU.SI	ALIGNAUTO Avg Type: RMS	10:02:40 PM 3,409, 2017 TRACE 1 2 3 4 5 6	Trace/Detector	
	PNO: Fast Trig: Free Run IFGain:Low #Atten: 20 dB	Avg Hold>100/100	DET A N N N N	Select Trace	
Ref Offset 0.5 dB				1	
10 dB/dv Ref 10.00 dBm					
0.00				Clear Write	
-10.0					
-20.0				Trace Average	
-30.0					
				Max Hold	
-40.0					
-50.0				Min Hold	
-60.0					
-70.0				View Blank	
-80.0				Trace On	
				More	
Center 2.437000000 GHz				1 of 3	
Res BW 8 MHz	#VBW 50 MHz*	Sweep 1	Span 0 Hz 000 ms (1001 pts)		
Res BW 8 MHz	≇VBW 50 MHz*	Sweep 1. STATUS	.000 ms (1001 pts)		

5.2. Maximum Conducted Output Power Measurement

5.2.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

5.2.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the power meter.

5.2.3. Test Procedures

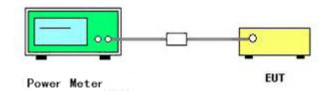
According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2 the maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

According to KDB558074 D01 DTS Measurement Guidance Section 9.2 Maximum average conducted output power, 9.2.3.1 Method AVGPM (Measurement using an RF average power meter)

(a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.


3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.

(c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 51 5.2.6. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	60%
Test Engineer	CHAZ	Configurations	IEEE 802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Measured Peak Output Power (dBm)	Limits (dBm)	Verdict
	1	2412	9.50		
IEEE 802.11b	6	2437	9.62	30	PASS
	11	2462	9.53		
	1	2412	9.45		
IEEE 802.11g	6	2437	9.60	30	PASS
_	11	2462	9.54		
IEEE 802.11n	1	2412	9.43		
HT20	6	2437	9.73	30	PASS
11120	11	2462	9.30		

Remark:

1. Measured output power at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

5.3. Power Spectral Density Measurement

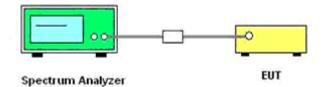
5.3.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures


1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

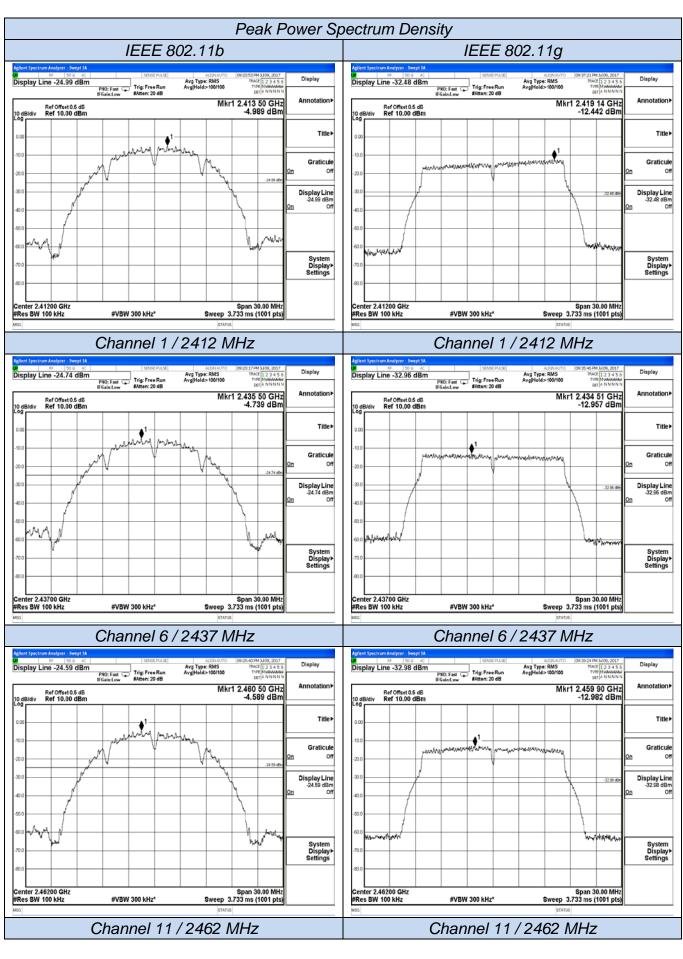
- 3. Set the RBW = 100 KHz.
- 4. Set the VBW \geq 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.

10. Use the peak marker function to determine the maximum power level in any 3 KHz band segment within the fundamental EBW.

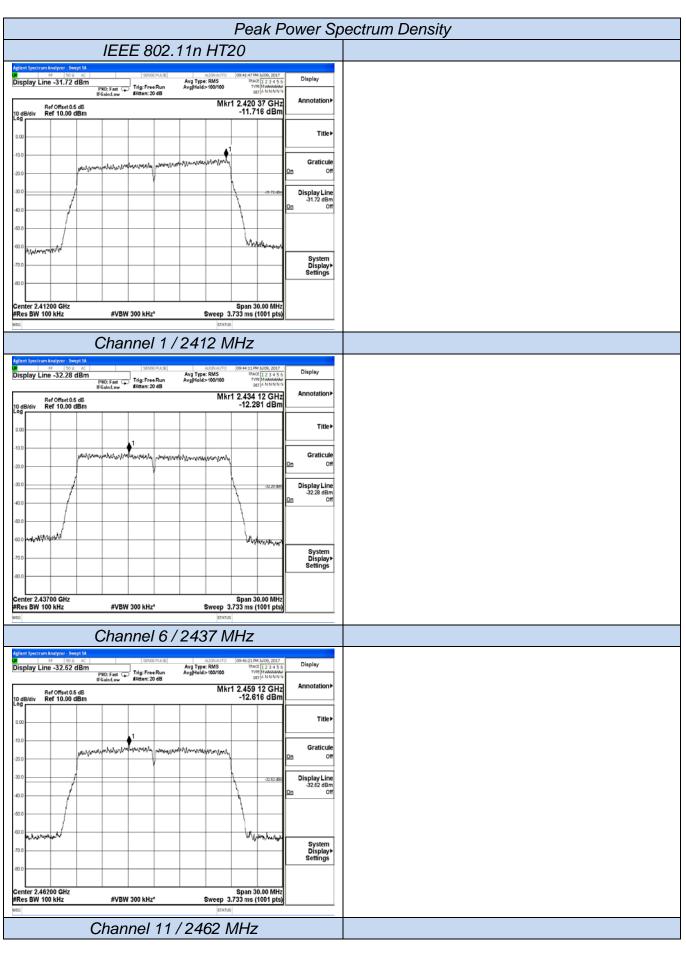
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 5.3.4. Test Setup Layout

5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


5.3.6. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	CHAZ	Configurations	IEEE 802.11b/g/n


Test Mode	Channel	Frequency (MHz)	Measured Peak Power Spectral Density (dBm/100KHz)	Limits (dBm/3KHz)	Verdict
	1	2412	-4.989		
IEEE 802.11b	6	2437	-4.739	8	PASS
	11	2462	-4.589		
	1	2412	-12.442		
IEEE 802.11g	6	2437	-12.957	8	PASS
	11	2462	-12.982		
IEEE 802.11n	1	2412	-11.716		
HT20	6	2437	-12.281	8	PASS
11120	11	2462	-12.616		

Remark:

- 1. Measured peak power spectrum density at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;
- 4. Please refer to following plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 51

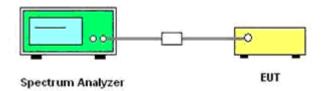
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 51

5.4. 6 dB Spectrum Bandwidth Measurement

5.4.1. Standard Applicable

According to §15.247(a) (2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting


Please refer to equipment list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.4.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	CHAZ	Configurations	IEEE 802.11b/g/n

Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limits (MHz)	Verdict
IEEE 802.11b	1 6	2412 2437	9.672 9.595	0.500	PASS
	11	2462 2412	9.165 16.520		
IEEE 802.11g	6	2412	16.610	0.500	PASS
	11	2462 2412	<u>16.510</u> 17.740		
IEEE 802.11n HT20	6	2412	17.830	0.500	PASS
11120	11	2462	17.690		

Remark:

1. Measured 6dB bandwidth at difference data rate for each mode and recorded worst case for each mode.

2. Test results including cable loss;

3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

4. Please refer to following plots;

6 dB	Bandwidth
IEEE 802.11b	IEEE 802.11g
Agilent Spectrum Analyzer - Occupied BW	Agilent Spectrum Analyzer - Occupied BW
Span 30.000 MHz Experimental of the second sec	01 00 0 00 00 00 00 00 00 00 00 00 00 00
Log 100 300 300 400 700 700 800 400 400 400 400 400 400 4	Leg Center Freq 300
Center 2.412 GHz Span 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms Min H	Center 2.412 GHz Span 30 MHz Sweep 2.933 ms CF Step 3.000000 MHz Sweep 2.933 ms 3.000000000000000000000000000000000000
Occupied Bandwidth Total Power 13.0 dBm 14.390 MHz Detec	Occupied Bandwidth Total Power 7.88 dBm
Pe	
Channel 1 / 2412 MHz	Channel 1 / 2412 MHz
Agilent Spectrum Analyzer - Occupied BW	Agilent Spectrum Analyzer - Occupied IPW
M NO AC INFORMATION AUZIVATION OV 00223999M J00, 2017 Center Freq 2.437000000 GHz Center Freq 2.437000000 GHz Radio Std: Nene Radio Std: Nene #IF/Gelect.ow Trig: Free Run Avg Held>-10/10 Radio Std: Nene Frequency #IF/Gelect.ow #IfFGelect.ow Stdten: 20 dB Radio Device: BTS Radio Device: BTS	W S0 © AC ISENERALS ALSPANTO (00/3356 MA J00), 2017 Center Freq 2.437000000 GHz Center Freq: 2.43700000 GHz Radio Std: None Radio Std: None #IF GaintLow Frequency Trig: Free Run Avg Hold>10/10 Radio Device: BTS 10 dB/div Ref 10.00 dBm Frequency Frequency
Log 100 100 100 100 100 100 100 10	eq 0.00 Center Freq
Center 2.437 GHz Span 30 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms	ep Center 2.437 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms 2000000 kHz
3.00000	Occupied Bandwidth Total Power 8.07 dBm Man
Transmit Freq Error -112.81 kHz OBW Power 99.00 % x dB Bandwidth 9.595 MHz x dB -6.00 dB	Hz Transmit Freq Error -34.476 kHz OBW Power 99.00 % 0 Hz x dB Bandwidth 16.61 MHz x dB -6.00 dB
MSG STATUS	M8G STATUS
Channel 6 / 2437 MHz	Channel 6 / 2437 MHz
Aptient Spectrum Analyzer Oscupied INV ADD/M/I/O Orazon (00/2505 FM XI/00, 2027) M M 100.00 Center Freq: 2.462000000 GHz Radio Std: Nene Center Freq: 2.462000000 GHz Center Freq: 2.462000000 GHz Radio Std: Nene Frequency aff Galaction #Atten: 20 dB Radio Device: BTS Radio Device: BTS	Agitest Spectrum Analyzer Occupied INV All Status All Status
10 dB/dv Ref 10.00 dBm Log 0.00 100 100 100 100 100 100 10	
Center 2.462 GHz Span 30 MHz CF S #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms 3.000001	Center 2.462 GHz Span 30 MHz CF Step #Res BW 100 kHz #VBW 300 kHz Sweep 2.933 ms 3.00000 MHz
Occupied Bandwidth Total Power 13.1 dBm	an Occupied Bandwidth Total Power 7.90 dBm Auto Man
13.981 MHz Freq Off Transmit Freq Error 15.381 kHz OBW Power 99.00 % x dB Bandwidth 9.165 MHz x dB -6.00 dB	Set 16.417 MHz Freq Offset Hz Transmit Freq Error 366 Hz OBW Power 99.00 % 0 Hz x dB Bandwidth 16.51 MHz x dB -6.00 dB
MSG STATUS	MSG
Channel 11 / 2462 MHz	Channel 11 / 2462 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 51

arrester Freq Z102000 CHZ arrester Strange Stran	6 dB				
Center Freq 2.41200000 CHz Head and head and he					
Image: Control 2.412 GHz merces SPERI 300 MHz merces <td>Image: Second Second</td> <td>Center Freq</td>	Image: Second	Center Freq			
Address Spectral Spectra National Spectra Control Freq 2.43700000 GHz Control Freq 2.43700000 GHz Span 30 MHz Span 30	and the set of the se	3.000000 MHz Auto Man Freq Offset			
Image: Note of the second se					
All Content Freq 2.45200000 GHz TO dBJdiv Ref 10.00 dBm Content freq 2.45200000 GHz Content freq 2.45200000 GHz	M Box AC Issues Rest ALSHAUTO Overal 144 300, 2027 Center Freq 2.437000000 GHz Radio Std: None Radio Std: None Inter Freq 2.437000000 GHz Free Run Avg Held>10/10 Radio Std: None Inter Freq 2.437000000 GHz Free Run Avg Held>10/10 Radio Std: None Inter Freq 2.437000000 GHz Free Run Avg Held>10/10 Radio Std: None Inter Galaxt.ow Free Run Avg Held>10/10 Radio Device: BTS Inter Galaxt.ow Free Run Avg Held>10/10 Radio Device: BTS Inter Galaxt.ow Free Run Avg Held>10/10 Radio Device: BTS Inter Galaxt.ow Free Run Free Run Free Run Inter Run Free Run Support<	Center Freq 2.437000000 GHz 3.000000 MHz Auto Man Freq Offset			
Center Freq Zadio Device: BTS 10 dB/div Ref 10.00 dBm 000 Image: States: 20 dB Radio Device: BTS 000 Image: States: 20 dB Center Freq 000 Image: States: 20 dB Center Freq 000 Image: States: 20 dB Center Freq 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: States: 20 dB Image: States: 20 dB 000 Image: 20 dB Image: 20 dB 000 Image: 20 dB Image: 20 dB 000 Image: 20 dB Image: 20 dB	MIG STATUS Channel 6 / 2437 MHz Agrees fyrectrym Analyzes: Occupied MV M Sola 42 Solate FALSE ALIZE	Frequency			
	Center Freq 2.462000000 GHz Center Freq 2.46200000 GHz Radio Std: None stf:Date.tow Freq 2.46200000 GHz Radio Std: None 10 dB/div Ref 10.00 dBm Ref 10.00 dBm 000 000 000 000 100 000 000 000 000 000 000 000 000 000 000 000 00	Center Freq			
	Channel 11 / 2462 MHz	out the writt			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 51

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.
\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 51

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.5 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

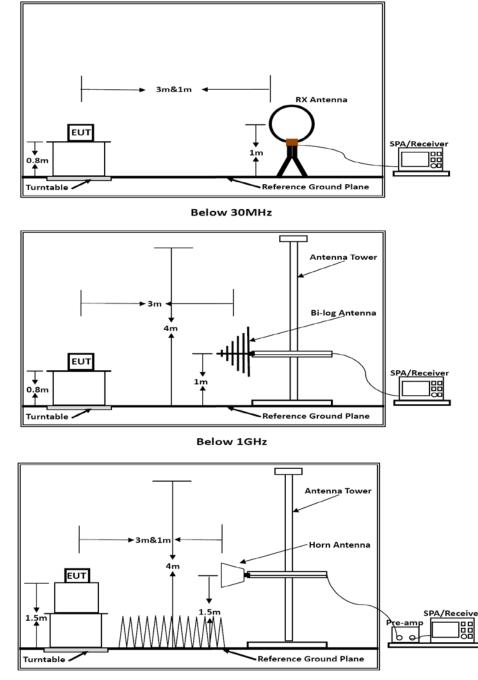
--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

ID: 2AMVL-WUS001 Report No.: LCS170712003AE

5.5.4. Test Setup Layout

For radiated emissions below 30MHz

Above 1GHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 51

5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

Temperature	25°C	Humidity	/	60%
Test Engineer	CHAZ	Configur	ations	802.11b/g/n
		_		
Eroa		OverLimit		+

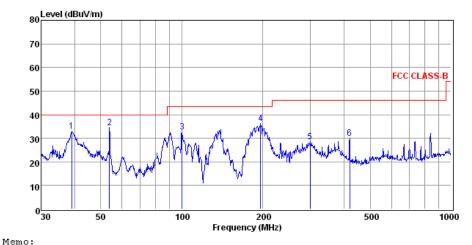
Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


5.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25°C	Humidity	60%
Test Engineer	CHAZ	Configurations	IEEE 802.11b (High CH)

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b).

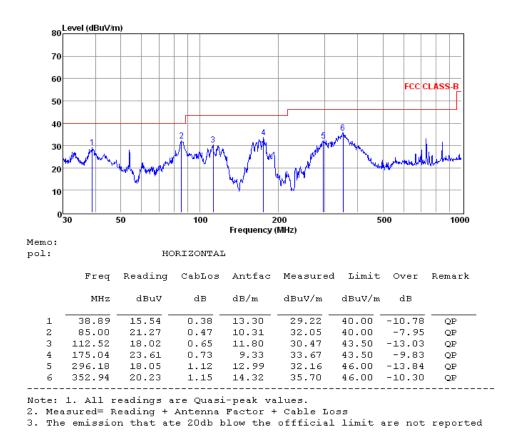
Test result for IEEE 802.11b (High Channel)

Vertical

Mem	o	:	
pol	:		

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	39.02	19.19	0.38	13.33	32.90	40.00	-7.10	QP
2	53.88	20.91	0.46	13.07	34.44	40.00	-5.56	QP
3	100.23	19.03	0.60	13.14	32.77	43.50	-10.73	QP
4	195.82	24.70	0.96	10.57	36.23	43.50	-7.27	QP
5	299.32	14.38	1.13	13.05	28.56	46.00	-17.44	QP
6	420.58	13.27	1.33	15.47	30.07	46.00	-15.93	QP

Note: 1. All readings are Quasi-peak values.


2. Measured= Reading + Antenna Factor + Cable Loss

VERTICAL

3. The emission that ate 20db blow the offficial limit are not reported

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 51

Horizontal

Note:

Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b (High Channel)). Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

IEEE 802.11b

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	57.48	33.06	35.04	3.94	59.44	74.00	-14.56	Peak	Horizontal
4824.00	40.35	33.06	35.04	3.94	42.31	54.00	-11.69	Average	Horizontal
4824.00	62.53	33.06	35.04	3.94	64.49	74.00	-9.51	Peak	Vertical
4824.00	42.21	33.06	35.04	3.94	44.17	54.00	-9.83	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	62.54	33.16	35.15	3.96	64.51	74.00	-9.49	Peak	Horizontal
4874.00	41.86	33.16	35.15	3.96	43.83	54.00	-10.17	Average	Horizontal
4874.00	58.30	33.16	35.15	3.96	60.27	74.00	-13.73	Peak	Vertical
4874.00	41.13	33.16	35.15	3.96	43.10	54.00	-10.90	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	62.56	33.26	35.14	3.98	64.52	74.00	-9.48	Peak	Horizontal
4924.00	42.04	33.26	35.14	3.98	44.00	54.00	-10.00	Average	Horizontal
4924.00	60.86	33.26	35.14	3.98	62.82	74.00	-11.18	Peak	Vertical
4924.00	42.32	33.26	35.14	3.98	44.28	54.00	-9.72	Average	Vertical

IEEE 802.11g

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	59.04	33.06	35.04	3.94	61.00	74.00	-13.00	Peak	Horizontal
4824.00	42.02	33.06	35.04	3.94	43.98	54.00	-10.02	Average	Horizontal
4824.00	58.12	33.06	35.04	3.94	60.18	74.00	-13.82	Peak	Vertical
4824.00	39.17	33.06	35.04	3.94	41.23	54.00	-12.77	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	62.57	33.16	35.15	3.96	64.54	74.00	-9.46	Peak	Horizontal
4874.00	41.56	33.16	35.15	3.96	43.53	54.00	-10.47	Average	Horizontal
4874.00	57.95	33.16	35.15	3.96	60.02	74.00	-13.98	Peak	Vertical
4874.00	42.79	33.16	35.15	3.96	44.86	54.00	-9.14	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	62.10	33.26	35.14	3.98	64.20	74.00	-9.80	Peak	Horizontal
4924.00	42.55	33.26	35.14	3.98	44.65	54.00	-9.35	Average	Horizontal
4924.00	59.13	33.26	35.14	3.98	61.33	74.00	-12.67	Peak	Vertical
4924.00	43.27	33.26	35.14	3.98	45.47	54.00	-8.53	Average	Vertical

IEEE802.11 n HT20

Channel 1 / 2412 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4824.00	60.48	33.06	35.04	3.94	62.45	74.00	-11.55	Peak	Horizontal
4824.00	45.22	33.06	35.04	3.94	47.19	54.00	-6.81	Average	Horizontal
4824.00	62.70	33.06	35.04	3.94	64.77	74.00	-9.23	Peak	Vertical
4824.00	49.28	33.06	35.04	3.94	51.35	54.00	-2.65	Average	Vertical

Channel 6 / 2437 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4874.00	64.13	33.16	35.15	3.96	64.13	74.00	-7.90	Peak	Horizontal
4874.00	47.00	33.16	35.15	3.96	47.00	54.00	-5.03	Average	Horizontal
4874.00	63.77	33.16	35.15	3.96	63.77	74.00	-8.16	Peak	Vertical
4874.00	40.17	33.16	35.15	3.96	40.17	54.00	-11.76	Average	Vertical

Channel 11 / 2462 MHz

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4924.00	64.50	33.26	35.14	3.98	66.47	74.00	-7.53	Peak	Horizontal
4924.00	47.68	33.26	35.14	3.98	49.65	54.00	-4.35	Average	Horizontal
4924.00	64.57	33.26	35.14	3.98	66.64	74.00	-7.36	Peak	Vertical
4924.00	44.41	33.26	35.14	3.98	46.48	54.00	-7.52	Average	Vertical

Notes:

- 1. Measuring frequencies from 9 KHz ~10th harmonic or 26.5GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

5.6. Conducted Spurious Emissions and Band Edges Test

5.6.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
RB / VB (Emission in restricted band)	100KHz/300KHz
RB / VB (Emission in non-restricted band)	100KHz/300KHz

5.6.3. Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 26.5GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

5.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 5.4.4.

5.6.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

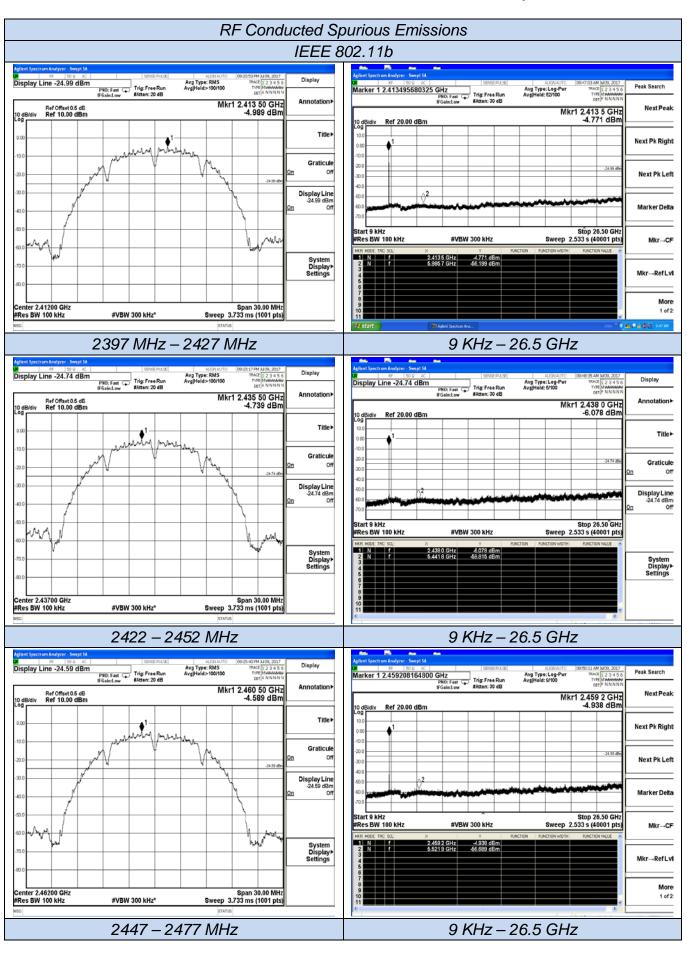
5.6.6. Test Results of Conducted Spurious Emissions

Temperature	25 ℃	Humidity	60%
Test Engineer	Chaz	Configurations	IEEE 802.11b/g/n

Test Mode	Channel	Frequency (MHz)	Spurious RF Conducted Emission (dBc)	Limits (dBc)	Verdict
IEEE 802.11b	1 6	2412 2437	<-20 <-20	-20	PASS
	11	2462	<-20		
	1	2412	<-20		
IEEE 802.11g	6	2437	<-20	-20	PASS
	11	2462	<-20		
IEEE 802.11n	1	2412	<-20		
HT20	6	2437	<-20	-20	PASS
11120	11	2462	<-20		

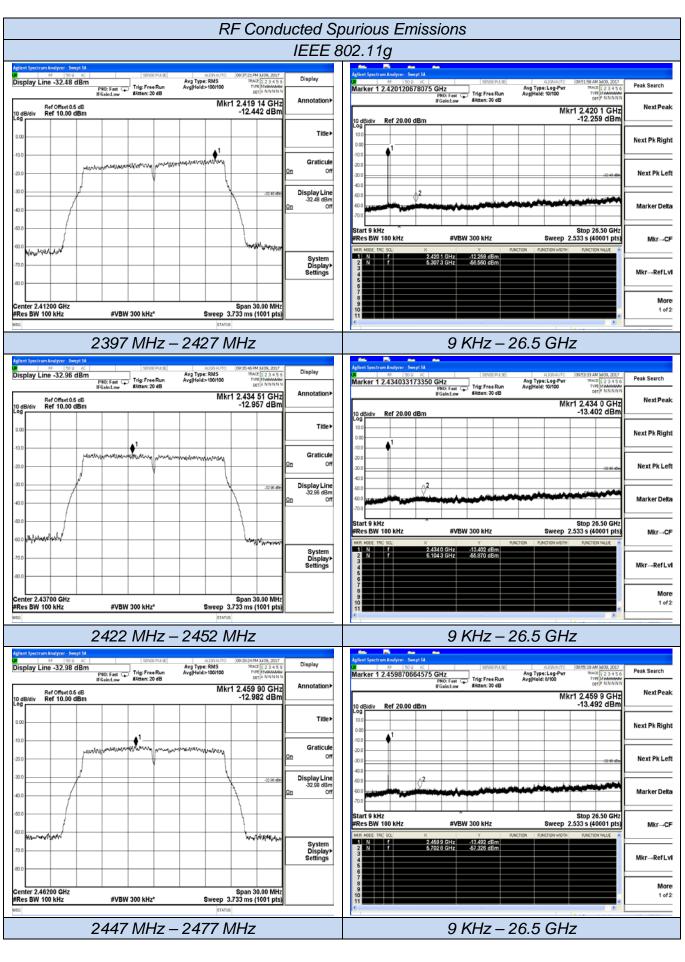
Remark:

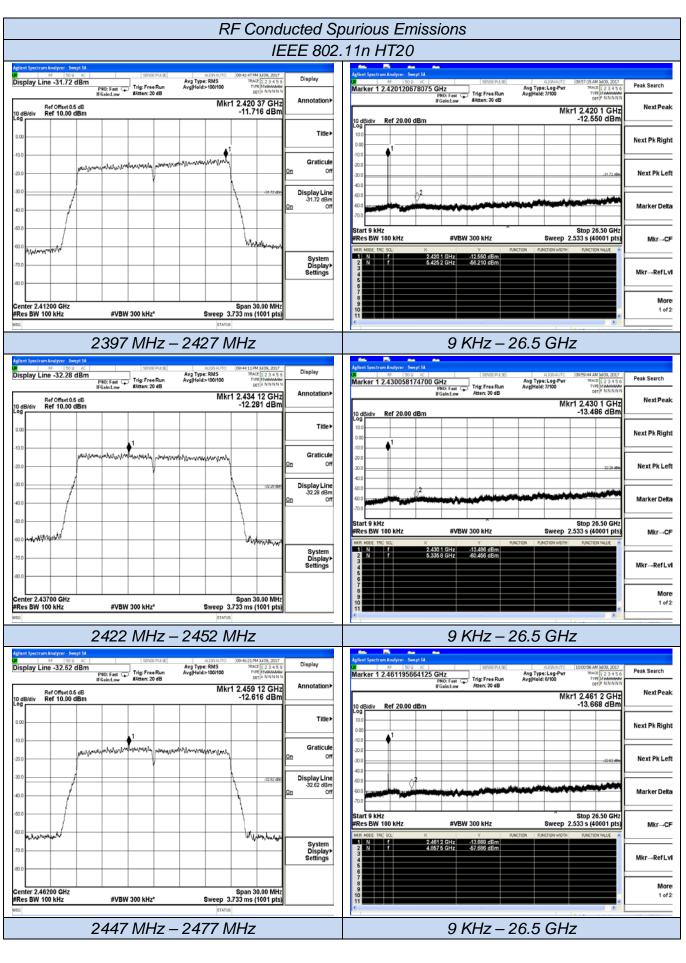
1. Measured RF conducted spurious emission at difference data rate for each mode and recorded worst case for each mode.

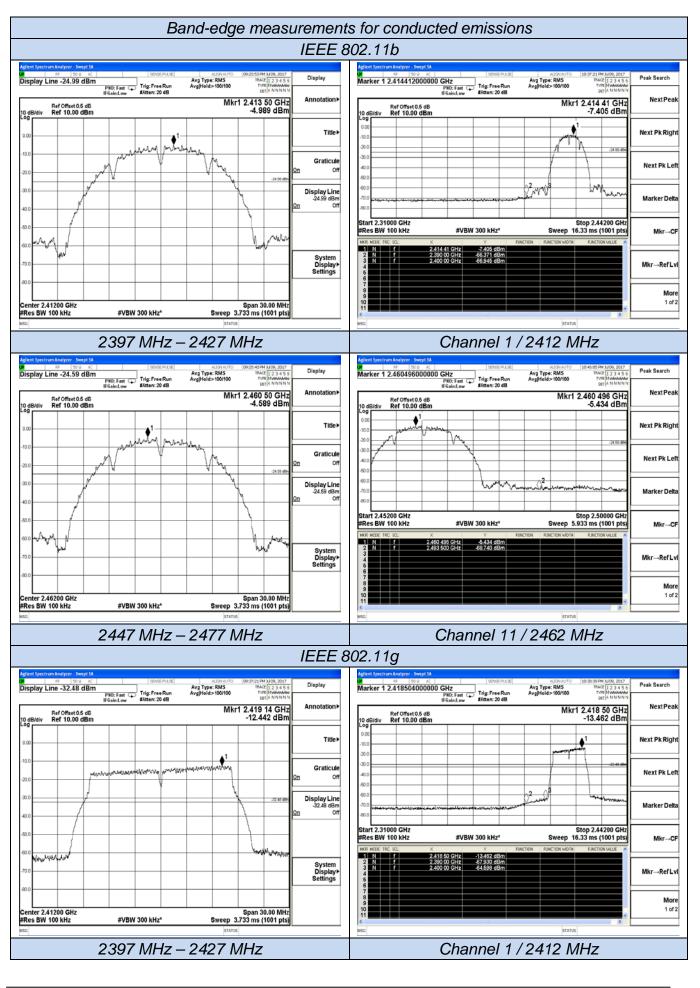

2. Test results including cable loss;

3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20

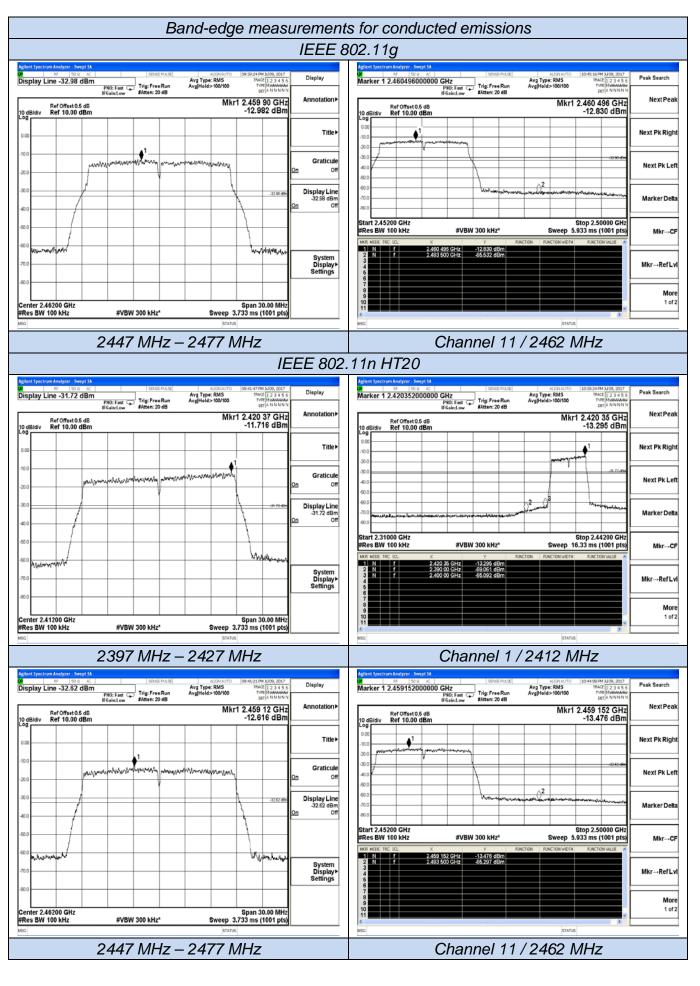
4. "--- "means that the fundamental frequency not for 15.209 limits requirement.


5. Please refer to following plots;


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 51



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 51

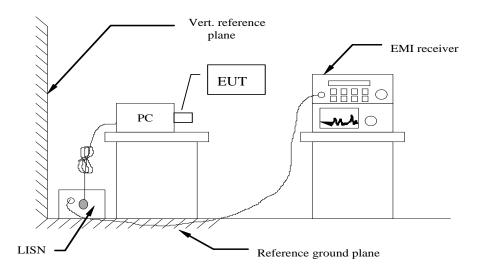


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 51

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 51

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 51

5.7. AC Power line conducted emissions

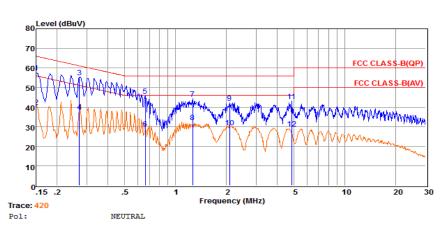

5.7.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

* Decreasing linearly with the logarithm of the frequency

5.7.2 Block Diagram of Test Setup

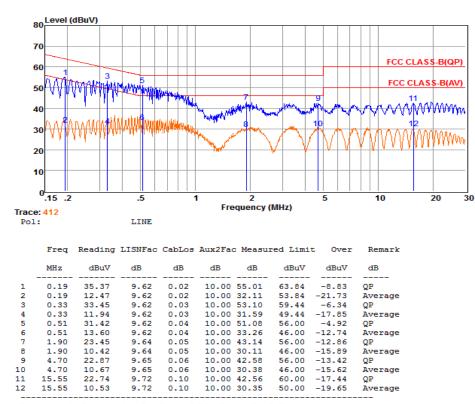

5.7.3 Test Results

PASS

The test data please refer to following page.

AC Conducted Emission AC Mains @ 120V/60Hz @ IEEE 802.11b (worst case)

Neutral



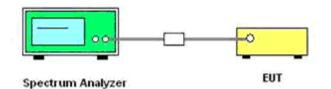
Freq Reading LISNFac CabLos Aux2Fac Measured Limit Over Remark

	MHz	dBuV	dB	dB	dB	dB	dBuV	dBuV	dB
1	0.15	37.95	9.70	0.02	10.00		66.00	-8.33	QP
2	0.15	20.52	9.70	0.02	10.00	40.24	55.99	-15.75	Average
3	0.27	35.74	9.60	0.03	10.00	55.37	61.12	-5.75	QP
4	0.27	18.00	9.60	0.03	10.00	37.63	51.11	-13.48	Average
5	0.66	26.06	9.63	0.04	10.00	45.73	56.00	-10.27	QP
6	0.66	9.33	9.63	0.04	10.00	29.00	46.00	-17.00	Average
7	1.26	24.52	9.63	0.05	10.00	44.20	56.00	-11.80	QP
8	1.26	12.80	9.63	0.05	10.00	32.48	46.00	-13.52	Average
9	2.09	22.66	9.63	0.05	10.00	42.34	56.00	-13.66	QP
10	2.09	9.92	9.63	0.05	10.00	29.60	46.00	-16.40	Average
11	4.85	23.33	9.66	0.06	10.00	43.05	56.00	-12.95	QP
12	4.85	9.46	9.66	0.06	10.00	29.18	46.00	-16.82	Average

Remarks: 1. Measured = Reading +Cable Loss +Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

Line

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11b).


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 51

5.8. Band-edge measurements for radiated emissions

5.8.1 Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

5.8.2. Test Setup Layout

5.8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

5.8.4. Test Procedures

According to KDB 558074 D01 for Antenna-port conducted measurement. Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for Peak detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.
- 6. Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7. Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9. For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10. Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8

Where:

 $E = electric field strength in dB\muV/m,$ EIRP = equivalent isotropic radiated power in dBm

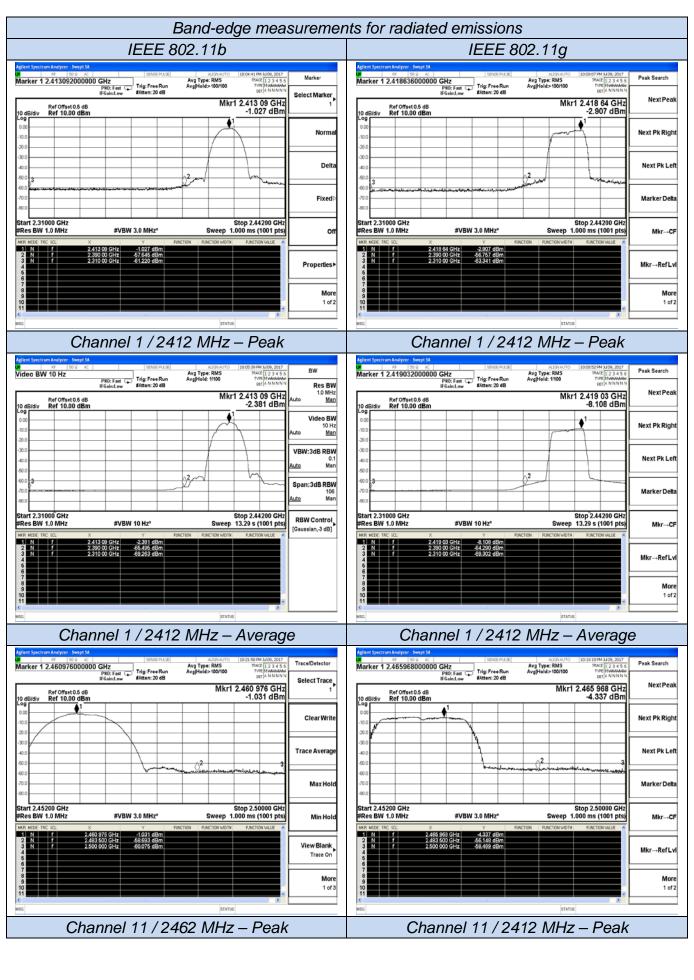
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 51

D = specified measurement distance in meters.

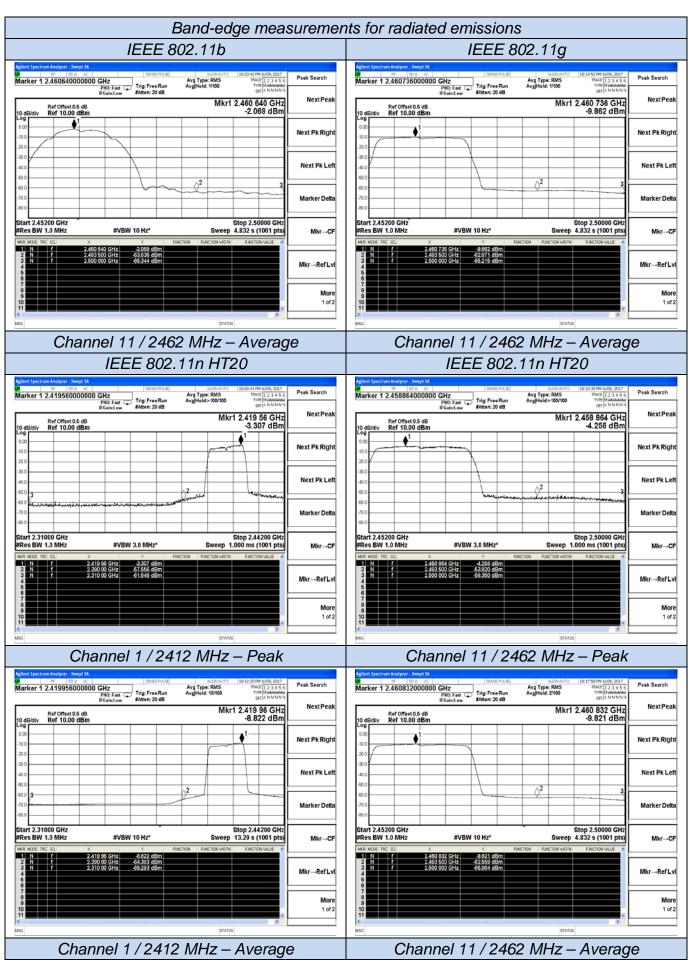
- 11. Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used. 12. Compare the resultant electric field strength level to the applicable regulatory limit.
- 13. Perform radiated spurious emission test duress until all measured frequencies were complete.

5.8.5 Test	t Results
------------	-----------

	IEEE 802.11b									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-61.220	3.000	0.000	37.008	Peak	74.00	PASS			
2310.000	-69.263	3.000	0.000	28.965	AV	54.00	PASS			
2390.000	-57.645	3.000	0.000	40.583	Peak	74.00	PASS			
2390.000	-65.495	3.000	0.000	32.733	AV	54.00	PASS			
2483.500	-58.693	3.000	0.000	39.535	Peak	74.00	PASS			
2483.500	-63.636	3.000	0.000	34.592	AV	54.00	PASS			
2500.000	-60.075	3.000	0.000	38.153	Peak	74.00	PASS			
2500.000	-66.344	3.000	0.000	31.884	AV	54.00	PASS			


IEEE 802.11g									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict		
2310.000	-63.341	3.000	0.000	34.887	Peak	74.00	PASS		
2310.000	-69.302	3.000	0.000	28.926	AV	54.00	PASS		
2390.000	-56.757	3.000	0.000	41.471	Peak	74.00	PASS		
2390.000	-64.290	3.000	0.000	33.938	AV	54.00	PASS		
2483.500	-56.148	3.000	0.000	42.080	Peak	74.00	PASS		
2483.500	-62.871	3.000	0.000	35.357	AV	54.00	PASS		
2500.000	-58.489	3.000	0.000	39.739	Peak	74.00	PASS		
2500.000	-65.215	3.000	0.000	33.013	AV	54.00	PASS		

	IEEE 802.11n HT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-61.648	3.000	0.000	36.580	Peak	74.00	PASS			
2310.000	-69.293	3.000	0.000	28.935	AV	54.00	PASS			
2390.000	-57.556	3.000	0.000	40.672	Peak	74.00	PASS			
2390.000	-64.383	3.000	0.000	33.845	AV	54.00	PASS			
2483.500	-53.820	3.000	0.000	44.408	Peak	74.00	PASS			
2483.500	-62.559	3.000	0.000	35.669	AV	54.00	PASS			
2500.000	-58.350	3.000	0.000	39.878	Peak	74.00	PASS			
2500.000	-65.064	3.000	0.000	33.164	AV	54.00	PASS			


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 51

Remark:

- 1. Measured Band edge measurement for radiated emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20
- 4. "--- "means that the fundamental frequency not for 15.209 limits requirement.
- 5. Please refer to following plots;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 51

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 51

5.9. Antenna Requirements

5.9.1. Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

5.9.2 Antenna Connected Construction

5.9.2.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.9.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 3.0dBi, and the antenna is an integral antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.9.2.3. Results: Compliance.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. Conducted power refers ANSI C63.10:2013 Output power test procedure for DTS devices.

Radiated power refers to ANSI C63.10:2013 Radiated emissions tests.

Measurement parameters

Measurement parameter							
Detector:	Peak						
Sweep Time:	Auto						
Resolution bandwidth:	1MHz						
Video bandwidth:	3MHz						
Trace-Mode:	Max hold						

Limits

FCC	ISED				
Antenna Gain					
6 dB	i				

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For WLAN devices, the DSSS mode is used;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 51

T _{nom}	V _{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Measu	Conducted power [dBm] Measured with DSSS modulation		-1.264	-1.301	
Radiated power [dBm] Measured with DSSS modulation		1.059	1.609	1.214	
Gain [dBi] Calculated		2.266	2.873	2.515	
Measurement uncertainty			± 1.6 dB (cond.)	/ ± 3.8 dB (rad.)	

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18, 2016	June 17, 2017
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16, 2016	July 15, 2017
Signal analyzer	Agilent	N9020A	MY50510140	9kHz~26.5GHz	October 27, 2016	October 27, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18, 2016	June 17, 2017
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18, 2016	June 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18, 2016	June 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18, 2016	June 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-40GHz	June 18, 2016	June 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18, 2016	June 17, 2017
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16, 2016	July 15, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16, 2016	July 15, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18, 2016	June 17, 2017
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10, 2017	June 09, 2018
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10, 2017	June 09, 2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10, 2017	June 09, 2018
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18, 2016	June 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18, 2016	June 17, 2017
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z81	100458	DC-18GHz	June 18, 2016	June 17, 2017
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18, 2016	June 17, 2017
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	June 18, 2016	June 17, 2017
DC power source	GW	GPC-6030D	C671845	DC 1V-60V	June 18, 2016	June 17, 2017
Temp. and Humidify Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 18, 2016	June 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18, 2016	June 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 18, 2016	June 17, 2017
EMC Test Software	Audix	E3	N/A	N/A	N/A	N/A
Note: All equipment th	rough GRGT EST cal	ibration	•			

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

-----THE END OF TEST REPORT------