

Report Seal

Report No. : EED32M00314801 Page 1 of 113

Product : Smart Wi-Fi Dimmer Switch
Trade mark : Meross, Refoss, Flysocks

Model/Type reference : MSS560, MSS565, MSS570,

MSS565MA, MSS565RE, MSS570MA, MSS570AD

Serial Number : N/A

Report Number : EED32M00314801 FCC ID : 2AMUU-MSWWS03

Date of Issue : Nov. 26, 2020

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Chengdu Meross Technology Co., Ltd.
Room 1312, Floor 13, Building 6-1, Zone E,
Tianfu Software Park, Gaoxin District,
Chengdu, Sichuan, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

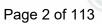
TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Sunlight Sun

Sunlight Sun

Sunlight Sun

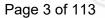

Approved by:

Ap

Check No.:4762165284

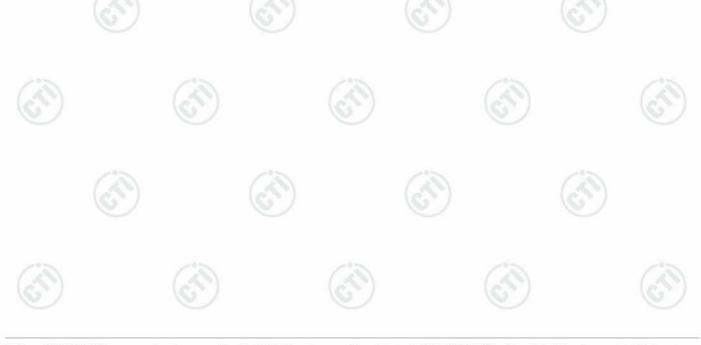
2 Version

Version No.	ersion No. Date Descri		Description	
00	Nov. 26, 2020	Original		
9				
		(20)		



3 Test Summary

o rest duminary	200	200	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

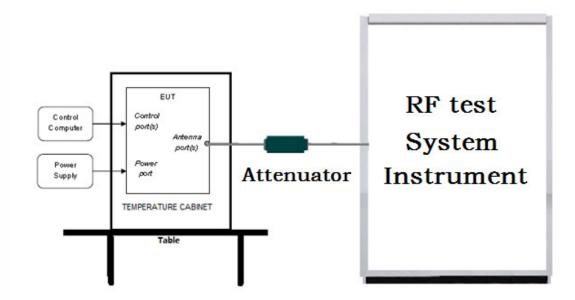
Model No.: MSS560, MSS565, MSS570, MSS565MA, MSS565RE, MSS570MA, MSS570AD.

Only the model MSS560 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference the model number of market reason.

Page 4 of 113

4 Content

1 COVER PAGE					1
2 VERSION			•••••	•••••	2
3 TEST SUMMARY			•••••	•••••	3
4 CONTENT					
5 TEST REQUIREMENT				•••••	5
5.1.2 For Radiated En	est setup nissions test setup Emissions test setup				6
6 GENERAL INFORMATIO	N			•••••	8
6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTIO 6.3 PRODUCT SPECIFICAT 6.4 DESCRIPTION OF SUPP 6.5 TEST LOCATION 6.6 DEVIATION FROM STAN 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION I 6.9 MEASUREMENT UNCER	N OF EUT ION SUBJECTIVE TO THIS SPORT UNITS NDARDS STANDARD CONDITIONS. REQUESTED BY THE CUST RTAINTY (95% CONFIDENCE	STANDARD FOMER CE LEVELS, K=2)			
7 EQUIPMENT LIST			•••••		11
8 RADIO TECHNICAL REC					
Appendix B): 6dB Occ Appendix C): Band-ed Appendix D): RF Cond Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restricte	ed Peak Output Power cupied Bandwidth lge for RF Conducted Erducted Spurious Emission pectral Density Requirement er Line Conducted Emis ed bands around fundam Spurious Emissions	missions ons ssion	adiated)		
PHOTOGRAPHS OF TEST	SETUP		•••••	••••••	102
PHOTOGRAPHS OF EUT	CONSTRUCTIONAL DE	ETAILS		•••••	105



Page 5 of 113

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

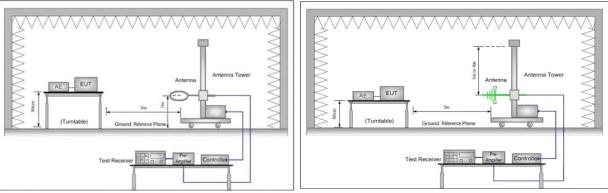
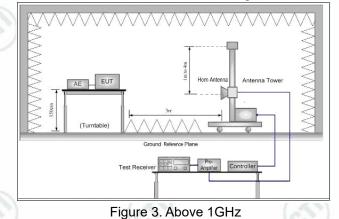
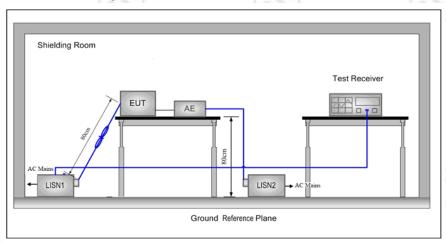



Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 6 of 113

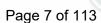
5.1.3 For Conducted Emissions test setup Conducted Emissions setup

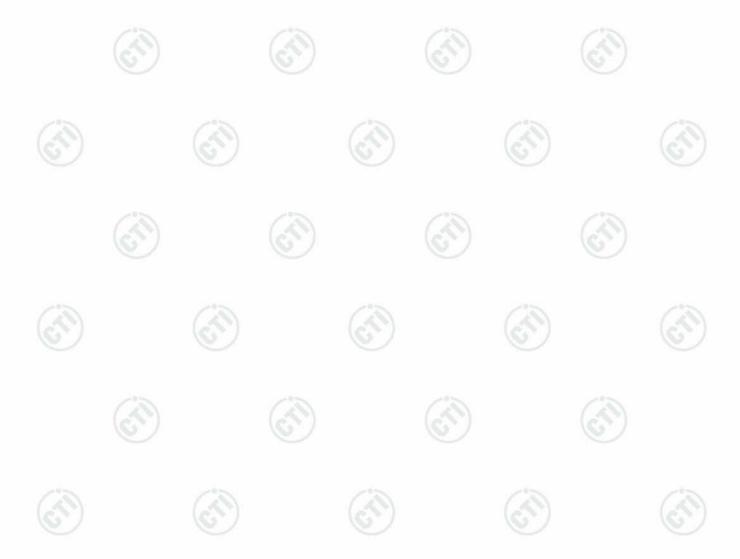
5.2 Test Environment

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH	nia? Dia	
Atmospheric Pressure:	1010mbar		1

5.3 Test Condition

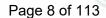
Test channel:


Test Mode	Tv/Dv	RF Channel			
rest wode	Tx/Rx	Low(L)	Middle(M)	High(H)	
902 44b/g/p/UT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	24 2 V 2 ~2402 V 2	2412MHz	2437MHz	2462MHz	
000 44~(UT40)	0400MH- 0450 MH-	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				



Test mode:

Pre-scan under all rate at lowest channel 1


Mode			6	302.11b				(0.	
Data Rate		1Mbp	s 2Mbp	os 5.5Mbp	s 11Mbp	s			
Power(dBm)		14.7	14.6	7 14.63	14.61				
Mode	1	Ti.	<u> </u>		80	2.11g	(3)		
Data Rate	- (4	6Mbp	s 9Mb _l	os 12Mbp	s 18Mbps	s 24Mbp	s 36Mbp	s 48Mbps	54Mbps
Power(dBm))	14.45	5 14.4	3 14.40	14.38	14.35	14.33	14.31	14.30
Mode				<u> </u>	802.11n	(HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power(dBm)	13	3.31	13.29	13.26	13.24	13.21	13.20	13.17	13.15
Mode		802.11n (HT40)							
Data Rate	13.5	Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power(dBm)	12	2.32	12.29	12.28	12.25	12.23	12.21	12.19	12.16

Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of802.11n(HT40).

6 General Information

6.1 Client Information

Applicant:	Chengdu Meross Technology Co., Ltd.
Address of Applicant:	Room 1312, Floor 13, Building 6-1, Zone E, Tianfu Software Park, Gaoxin District, Chengdu, Sichuan, China
Manufacturer:	Chengdu Meross Technology Co., Ltd.
Address of Manufacturer:	Room 1312, Floor 13, Building 6-1, Zone E, Tianfu Software Park, Gaoxin District, Chengdu, Sichuan, China
Factory:	CHENGDU XUGUANG TECHNOLOGY CO.,LTD.
Address of Factory:	2 Section of Park Road, Longquanyi, Chengdu, China

6.2 General Description of EUT

Product Name:	Smart Wi-Fi Dimmer Switch	<i>)</i>	(6)
Model No.(EUT):	MSS560, MSS565, MSS570, MSS5 MSS570AD	65MA, MSS565R	RE, MSS570MA,
Test Model No.:	MSS560	(in	
Trade mark:	Meross, Refoss, Flysocks	(6,2)	0,
EUT Supports Radios application:	IEEE 802.11 b/g/n(HT20)(HT40): 24	112MHz to 2462M	lHz
Power Supply:	AC 120V		25
Sample Received Date:	Sep. 29, 2020)	
Sample tested Date:	Sep. 29, 2020 to Oct. 21, 2020		

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 24 IEEE 802.11n(HT40): 2422MHz to 2452M	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 IEEE 802.11n HT40: 7 Channels	
Channel Separation:	5MHz	
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DE IEEE for 802.11g :OFDM(64QAM, 16QAM IEEE for 802.11n(HT20 and HT40) : OFD	/I, QPSK, BPSK)
Test Power Grade:	Default	
Test Software of EUT:	QATool_Dbg.exe	
Antenna Type and Gain:	Type: PCB antenna Gain:1.5 dBi	
Test Voltage:	AC 120V	

Re

Page	9	of	1	13

Operation	Frea	uencv ea	ch of channe	el(802.11b/g/n	HT20)			
Channel	1.1	quency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	24	12MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	24	17MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	24	22MHz	6	2437MHz	9	2452MHz)	
Operation	Freq	uency ea	ch of channe	el(802.11n HT ₄	-0)	0		(0)
Channe	ı	Frequ	ency	Channel	Frequenc	cy Cha	nnel f	requency
13		2422	MHz	4	2437MH	z ī	7	2452MHz
2	(3)	24271	MHz	5	2442MH	z		
3		24321	MHz	6	2447MH	Z		

Page 10 of 113

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	Associated Manufactequipment name		model	S/N serial number	Supplied by	Certification
AE1	Notebook	HP	HP ProBook 430 G3	5CG5192QSM	СТІ	CE&FCC
)	(6	37)	(6,)	(6,2)		(6,7)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

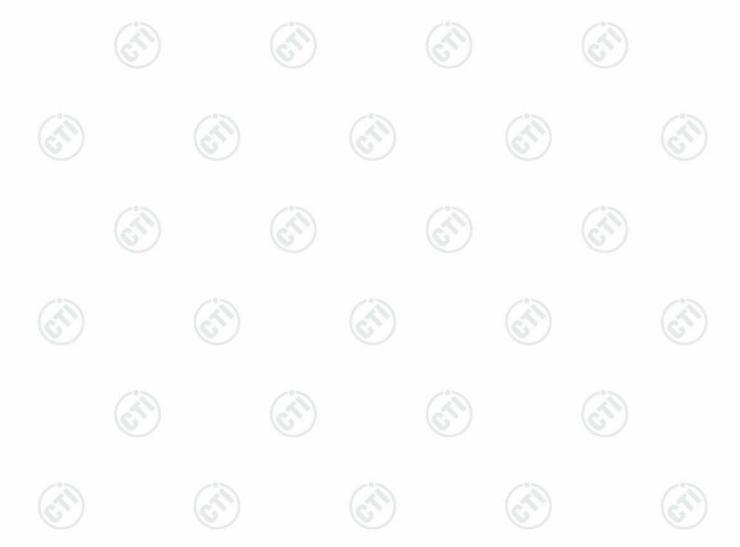

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
(2:3)	DE nower conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dedicted Courieus amission tost	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

www.cti-cert.com E-mail: info@cti-cert.com

7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	(0.)	(ـــ ال
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(0.7	(0)
BT&WI-FI Automatic control	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(6)		<u> </u>


	and All Philips	and Comment		and SE Trace	Lat 12 Plan		
Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021		
Temperature/ Humidity Indicator	Defu	TH128		/	(B)		
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021		
Barometer	changchun	DYM3	1188				

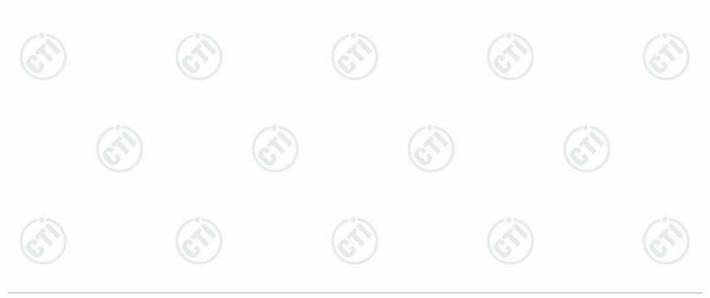
	Page	12	of	1	13
--	------	----	----	---	----

1-631	1.6	6.7	1881		[43]
	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber &					
Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112	(27)	ii	(e/1)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/ '	
Cable line	Fulai(3M)	SF106	5217/6A	(22.)	

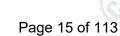
Page 13 of 113

F	M f t	Madal Na	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980597	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(4)	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(E)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		/35
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

8 Radio Technical Requirements Specification


Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices


Page 14 of 113

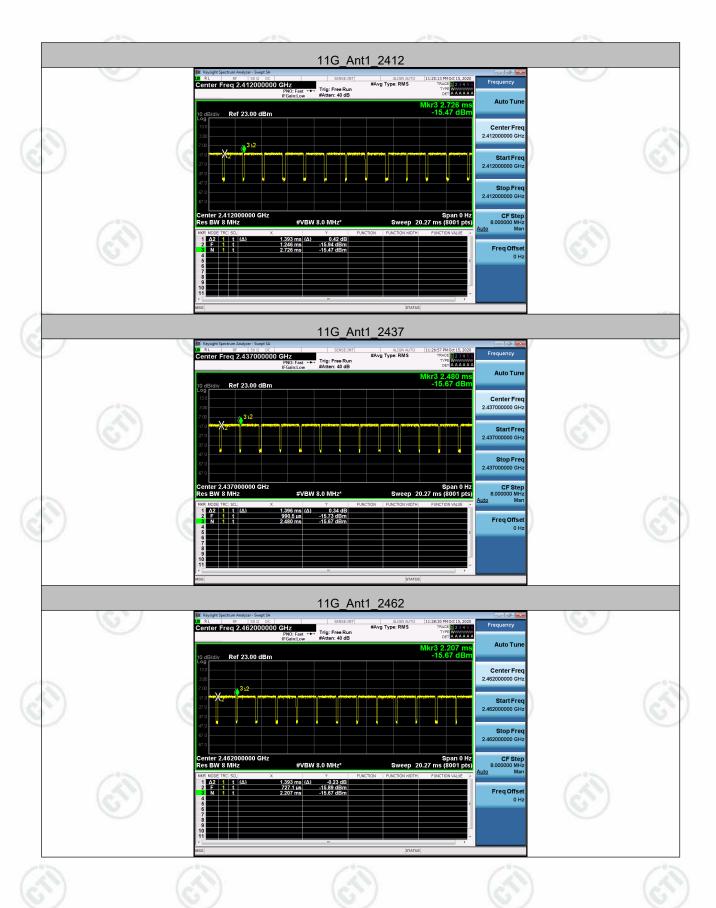
Test Results List:

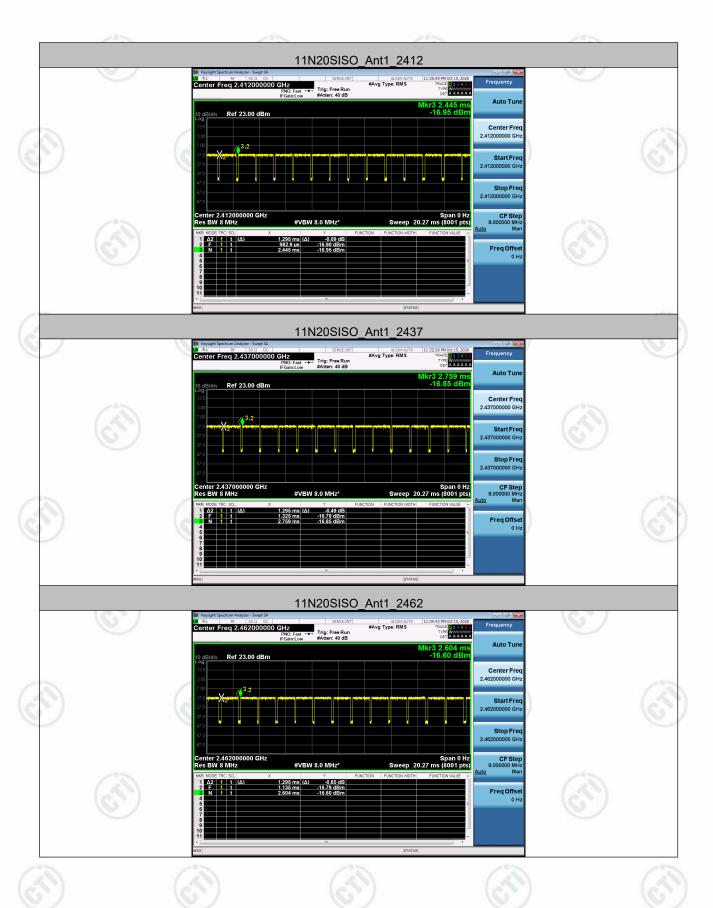
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

Result Table

Test Mode	Antenna	Channel	Duty Cycle [%]	Limit	Verdict
	Ant1	2412	98.21		PASS
11B	Ant1	2437	98.75	<u></u>	PASS
)	Ant1	2462	98.72	(°)	PASS
	Ant1	2412	94.18		PASS
11G	Ant1	2437	93.71		PASS
	Ant1	2462	94.18		PASS
(0,)	Ant1	2412	88.56		PASS
11N20SISO	Ant1	2437	90.28		PASS
	Ant1	2462	88.10		PASS
	Ant1	2422	83.95	<u></u>	PASS
11N40SISO	Ant1	2437	83.11	/	PASS
	Ant1	2452	85.96		PASS


Page 16 of 113



Page 17 of 113

Page 18 of 113

Page 19 of 113

Page 20 of 113

Appendix A): Conducted Peak Output Power

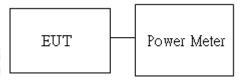
Test Limit

According to §15.247(b)(3),

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi. If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Limit	(in)	 ✓ Antenna not exceed 6 dBi: 30dBm ☐ Antenna with DG greater than 6 dBi: [Limit = 30 - (DG - 6)] ☐ Point-to-point operation: 	(cit)
-------	------	--	-------


Average output power: For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Test Result

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	14.70	PASS
11B	MCH	14.54	PASS
11B	НСН	14.47	PASS
11G	LCH	14.45	PASS
11G	MCH	14.96	PASS
11G	HCH	14.86	PASS
11N20SISO	LCH	13.31	PASS
11N20SISO	MCH	13.83	PASS
11N20SISO	HCH	13.68	PASS
11N40SISO	LCH	12.32	PASS
11N40SISO	MCH	12.43	PASS
11N40SISO	HCH	12.50	PASS

Page 22 of 113

Appendix B): 6dB Occupied Bandwidth

Test Limit

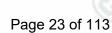
According to §15.247(a)(2),

6 dB Bandwidth:

N. 201	/ 6.33		7 - 66, 76.1
Limit		Shall be at least 500kHz	(0,

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure


Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =100KHz , VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup



Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	
11B	LCH	9.096	14.457	PASS	
11B	MCH	9.111	14.323	PASS	
11B	HCH	10.02	14.396	PASS	
11G	LCH	15.11	16.703	PASS	
11G	MCH	15.06	16.675	PASS	
11G	HCH	15.07	16.746	PASS	
11N20SISO	LCH	15.10	17.630	PASS	
11N20SISO	MCH	15.10	17.600	PASS	
11N20SISO	HCH	15.09	17.675	PASS	
11N40SISO	LCH	35.11	36.069	PASS	
11N40SISO	MCH	35.03	35.967	PASS	
11N40SISO	НСН	33.85	36.085	PASS	

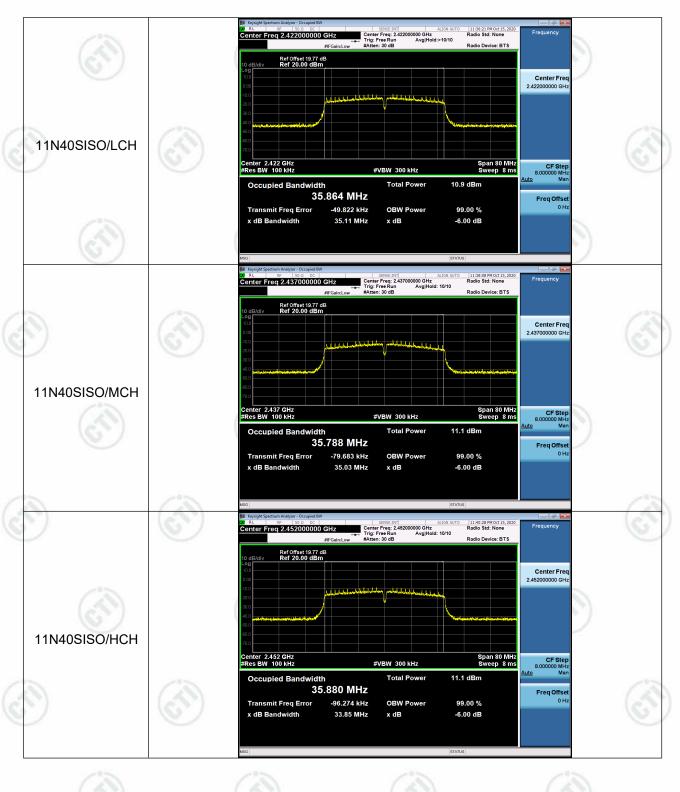
Page 24 of 113

Test Graph

6 dB Bandwidth

Page 25 of 113

Page 26 of 113



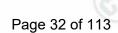
Page 28 of 113

Page 29 of 113

Page 30 of 113



Page 31 of 113



Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d),

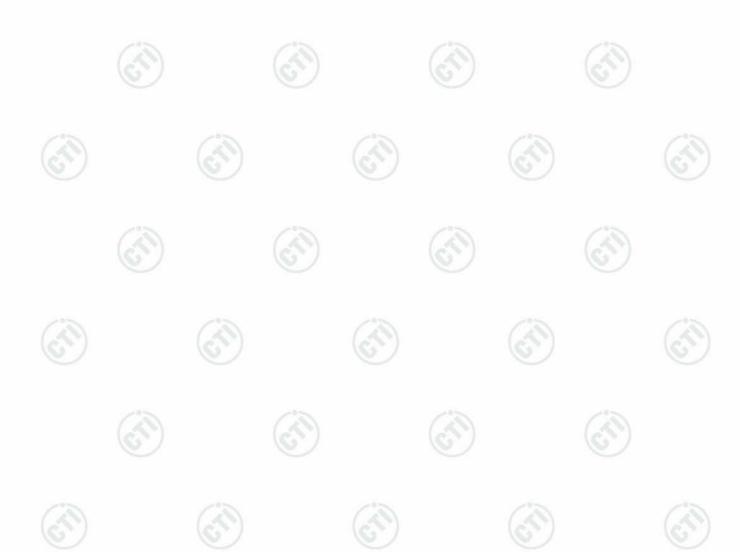
In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).


Test Procedure

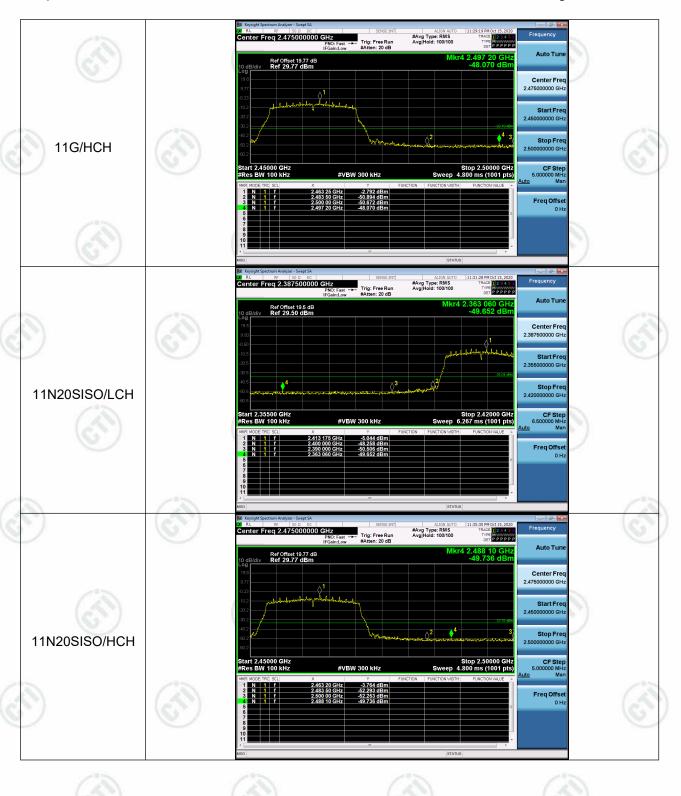
Test method Refer as KDB 558074 D01.

- EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup EUT Spectrum Analyzer

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	2.126	-49.951	-27.87	PASS
11B	НСН	1.808	-49.782	-28.19	PASS
11G	LCH	-3.180	-49.469	-33.18	PASS
11G	НСН	-2.792	-48.070	-32.79	PASS
11N20SISO	LCH	-5.044	-49.652	-35.04	PASS
11N20SISO	НСН	-3.764	-49.736	-33.76	PASS
11N40SISO	LCH	-8.377	-49.824	-38.38	PASS
11N40SISO	HCH	-8.600	-49.828	-38.6	PASS


Page 34 of 113

Test Graph

Page 35 of 113

Page 36 of 113

Report No. :EED32M00314801 Page 37 of 113

Appendix D): RF Conducted Spurious Emissions

Test Limit

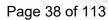
According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

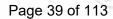
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

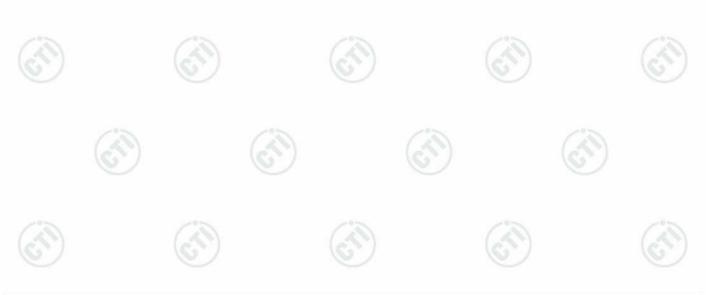

- EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



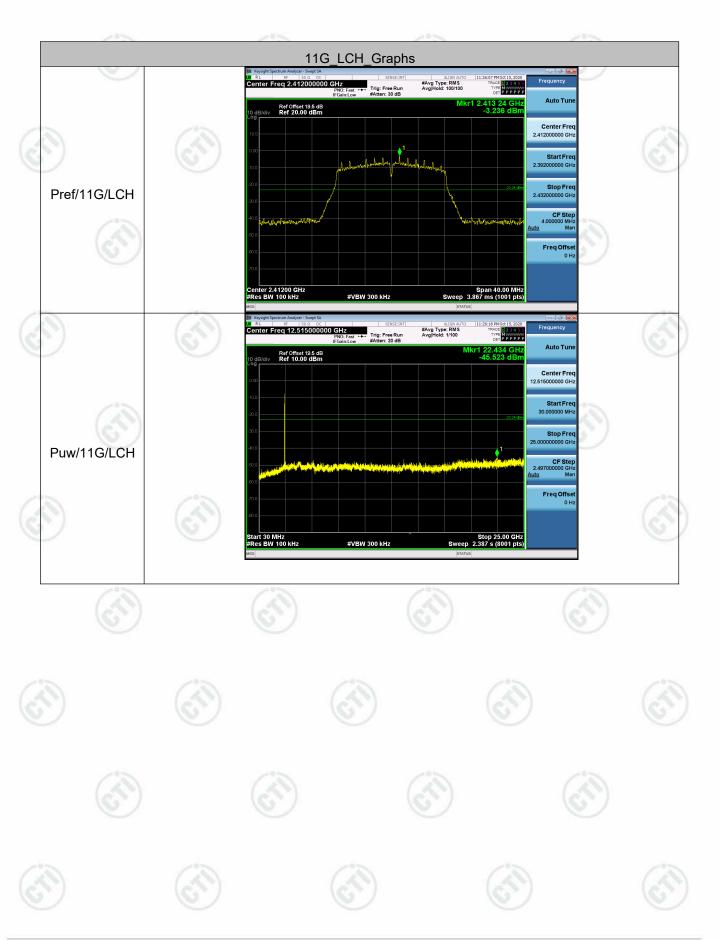
Result Table

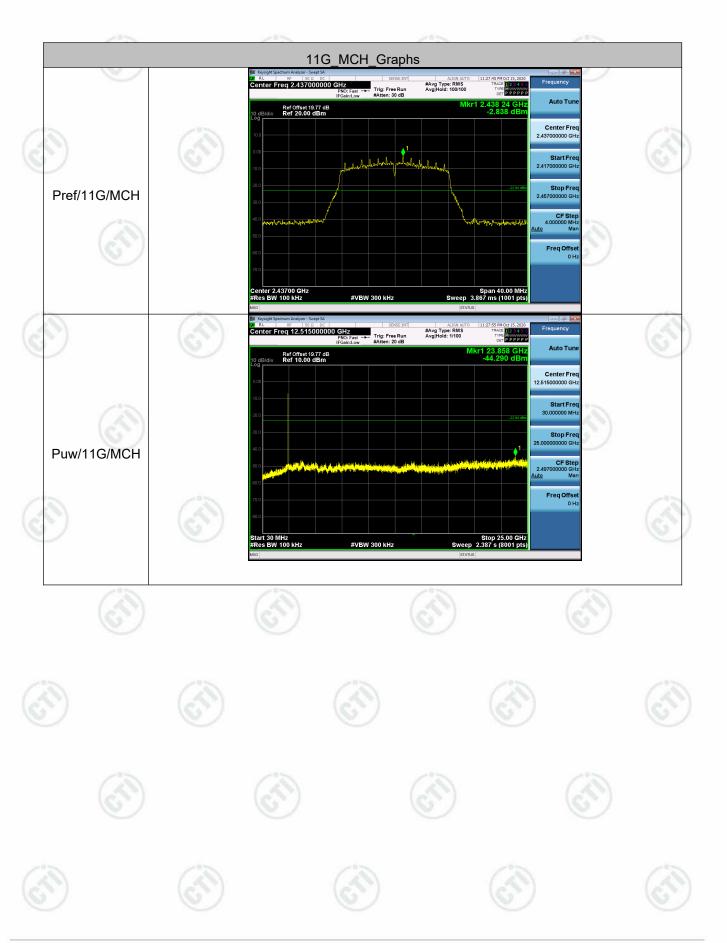
10.4						
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict		
11B	LCH	3.02	<limit< td=""><td>PASS</td></limit<>	PASS		
11B	MCH	1.909	<limit< td=""><td>PASS</td></limit<>	PASS		
11B	НСН	1.921	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	LCH	-3.236	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	MCH	-2.838	<limit< td=""><td>PASS</td></limit<>	PASS		
11G	HCH	-3.35	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	LCH	-4.25	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	MCH	-3.542	<limit< td=""><td>PASS</td></limit<>	PASS		
11N20SISO	HCH	-3.676	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	LCH	-8.45	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	MCH	-7.891	<limit< td=""><td>PASS</td></limit<>	PASS		
11N40SISO	НСН	-8.462	<limit< td=""><td>PASS</td></limit<>	PASS		

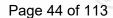


Test Graph

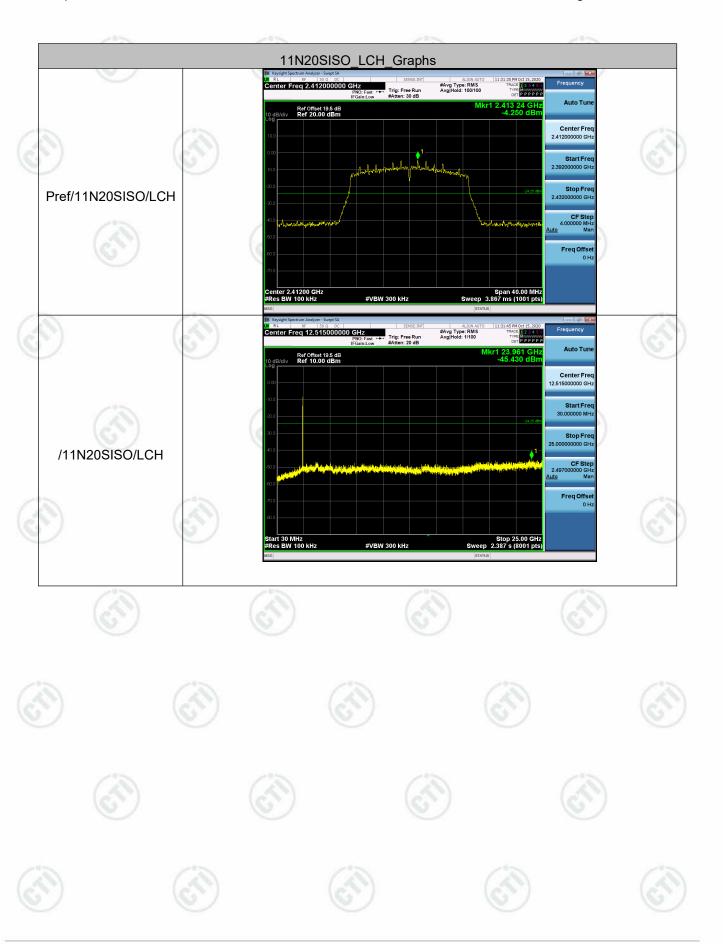
Page 40 of 113

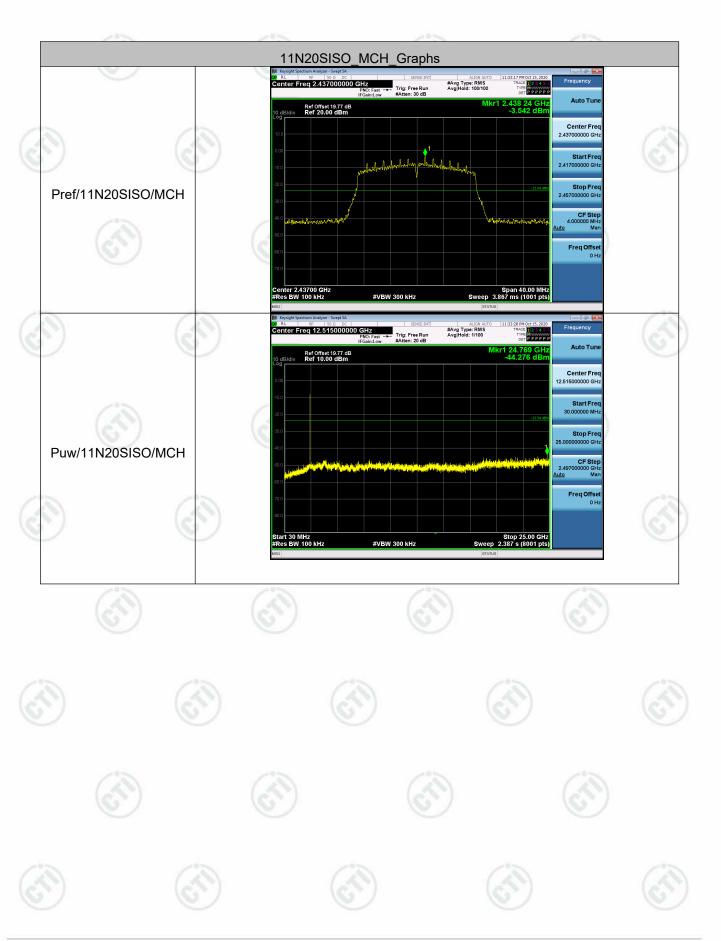

Page 41 of 113





Page 43 of 113




Page 45 of 113

Page 46 of 113

Page 47 of 113

Page 48 of 113

Page 49 of 113

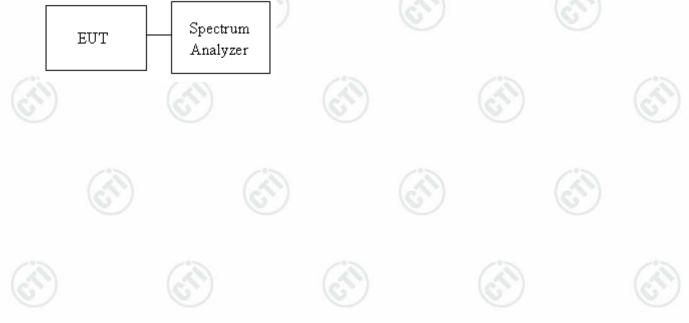
Page 50 of 113

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


 ✓ Antenna not exceed 6 dBi: 8dBm ☐ Antenna with DG greater than 6 dBi: [Limit = 8 - (DG - 6)] ☐ Point-to-point operation:
--

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

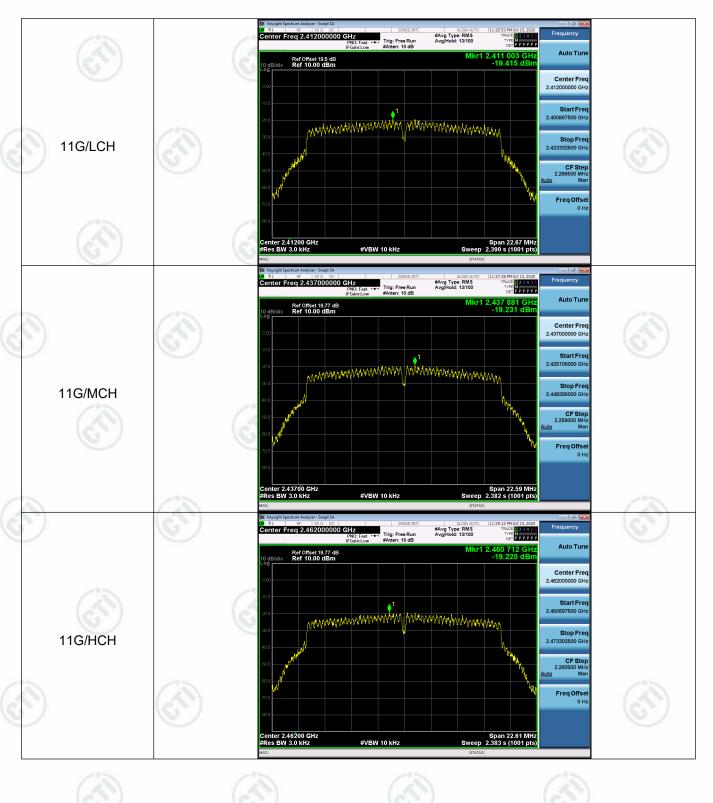
Test Setup

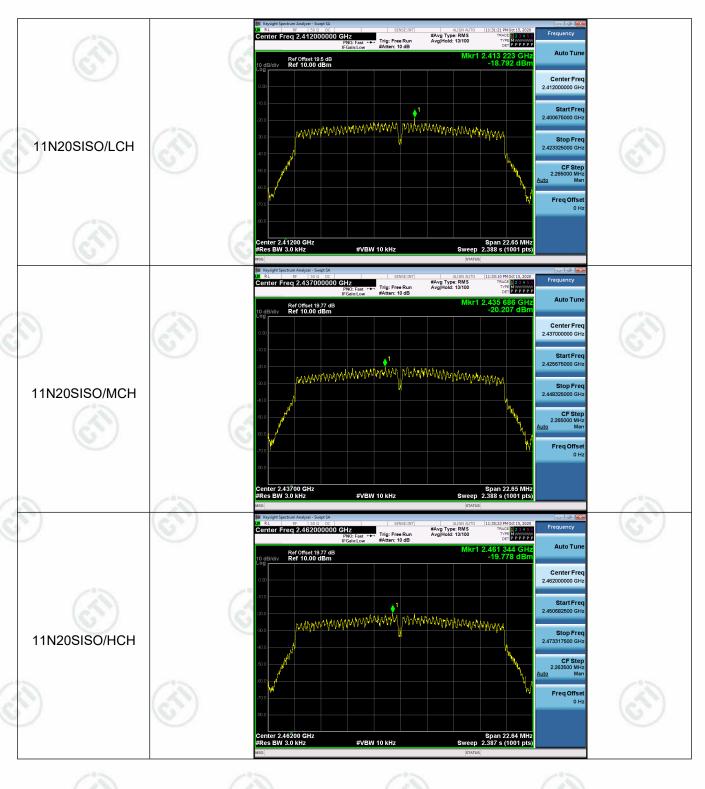
Result Table

ARCAT I	A SET A TO A	The state of the s	
Mode	Channel	Power Spectral Density [dBm]	Verdict
11B	LCH	-12.545	PASS
11B	MCH	-12.907	PASS
11B	НСН	-13.599	PASS
11G	LCH	-19.415	PASS
11G	MCH	-19.231	PASS
11G	HCH	-19.225	PASS
11N20SISO	LCH	-18.792	PASS
11N20SISO	MCH	-20.207	PASS
11N20SISO	HCH	-19.778	PASS
11N40SISO	LCH	-24.721	PASS
11N40SISO	MCH	-23.872	PASS
11N40SISO	НСН	-25.734	PASS

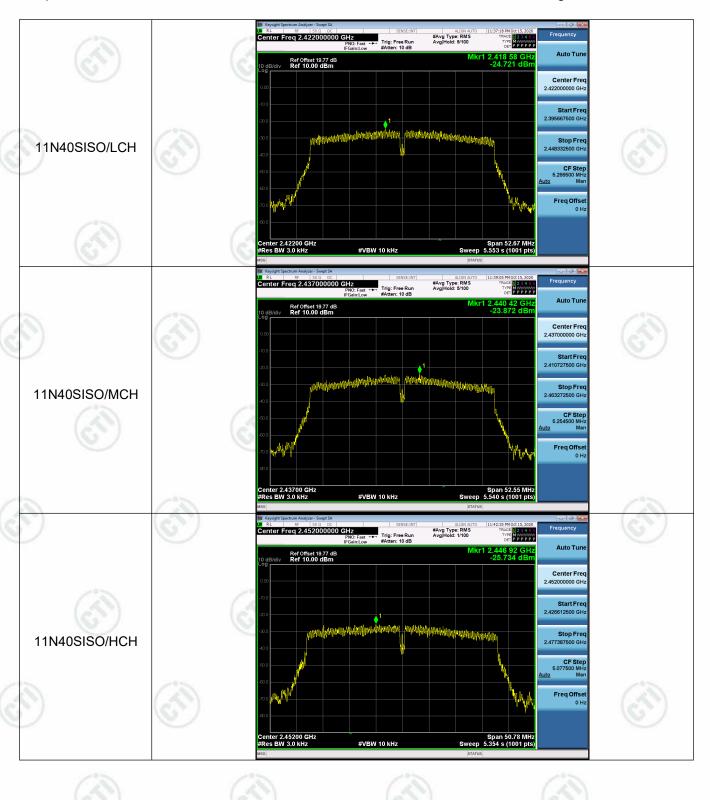
Page 53 of 113

Test Graph




Page 54 of 113

Page 55 of 113

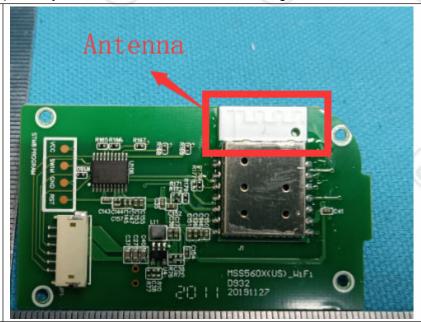


Hotline: 400-6788-333

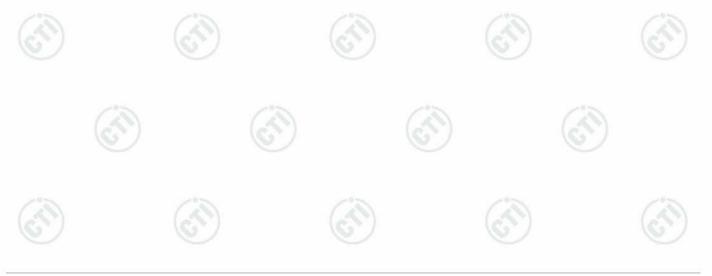
Page 56 of 113

Page 57 of 113

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

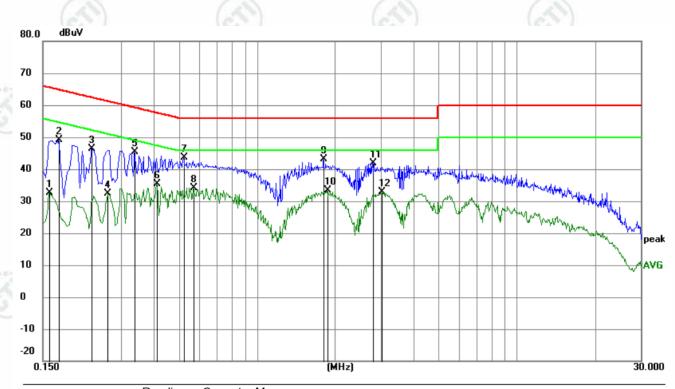

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5 dBi.

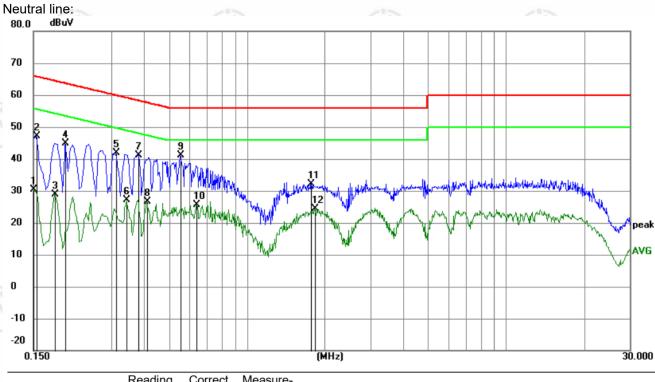
Page 58 of 113 Report No. :EED32M00314801


resultequency range : 150KHz-								
 Test frequency range :150KHz-30MHz The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2 which was bonded to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the LISN 1 for the connected to the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in the same way as the list the ground reference plane in t								
power cables to a single LIS	N provided the rating	g of the LISN was not	exceeded.					
reference plane. And for flo	or-standing arrange							
4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the breference plane for LISNs	a vertical ground revertical ground refect to the horizontal groundary of the united on top of	rence plane. The veround reference plane under test and bonder the ground reference	rtical grount The LISI to a grount plane. T					
[[] [] [] [] [] [] [] [] [] [Limit (d	dBµV)						
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* The limit decreases linearly wi to 0.50 MHz.	ith the logarithm of th	ne frequency in the rar	nge 0.15 M					
		(1)						
performed on the live and neutro	l lines with neak det	ootor						
performed on the live and neutra								
performed on the live and neutrage measurement were performed			emission w					
			emission w					
			emission w					
	power cables of all other u which was bonded to the greathe unit being measured. A power cables to a single LIS 3) The tabletop EUT was place reference plane. And for flothorizontal ground reference 4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs distance was between the confit of the EUT and associated experience of the EUT and associated experience cables must be interface cables must be measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with to 0.50 MHz.	power cables of all other units of the EUT well which was bonded to the ground reference plane the unit being measured. A multiple socket outle power cables to a single LISN provided the rating 3) The tabletop EUT was placed upon a non-met reference plane. And for floor-standing arrange horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane was bonded to the horizontal ground reference plane was bonded to the horizontal ground reference plane for LISNs mounted on top of distance was between the closest points of the lof the EUT and associated equipment was at least the interface cables must be changed according measurement. Frequency range (MHz)	power cables of all other units of the EUT were connected to a set which was bonded to the ground reference plane in the same way as the unit being measured. A multiple socket outlet strip was used to corpower cables to a single LISN provided the rating of the LISN was not of the tabletop EUT was placed upon a non-metallic table 0.8m abover ference plane. And for floor-standing arrangement, the EUT was phorizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The result be 0.4m from the vertical ground reference plane. The vereference plane was bonded to the horizontal ground reference plane was placed 0.8m from the boundary of the unit under test and bonder reference plane for LISNs mounted on top of the ground reference distance was between the closest points of the LISN 1 and the EUT. And the EUT and associated equipment was at least 0.8m from the LISN 5) In order to find the maximum emission, the relative positions of equipment the interface cables must be changed according to ANSI C63.10 comeasurement. Frequency range (MHz)					

Page 59 of 113

Live line:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	22.81	9.87	32.68	55.52	-22.84	AVG	
2	0.1725	39.36	9.87	49.23	64.84	-15.61	QP	
3	0.2310	36.45	9.93	46.38	62.41	-16.03	QP	
4	0.2670	22.36	10.00	32.36	51.21	-18.85	AVG	
5	0.3390	35.23	10.03	45.26	59.23	-13.97	QP	
6	0.4110	25.43	9.97	35.40	47.63	-12.23	AVG	
7	0.5235	33.60	9.98	43.58	56.00	-12.42	QP	
8 *	0.5685	24.18	10.03	34.21	46.00	-11.79	AVG	
9	1.8015	33.24	9.80	43.04	56.00	-12.96	QP	
10	1.8645	23.53	9.80	33.33	46.00	-12.67	AVG	
11	2.7825	32.19	9.79	41.98	56.00	-14.02	QP	
12	3.0120	23.08	9.79	32.87	46.00	-13.13	AVG	



	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1500	20.45	9.87	30.32	56.00	-25.68	AVG	
	2	0.1545	37.32	9.87	47.19	65.75	-18.56	QP	
	3	0.1815	19.02	9.87	28.89	54.42	-25.53	AVG	
	4	0.1995	35.13	9.87	45.00	63.63	-18.63	QP	
	5	0.3120	31.85	10.06	41.91	59.92	-18.01	QP	
	6	0.3435	17.22	10.03	27.25	49.12	-21.87	AVG	
	7	0.3795	31.07	9.99	41.06	58.29	-17.23	QP	
	8	0.4110	16.64	9.97	26.61	47.63	-21.02	AVG	
	9 *	0.5550	31.08	10.02	41.10	56.00	-14.90	QP	
	10	0.6405	15.75	9.99	25.74	46.00	-20.26	AVG	
	11	1.7655	22.40	9.80	32.20	56.00	-23.80	QP	
-	12	1.8195	14.53	9.80	24.33	46.00	-21.67	AVG	

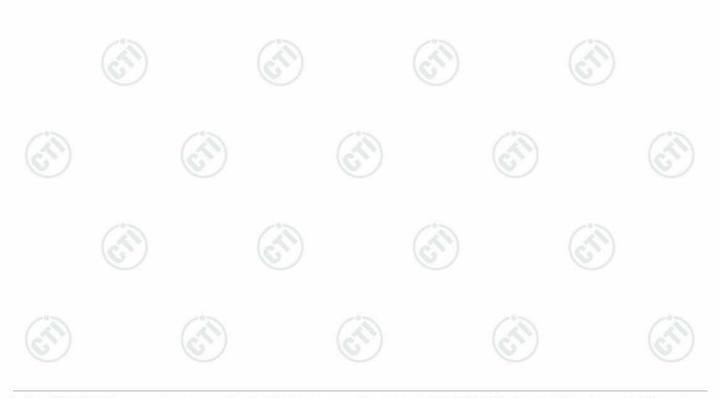
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(1100100)	18.7	1,291,791				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
	Ab 4011=	Peak	1MHz	3MHz	Peak	-0
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	re as below:	6		,	0
	Test method Refer as KDB	558074 D01				
	a. The EUT was placed of at a 3 meter semi-anecd determine the position of the EUT was set 3 meters was mounted on the total c. The antenna height is with determine the maximum polarizations of the antenna was turned from 0 degrete. The test-receiver system Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectral for lowest and highest of the position of the provided in the semi-arrangement of the semi-arrangement of the position of the semi-arrangement of the position of the positi	hoic camber. The of the highest raters away from the pof a variable-haried from one manual value of the field from the enna are set to include the heights from the est to 360 degres and of the restrict pliance. Also more analyzer plotters to analyzer plotters to analyzer plotters to analyzer plotters to analyzer plotters and the restrict pliance. Also more than analyzer plotters are the properties and the plotters are the plotters and the plotters are the plotters are the plotters and the plotters are the plott	ne table wandiation. the interfer neight anter meter to for eld strength make the r was arran 1 meter to rees to find eak Detect ted band of easure any	ence-receinna tower. Four meters h. Both hor measurement aged to its 4 meters the maxin Function a	above the grizontal and vent. worst case a and the rotat num reading. and Specified the transmit in the restri	to a, which ound to vertical nd ther able cted
	g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the low i. The radiation measurer Transmitting mode, and j. Repeat above procedure.	e is the test site ber change forn 1 meter and tab west channel , the ments are perfor d found the X ax	n table 0.8 le is 1.5 mone Highest rmed in X, is position	meter to 1 eter). channel Y, Z axis p ing which i	.5 meter(Ab cositioning fo t is worse ca	ove r
 Limit:						
	Frequency	Limit (dBµV/			mark	
	30MHz-88MHz	40.0	-	·	eak Value	
	88MHz-216MHz	43.5	1.00	Quasi-peak Value		
	216MHz-960MHz	46.0			eak Value	
	960MHz-1GHz	54.0		· ·	eak Value	
	Above 1GHz	54.0			ge Value	
		74.0)	Peak	Value	
	(6)	(6)	/		60"/	

Page 62 of 113


Test plot as follows:

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	PK		

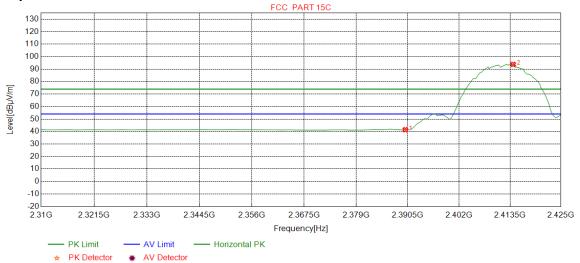
Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.51	52.01	74.00	21.99	Pass	Horizontal
2	2413.0538	32.28	13.36	-43.12	95.34	97.86	74.00	-23.86	Pass	Horizontal

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.82	51.32	74.00	22.68	Pass	Vertical
2	2410.7509	32.28	13.35	-43.12	90.67	93.18	74.00	-19.18	Pass	Vertical

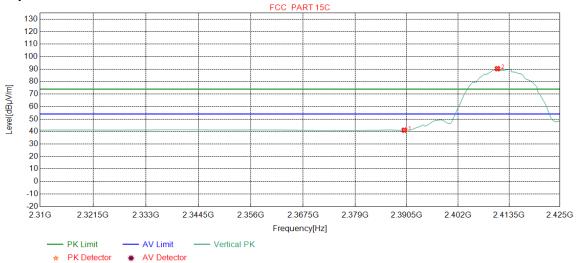


Page 64 of 113

Mode:	802.11 b Transmitting	Channel:	2412
Remark:	AV		

Test Graph

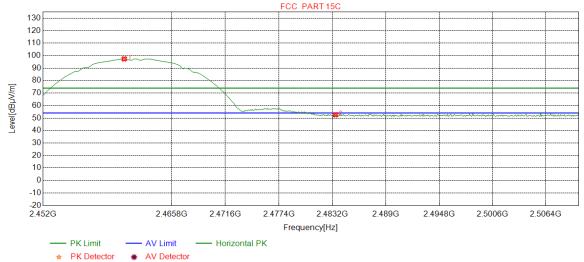
ОИ	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.91	41.41	54.00	12.59	Pass	Horizontal
2	2414.2053	32.28	13.37	-43.12	91.22	93.75	54.00	-39.75	Pass	Horizontal

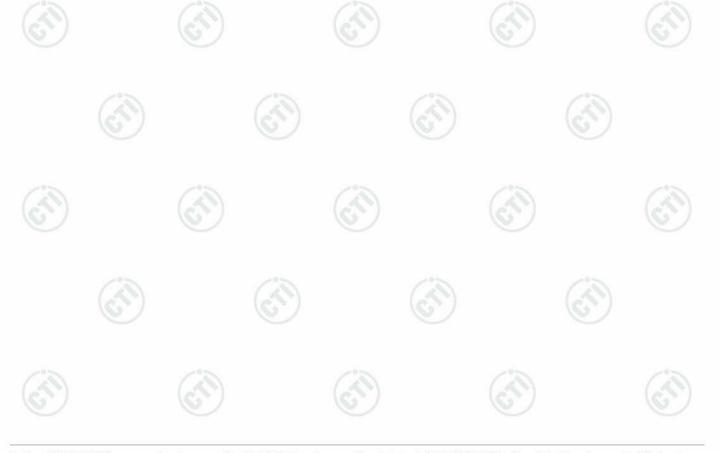


Mode:	802.11 b Transmitting	Channel:	2412
Remark:	AV		

Test Graph

Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [dBµV] $[dB\mu V/m]$ [MHz] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 13.37 -43.12 38.57 41.07 54.00 12.93 Vertical Pass 2 2410.8949 32.28 13.35 -43.12 87.78 90.29 54.00 -36.29 Vertical

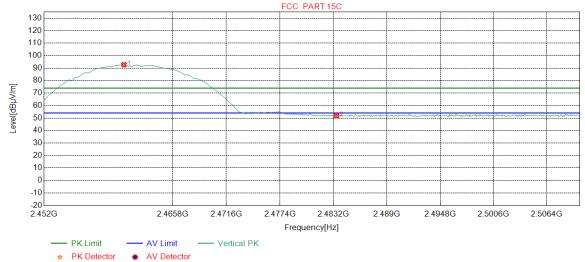


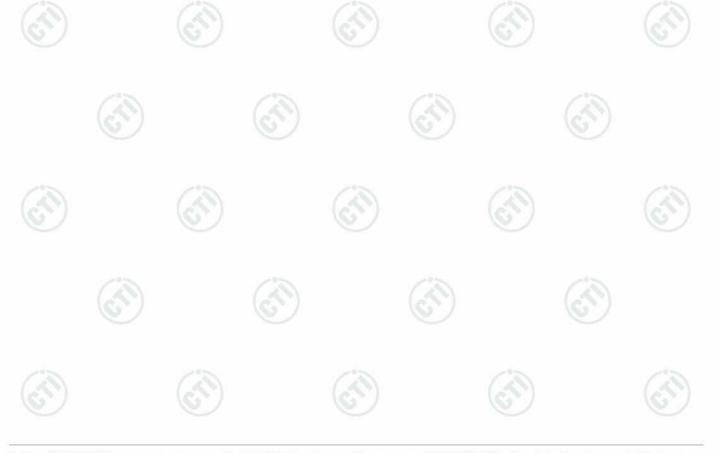

Page 66 of 113

Mode:	802.11 b Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7109	32.34	13.48	-43.10	94.61	97.33	74.00	-23.33	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.92	52.57	74.00	21.43	Pass	Horizontal

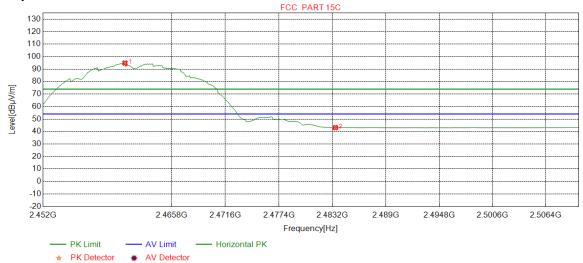



Page 67 of 113

Mode:	802.11 b Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.5657	32.34	13.48	-43.10	89.99	92.71	74.00	-18.71	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.18	51.83	74.00	22.17	Pass	Vertical

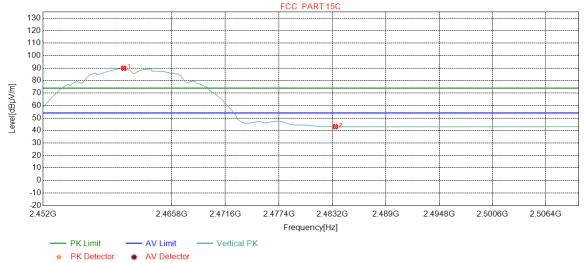


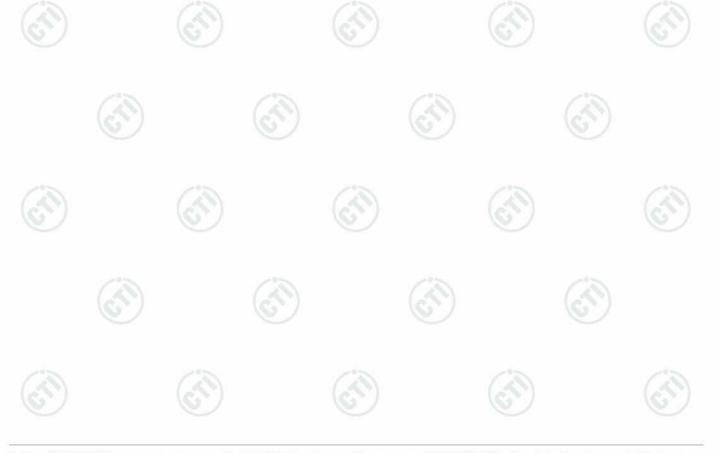
Page 68 of 113

Mode:	802.11 b Transmitting	Channel:	2462
Remark:	AV		

Test Graph

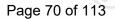
ОО	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.7835	32.35	13.48	-43.11	92.09	94.81	54.00	-40.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.50	43.15	54.00	10.85	Pass	Horizontal



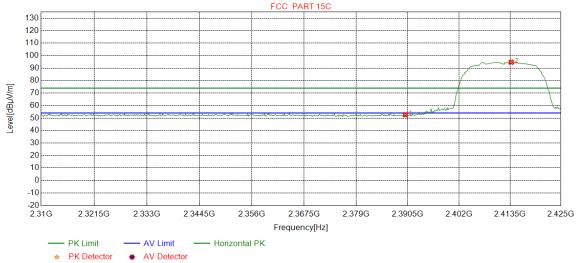


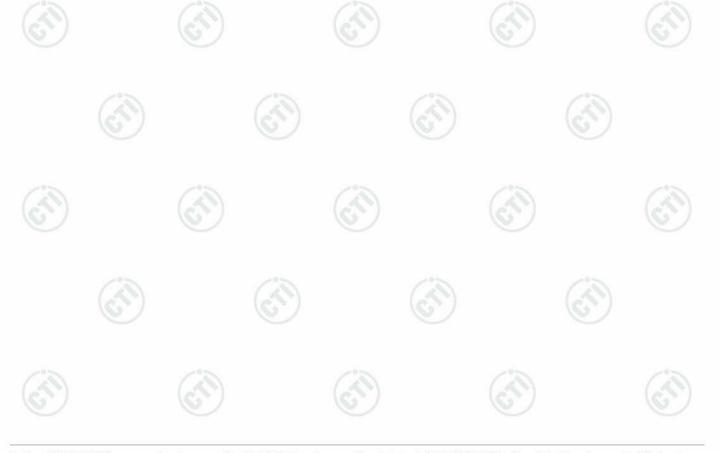
Mode:	802.11 b Transmitting	Channel:	2462
Remark:	AV		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.6383	32.34	13.48	-43.10	87.19	89.91	54.00	-35.91	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.47	43.12	54.00	10.88	Pass	Vertical

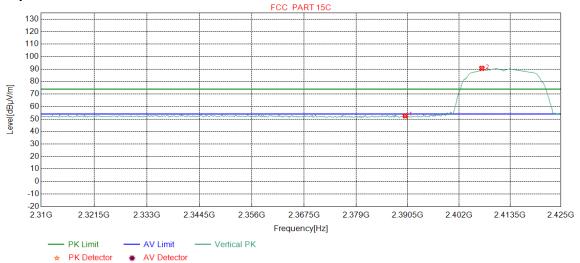




Mode:	802.11 g Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.16	52.66	74.00	21.34	Pass	Horizontal
2	2413.7735	32.28	13.36	-43.11	92.16	94.69	74.00	-20.69	Pass	Horizontal

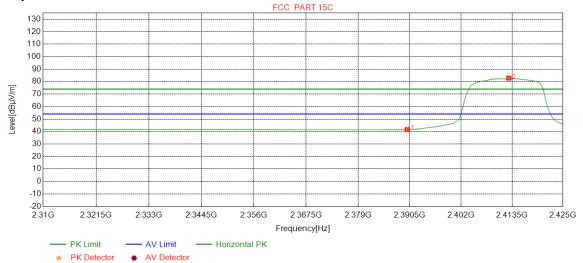


Page 71 of 113

Mode:	802.11 g Transmitting	Channel:	2412	
Remark:	PK			

Test Graph

ОИ	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.11	52.61	74.00	21.39	Pass	Vertical
2	2407.1527	32.27	13.33	-43.12	88.10	90.58	74.00	-16.58	Pass	Vertical

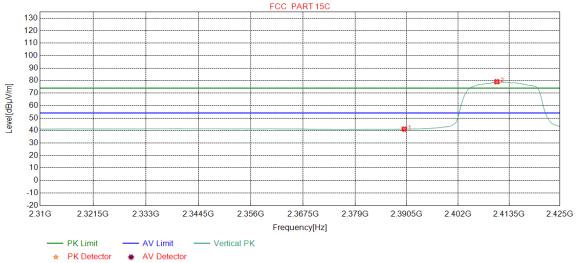


Page 72 of 113

Mode:	802.11 g Transmitting	Channel:	2412
Remark:	AV		

Test Graph

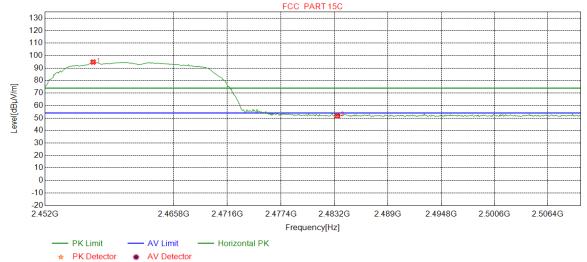
Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [dBµV] $[dB\mu V/m]$ [MHz] $[dB\mu V/m]$ [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 13.37 -43.12 39.10 41.60 54.00 12.40 Horizontal Pass 2 2412.7660 32.28 13.36 -43.12 80.23 82.75 54.00 -28.75 Horizontal

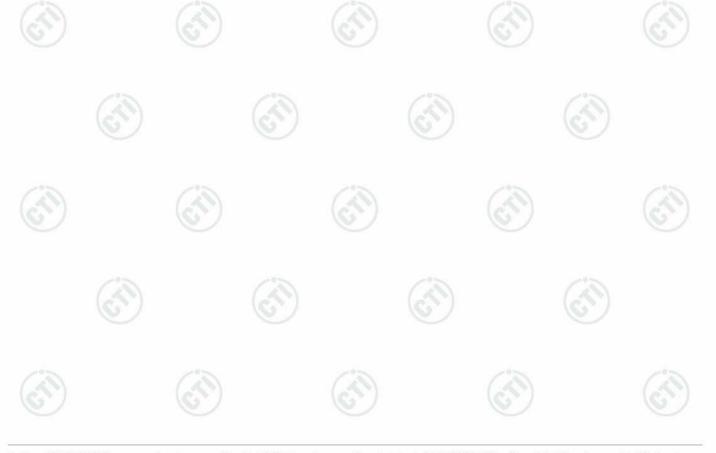


Mode:	802.11 g Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.60	41.10	54.00	12.90	Pass	Vertical
2	2410.7509	32.28	13.35	-43.12	76.53	79.04	54.00	-25.04	Pass	Vertical

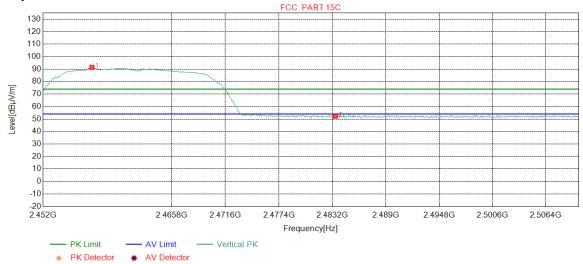


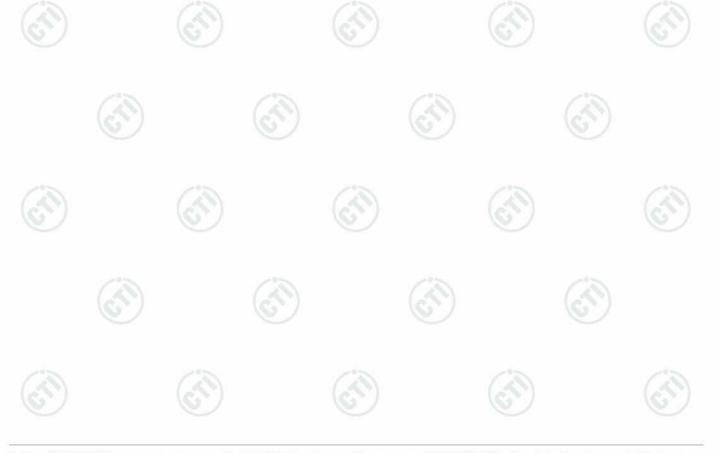

Page 74 of 113

Mode:	802.11 g Transmitting	Channel:	2462
Remark:	PK		

Test Graph

ОИ	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2457.1539	32.34	13.50	-43.11	92.09	94.82	74.00	-20.82	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.06	51.71	74.00	22.29	Pass	Horizontal

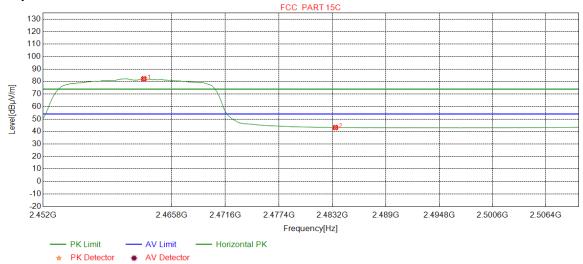



Page 75 of 113

Mode:	802.11 g Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2457.2265	32.34	13.50	-43.11	88.64	91.37	74.00	-17.37	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	49.54	52.19	74.00	21.81	Pass	Vertical

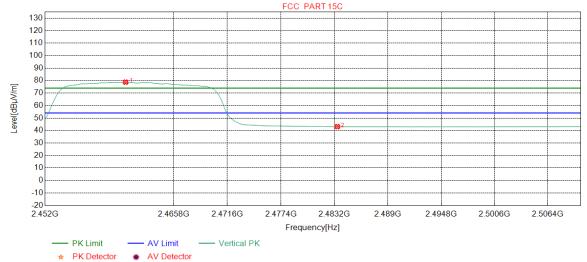


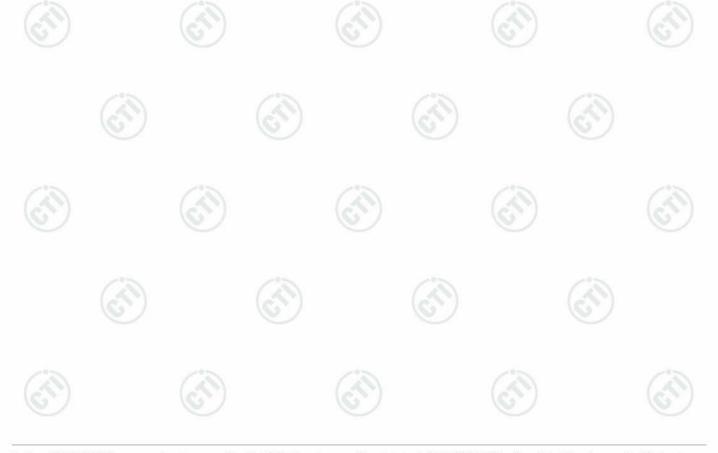
Page 76 of 113

Mode:	802.11 g Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.8160	32.35	13.47	-43.11	79.51	82.22	54.00	-28.22	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.55	43.20	54.00	10.80	Pass	Horizontal

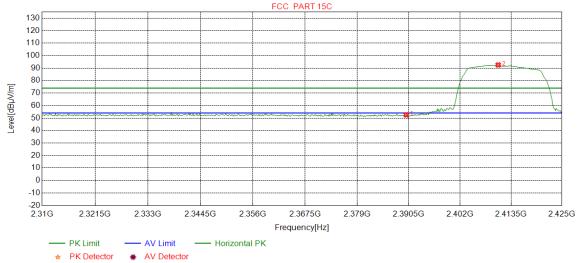


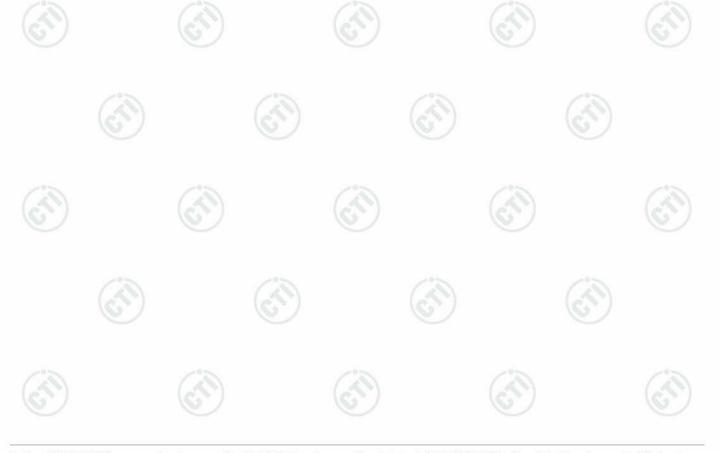


Mode:	802.11 g Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.6383	32.34	13.48	-43.10	76.01	78.73	54.00	-24.73	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.48	43.13	54.00	10.87	Pass	Vertical

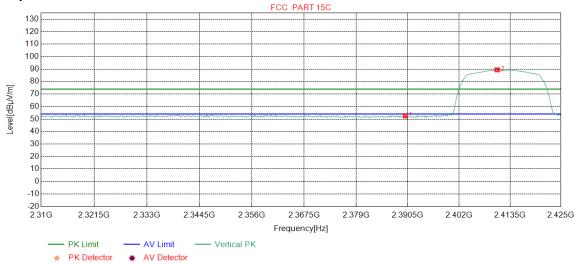


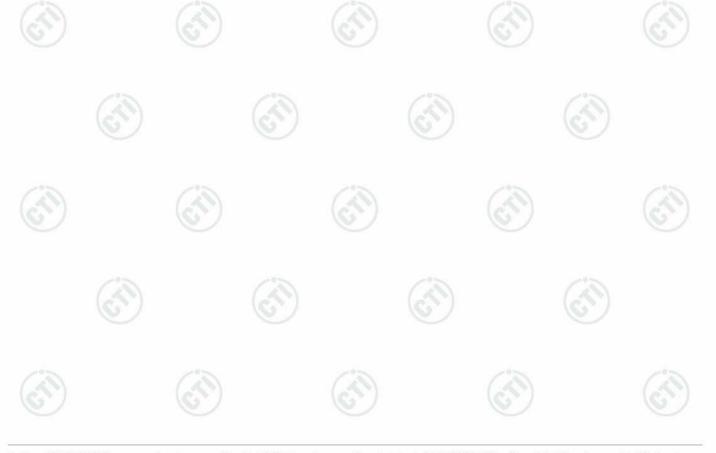

Page 78 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.98	52.48	74.00	21.52	Pass	Horizontal
2	2410.6070	32.27	13.35	-43.11	90.00	92.51	74.00	-18.51	Pass	Horizontal

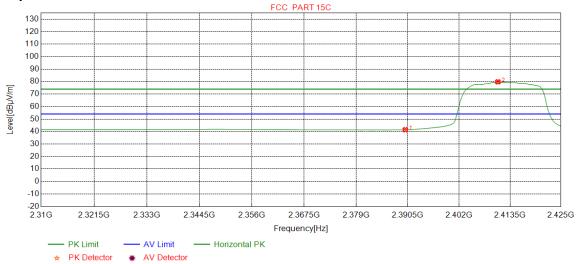



Page 79 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.10	52.60	74.00	21.40	Pass	Vertical
2	2410.6070	32.27	13.35	-43.11	86.88	89.39	74.00	-15.39	Pass	Vertical

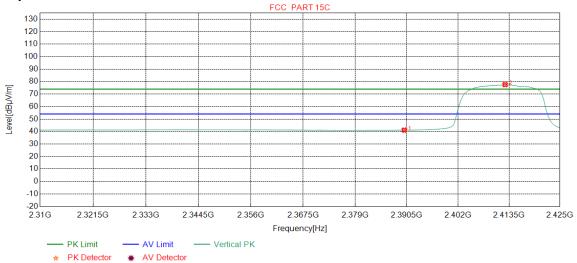


Page 80 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	38.90	41.40	54.00	12.60	Pass	Horizontal
2	2410.7509	32.28	13.35	-43.12	77.27	79.78	54.00	-25.78	Pass	Horizontal

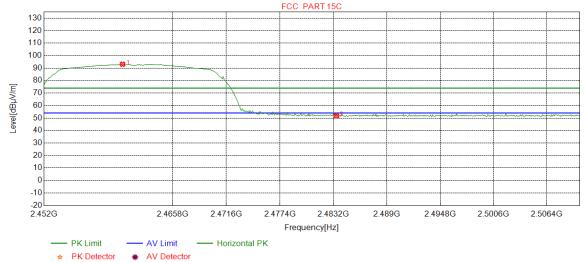


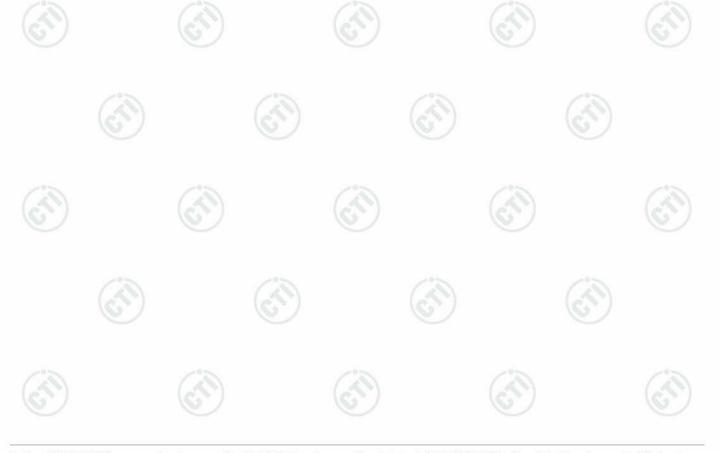
Page 81 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2412
Remark:	AV		

Test Graph

Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [MHz] [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 13.37 -43.12 38.60 41.10 54.00 12.90 Vertical Pass 2 2412.6220 32.28 13.36 -43.12 75.04 77.56 54.00 -23.56 Vertical

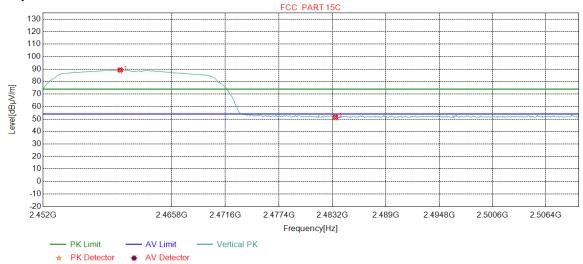



Page 82 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.4205	32.34	13.48	-43.10	90.37	93.09	74.00	-19.09	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.13	51.78	74.00	22.22	Pass	Horizontal

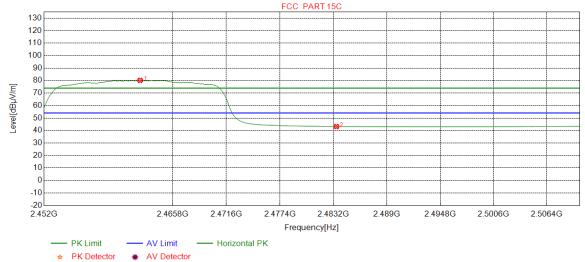


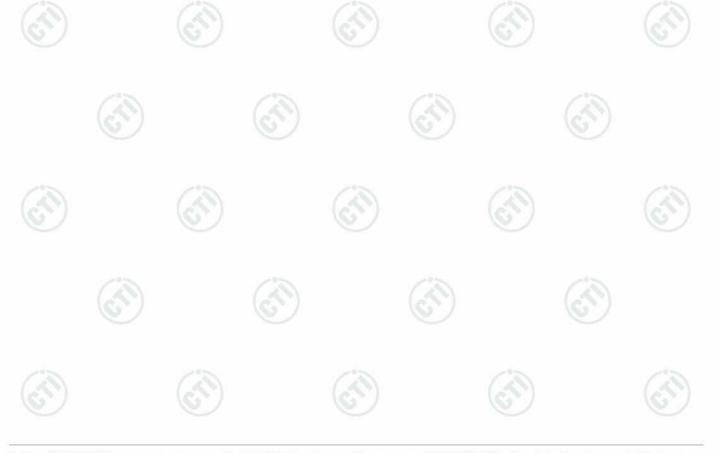
Page 83 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.2753	32.34	13.48	-43.10	86.53	89.25	74.00	-15.25	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.80	51.45	74.00	22.55	Pass	Vertical

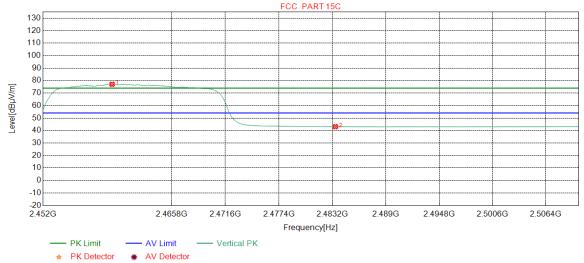


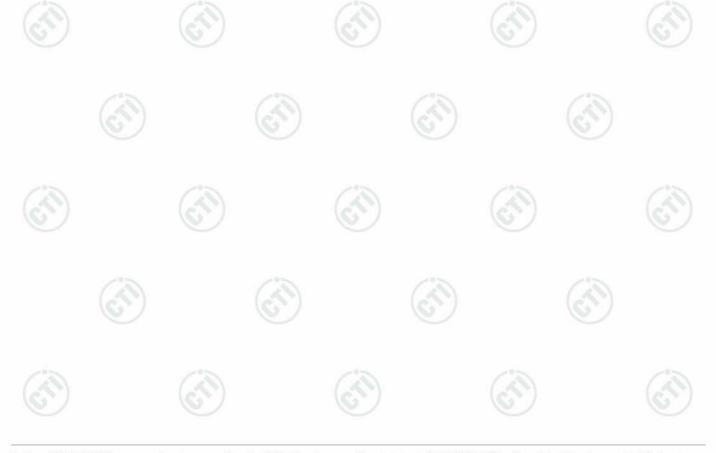

Page 84 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2462.3079	32.35	13.47	-43.11	77.45	80.16	54.00	-26.16	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	40.53	43.18	54.00	10.82	Pass	Horizontal

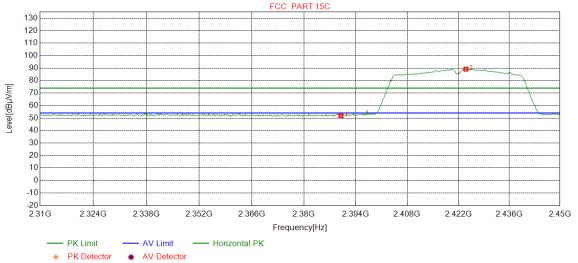


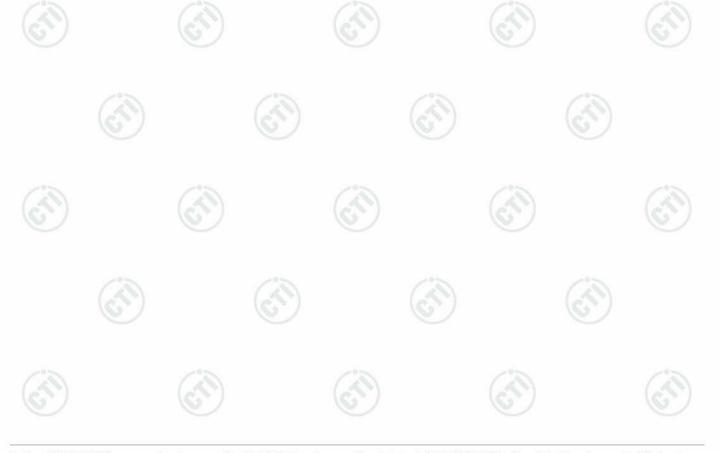

Page 85 of 113

Mode:	802.11 n(HT20) Transmitting	Channel:	2462
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2459.4043	32.34	13.49	-43.11	74.30	77.02	54.00	-23.02	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	40.46	43.11	54.00	10.89	Pass	Vertical

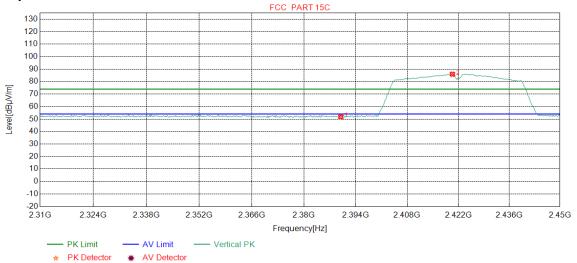



Page 86 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	49.19	51.69	74.00	22.31	Pass	Horizontal
2	2424.0676	32.29	13.41	-43.11	86.54	89.13	74.00	-15.13	Pass	Horizontal

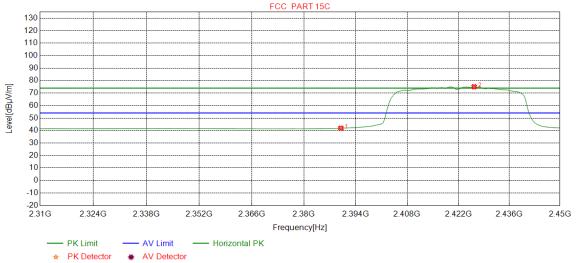


Page 87 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:	PK		

Test Graph

Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [MHz] [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 13.37 -43.12 49.31 51.81 74.00 22.19 Vertical Pass 2 2420.3880 32.29 13.39 -43.11 83.32 85.89 74.00 -11.89 Vertical

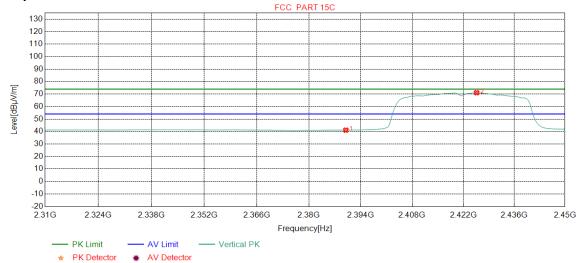


Page 88 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.34	41.84	54.00	12.16	Pass	Horizontal
2	2426.3454	32.30	13.42	-43.12	72.47	75.07	54.00	-21.07	Pass	Horizontal

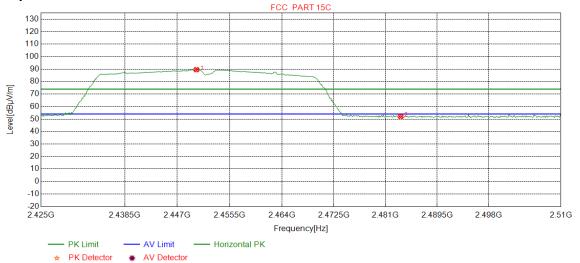


Page 89 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2422
Remark:	AV		

Test Graph

Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [MHz] [dB] [dB] [dB] [dB] **Pass** 1 2390.0000 32.25 13.37 -43.12 38.61 41.11 54.00 12.89 Vertical Pass 2 2425.6446 32.30 13.42 -43.12 68.49 71.09 54.00 -17.09 Vertical

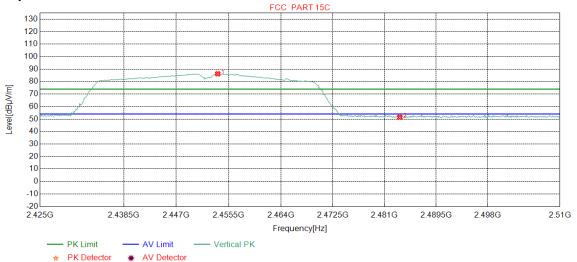


Page 90 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	PK		

Test Graph

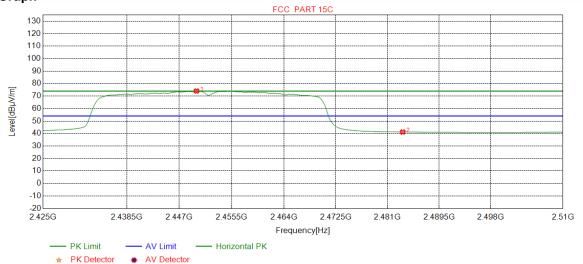
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2450.1064	32.33	13.53	-43.11	86.77	89.52	74.00	-15.52	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.47	52.12	74.00	21.88	Pass	Horizontal

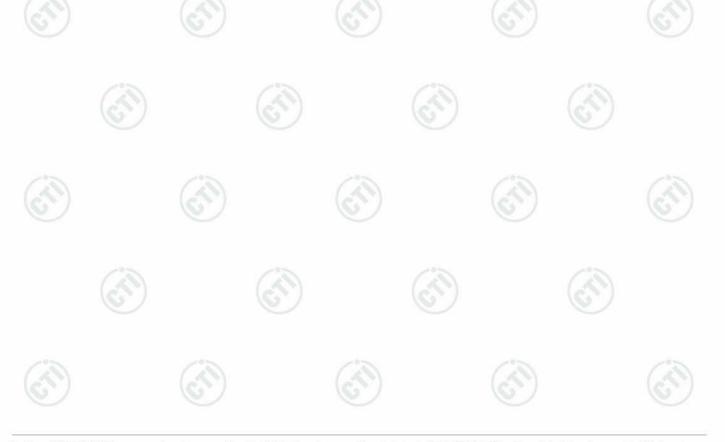


Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	PK		

Test Graph

Ant Cable Pream Freq. Reading Limit Level Margin Factor NO loss gain Result Polarity [MHz] [dBµV] $[dB\mu V/m]$ $[dB\mu V/m]$ [dB] [dB] [dB] [dB] **Pass** 1 2453.7234 32.34 13.51 -43.11 83.48 86.22 74.00 -12.22 Vertical Pass 2 2483.5000 32.38 13.38 -43.11 48.73 51.38 74.00 22.62 Vertical

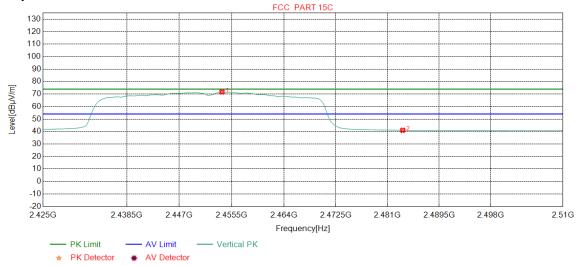



Page 92 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2449.7872	32.33	13.53	-43.11	71.28	74.03	54.00	-20.03	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	38.56	41.21	54.00	12.79	Pass	Horizontal



Page 93 of 113

Mode:	802.11 n(HT40) Transmitting	Channel:	2452
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2453.9362	32.34	13.51	-43.11	68.93	71.67	54.00	-17.67	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	38.34	40.99	54.00	13.01	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 94 of 113

Appendix I): Radiated Spurious Emissions

Receiver Setup:

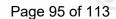
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz 30kH		Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:


- Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel, the middle channel, the Highest channel.
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)		-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	70	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 11B Channel 2437MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

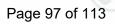
Mode	e:		802.11	b Transm	nitting			Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	60.7521	11.40	0.90	-31.81	51.11	31.60	40.00	8.40	Pass	Н	PK
2	106.2496	10.94	1.21	-32.00	57.77	37.92	43.50	5.58	Pass	Н	PK
3	179.9770	9.00	1.58	-31.99	57.66	36.25	43.50	7.25	Pass	Н	PK
4	299.9780	13.20	2.06	-31.40	55.83	39.69	46.00	6.31	Pass	Н	PK
5	432.0082	15.91	2.46	-31.83	52.47	39.01	46.00	6.99	Pass	Н	PK
6	852.0602	21.52	3.51	-31.74	43.42	36.71	46.00	9.29	Pass	Н	PK
7	59.1999	11.73	0.89	-31.83	54.76	35.55	40.00	4.45	Pass	V	PK
8	84.0344	8.03	1.06	-31.98	59.93	37.04	40.00	2.96	Pass	V	PK
9	160.8661	7.95	1.48	-31.99	54.45	31.89	43.50	11.61	Pass	V	PK
10	299.9780	13.20	2.06	-31.40	51.99	35.85	46.00	10.15	Pass	V	PK
11	419.9790	15.72	2.45	-31.84	50.66	36.99	46.00	9.01	Pass	V	PK
12	912.0122	22.17	3.61	-31.46	40.45	34.77	46.00	11.23	Pass	V	PK
	(St)		(cir))	Ć	Y				

Page 96 of 113

Transmitter Emission above 1GHz

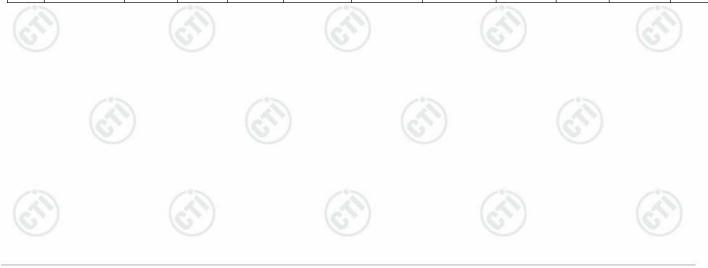
Mode			802.11	b Transm	itting			Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1991.4992	31.64	3.46	-43.17	52.40	44.33	74.00	29.67	Pass	Н	PK
2	2949.1949	33.12	4.40	-43.10	50.67	45.09	74.00	28.91	Pass	Н	PK
3	4824.1216	34.50	4.61	-42.80	60.44	56.75	74.00	17.25	Pass	Н	PK
4	7237.2825	36.34	5.79	-42.16	56.06	56.03	74.00	17.97	Pass	Н	PK
5	9054.4036	37.69	6.48	-42.02	48.93	51.08	74.00	22.92	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.96	49.24	74.00	24.76	Pass	Н	PK
7	4823.9246	34.50	4.61	-42.80	54.23	50.54	54.00	3.46	Pass	Н	AV
8	7236.8255	36.34	5.79	-42.15	49.65	49.63	54.00	4.37	Pass	Н	AV
9	1799.2799	30.38	3.32	-42.72	57.33	48.31	74.00	25.69	Pass	V	PK
10	1995.0995	31.67	3.47	-43.20	58.00	49.94	74.00	24.06	Pass	V	PK
11	3191.0127	33.28	4.64	-43.11	51.56	46.37	74.00	27.63	Pass	V	PK
12	4824.1216	34.50	4.61	-42.80	59.31	55.62	74.00	18.38	Pass	V	PK
13	7236.0000	36.34	5.79	-42.16	51.01	50.98	74.00	23.02	Pass	V	PK
14	9648.0000	37.66	6.72	-42.10	45.78	48.06	74.00	25.94	Pass	V	PK
15	4823.8766	34.50	4.61	-42.80	54.11	50.42	54.00	3.58	Pass	V	AV

Mode	e:		802.11	b Transm	itting			Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1693.8694	29.68	3.19	-42.67	50.59	40.79	74.00	33.21	Pass	Н	PK
2	3459.0306	33.38	4.44	-43.10	49.55	44.27	74.00	29.73	Pass	Н	PK
3	4874.0000	34.50	4.78	-42.80	59.03	55.51	74.00	18.49	Pass	Н	PK
4	6498.2332	35.90	5.47	-42.50	51.04	49.91	74.00	24.09	Pass	Н	PK
5	7313.2876	36.41	5.85	-42.13	53.20	53.33	74.00	20.67	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.67	49.04	74.00	24.96	Pass	Н	PK
7	4873.8979	34.50	4.78	-42.80	54.25	50.73	54.00	3.27	Pass	Н	AV
8	1991.4992	31.64	3.46	-43.17	59.32	51.25	74.00	22.75	Pass	V	PK
9	3627.0418	33.50	4.34	-43.07	49.47	44.24	74.00	29.76	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	57.15	53.63	74.00	20.37	Pass	V	PK
11	6499.2333	35.90	5.47	-42.50	50.13	49.00	74.00	25.00	Pass	V	PK
12	7309.2873	36.41	5.85	-42.14	50.78	50.90	74.00	23.10	Pass	V	PK
13	9748.0000	37.70	6.77	-42.10	46.40	48.77	74.00	25.23	Pass	V	PK



Mode	e:		802.11	b Transm	itting			Channel:		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1793.2793	30.34	3.31	-42.71	55.88	46.82	74.00	27.18	Pass	Н	PK
2	1992.0992	31.65	3.46	-43.18	57.56	49.49	74.00	24.51	Pass	Н	PK
3	3763.0509	33.61	4.36	-43.05	49.70	44.62	74.00	29.38	Pass	Н	PK
4	4924.0000	34.50	4.85	-42.80	59.48	56.03	74.00	17.97	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	49.63	49.84	74.00	24.16	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	46.51	48.98	74.00	25.02	Pass	Н	PK
7	4923.9023	34.50	4.85	-42.80	53.87	50.42	54.00	3.58	Pass	Н	AV
8	1798.4798	30.37	3.32	-42.71	55.98	46.96	74.00	27.04	Pass	V	PK
9	1998.0998	31.69	3.47	-43.20	58.73	50.69	74.00	23.31	Pass	V	PK
10	3895.0597	33.72	4.34	-43.02	49.62	44.66	74.00	29.34	Pass	V	PK
11	4924.0000	34.50	4.85	-42.80	55.85	52.40	74.00	21.60	Pass	V	PK
12	7386.0000	36.49	5.85	-42.13	49.63	49.84	74.00	24.16	Pass	V	PK
13	9848.0000	37.74	6.83	-42.10	45.65	48.12	74.00	25.88	Pass	V	PK

Mode	e:		802.11	g Transm	itting			Channel:		2412	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1798.0798	30.37	3.32	-42.72	51.08	42.05	74.00	31.95	Pass	Н	PK
2	3347.0231	33.34	4.52	-43.10	49.18	43.94	74.00	30.06	Pass	Н	PK
3	4824.0000	34.50	4.61	-42.80	49.95	46.26	74.00	27.74	Pass	Н	PK
4	6432.2288	35.89	5.45	-42.52	51.65	50.47	74.00	23.53	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	47.42	47.39	74.00	26.61	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	46.36	48.64	74.00	25.36	Pass	Н	PK
7	1992.6993	31.65	3.46	-43.18	58.84	50.77	74.00	23.23	Pass	V	PK
8	3818.0545	33.65	4.37	-43.04	49.93	44.91	74.00	29.09	Pass	V	PK
9	4824.0000	34.50	4.61	-42.80	48.68	44.99	74.00	29.01	Pass	V	PK
10	7236.0000	36.34	5.79	-42.16	46.62	46.59	74.00	27.41	Pass	V	PK
11	9046.4031	37.69	6.47	-42.01	49.42	51.57	74.00	22.43	Pass	V	PK
12	9648.0000	37.66	6.72	-42.10	45.73	48.01	74.00	25.99	Pass	V	PK



Page 98 of 113

Mode	e:		802.11	g Transm	itting			Channel:		2437	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1996.6997	31.68	3.47	-43.20	52.36	44.31	74.00	29.69	Pass	Н	PK
2	3572.0381	33.46	4.40	-43.09	49.27	44.04	74.00	29.96	Pass	Н	PK
3	4874.0000	34.50	4.78	-42.80	48.98	45.46	74.00	28.54	Pass	Н	PK
4	6498.2332	35.90	5.47	-42.50	51.56	50.43	74.00	23.57	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	46.24	46.36	74.00	27.64	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.42	48.79	74.00	25.21	Pass	Н	PK
7	1792.0792	30.33	3.31	-42.71	55.21	46.14	74.00	27.86	Pass	V	PK
8	1990.4991	31.64	3.46	-43.18	57.11	49.03	74.00	24.97	Pass	V	PK
9	3864.0576	33.69	4.35	-43.02	49.85	44.87	74.00	29.13	Pass	V	PK
10	4874.0000	34.50	4.78	-42.80	47.52	44.00	74.00	30.00	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.31	46.43	74.00	27.57	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	45.80	48.17	74.00	25.83	Pass	V	PK

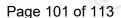
Mode	e:		802.11	g Transm	itting			Channel:		2462	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1999.9000	31.70	3.47	-43.20	53.97	45.94	74.00	28.06	Pass	Н	PK
2	3395.0263	33.36	4.56	-43.11	48.93	43.74	74.00	30.26	Pass	Н	PK
3	4924.0000	34.50	4.85	-42.80	48.38	44.93	74.00	29.07	Pass	Н	PK
4	6565.2377	35.93	5.40	-42.46	49.74	48.61	74.00	25.39	Pass	Н	PK
5	7386.0000	36.49	5.85	-42.13	46.18	46.39	74.00	27.61	Pass	Н	PK
6	9848.0000	37.74	6.83	-42.10	46.04	48.51	74.00	25.49	Pass	Н	PK
7	1993.8994	31.66	3.46	-43.18	58.31	50.25	74.00	23.75	Pass	V	PK
8	4112.0741	33.96	4.37	-42.96	49.82	45.19	74.00	28.81	Pass	V	PK
9	4924.0000	34.50	4.85	-42.80	47.71	44.26	74.00	29.74	Pass	V	PK
10	5988.1992	35.78	5.34	-42.60	49.09	47.61	74.00	26.39	Pass	V	PK
11	7386.0000	36.49	5.85	-42.13	46.42	46.63	74.00	27.37	Pass	V	PK
12	9848.0000	37.74	6.83	-42.10	46.61	49.08	74.00	24.92	Pass	V	PK




Page 99 of 113

Mode:			802.11	n(HT20)	Transmittin	g	Channel:		2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1796.4796	30.36	3.31	-42.71	53.15	44.11	74.00	29.89	Pass	Н	PK
2	1992.6993	31.65	3.46	-43.18	51.68	43.61	74.00	30.39	Pass	Н	PK
3	3452.0301	33.38	4.43	-43.10	50.12	44.83	74.00	29.17	Pass	Н	PK
4	4824.0000	34.50	4.61	-42.80	50.18	46.49	74.00	27.51	Pass	Н	PK
5	7236.0000	36.34	5.79	-42.16	46.46	46.43	74.00	27.57	Pass	Н	PK
6	9648.0000	37.66	6.72	-42.10	45.53	47.81	74.00	26.19	Pass	Н	PK
7	1995.6996	31.67	3.47	-43.19	57.72	49.67	74.00	24.33	Pass	V	PK
8	3483.0322	33.39	4.47	-43.10	48.75	43.51	74.00	30.49	Pass	V	PK
9	4824.0000	34.50	4.61	-42.80	48.34	44.65	74.00	29.35	Pass	V	PK
10	7236.0000	36.34	5.79	-42.16	46.89	46.86	74.00	27.14	Pass	V	PK
11	9648.0000	37.66	6.72	-42.10	46.11	48.39	74.00	25.61	Pass	V	PK
12	11408.560	38.85	7.44	-42.01	48.95	53.23	74.00	20.77	Pass	V	PK

Mode:			802.11	n(HT20)	Transmitting	3	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1883.8884	30.93	3.41	-42.91	50.56	41.99	74.00	32.01	Pass	Н	PK
2	3692.0461	33.55	4.26	-43.06	49.34	44.09	74.00	29.91	Pass	Н	PK
3	4874.0000	34.50	4.78	-42.80	48.72	45.20	74.00	28.80	Pass	Н	PK
4	6498.2332	35.90	5.47	-42.50	50.26	49.13	74.00	24.87	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	46.05	46.17	74.00	27.83	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	47.02	49.39	74.00	24.61	Pass	Н	PK
7	1991.8992	31.65	3.46	-43.18	57.48	49.41	74.00	24.59	Pass	V	PK
8	3749.0499	33.60	4.35	-43.05	49.95	44.85	74.00	29.15	Pass	V	PK
9	4874.0000	34.50	4.78	-42.80	47.90	44.38	74.00	29.62	Pass	V	PK
10	6460.2307	35.89	5.51	-42.51	49.16	48.05	74.00	25.95	Pass	V	PK
11	7311.0000	36.41	5.85	-42.14	46.10	46.22	74.00	27.78	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	47.02	49.39	74.00	24.61	Pass	V	PK



NO	Freq. [MHz]	Ant	Cable				Channel:		2462		
	[Factor [dB]	loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1 19	999.5000	31.70	3.47	-43.20	53.85	45.82	74.00	28.18	Pass	Н	PK
2 38	835.0557	33.67	4.36	-43.03	49.95	44.95	74.00	29.05	Pass	Н	PK
3 49	924.0000	34.50	4.85	-42.80	48.55	45.10	74.00	28.90	Pass	Н	PK
4 63	355.2237	35.87	5.44	-42.52	49.00	47.79	74.00	26.21	Pass	Н	PK
5 73	386.0000	36.49	5.85	-42.13	46.92	47.13	74.00	26.87	Pass	Н	PK
6 98	848.0000	37.74	6.83	-42.10	46.87	49.34	74.00	24.66	Pass	Н	PK
7 19	992.2992	31.65	3.46	-43.18	58.39	50.32	74.00	23.68	Pass	V	PK
8 33	308.0205	33.32	4.57	-43.10	49.42	44.21	74.00	29.79	Pass	V	PK
9 49	924.0000	34.50	4.85	-42.80	47.06	43.61	74.00	30.39	Pass	V	PK
10 63	352.2235	35.87	5.45	-42.53	49.30	48.09	74.00	25.91	Pass	V	PK
11 73	386.0000	36.49	5.85	-42.13	45.94	46.15	74.00	27.85	Pass	V	PK
12 98	848.0000	37.74	6.83	-42.10	45.97	48.44	74.00	25.56	Pass	V	PK

Mode:			802.11 n(HT40) Transmitting						Channel:		2422	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1799.2799	30.38	3.32	-42.72	51.83	42.81	74.00	31.19	Pass	Н	PK	
2	3742.0495	33.59	4.33	-43.05	49.37	44.24	74.00	29.76	Pass	Н	PK	
3	4844.0000	34.50	4.66	-42.80	48.39	44.75	74.00	29.25	Pass	Н	PK	
4	6458.2305	35.89	5.51	-42.50	50.91	49.81	74.00	24.19	Pass	Н	PK	
5	7266.0000	36.37	5.80	-42.15	46.10	46.12	74.00	27.88	Pass	Н	PK	
6	9688.0000	37.68	6.62	-42.10	46.02	48.22	74.00	25.78	Pass	Н	PK	
7	1799.4799	30.38	3.32	-42.71	55.54	46.53	74.00	27.47	Pass	V	PK	
8	1991.0991	31.64	3.46	-43.18	57.80	49.72	74.00	24.28	Pass	V	PK	
9	3935.0623	33.75	4.34	-43.01	50.18	45.26	74.00	28.74	Pass	V	PK	
10	4844.0000	34.50	4.66	-42.80	47.28	43.64	74.00	30.36	Pass	V	PK	
11	7266.0000	36.37	5.80	-42.15	46.70	46.72	74.00	27.28	Pass	V	PK	
12	9688.0000	37.68	6.62	-42.10	46.61	48.81	74.00	25.19	Pass	V	PK	

Mode:			802.11	n(HT40)	Transmitting	9	Channel:		2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1796.4796	30.36	3.31	-42.71	51.58	42.54	74.00	31.46	Pass	Н	PK
2	3831.0554	33.66	4.36	-43.03	49.80	44.79	74.00	29.21	Pass	Н	PK
3	4874.0000	34.50	4.78	-42.80	47.19	43.67	74.00	30.33	Pass	Н	PK
4	6499.2333	35.90	5.47	-42.50	50.67	49.54	74.00	24.46	Pass	Н	PK
5	7311.0000	36.41	5.85	-42.14	45.37	45.49	74.00	28.51	Pass	Н	PK
6	9748.0000	37.70	6.77	-42.10	46.41	48.78	74.00	25.22	Pass	Н	PK
7	1999.9000	31.70	3.47	-43.20	57.69	49.66	74.00	24.34	Pass	V	PK
8	3911.0607	33.73	4.34	-43.02	50.04	45.09	74.00	28.91	Pass	V	PK
9	4874.0000	34.50	4.78	-42.80	47.14	43.62	74.00	30.38	Pass	V	PK
10	7311.0000	36.41	5.85	-42.14	45.83	45.95	74.00	28.05	Pass	V	PK
11	8846.3898	37.36	6.42	-42.00	47.99	49.77	74.00	24.23	Pass	V	PK
12	9748.0000	37.70	6.77	-42.10	46.74	49.11	74.00	24.89	Pass	V	PK

Mode:			802.11 n(HT40) Transmitting						Channel:		2452	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1796.4796	30.36	3.31	-42.71	53.39	44.35	74.00	29.65	Pass	Н	PK	
2	4191.0794	34.07	4.49	-42.93	49.37	45.00	74.00	29.00	Pass	Н	PK	
3	4904.0000	34.50	4.88	-42.80	47.57	44.15	74.00	29.85	Pass	Н	PK	
4	5932.1955	35.69	5.23	-42.60	49.51	47.83	74.00	26.17	Pass	Н	PK	
5	7356.0000	36.46	5.85	-42.13	46.79	46.97	74.00	27.03	Pass	Н	PK	
6	9808.0000	37.72	6.59	-42.10	46.91	49.12	74.00	24.88	Pass	Н	PK	
7	1992.2992	31.65	3.46	-43.18	57.95	49.88	74.00	24.12	Pass	V	PK	
8	3819.0546	33.66	4.37	-43.04	49.48	44.47	74.00	29.53	Pass	V	PK	
9	4904.0000	34.50	4.88	-42.80	46.20	42.78	74.00	31.22	Pass	V	PK	
10	6456.2304	35.89	5.51	-42.50	49.43	48.33	74.00	25.67	Pass	V	PK	
11	7356.0000	36.46	5.85	-42.13	46.25	46.43	74.00	27.57	Pass	V	PK	
12	9808.0000	37.72	6.59	-42.10	46.26	48.47	74.00	25.53	Pass	V	PK	

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

