FOR

AtGames Digital Media Inc.

2.4 GHz Wireless Controller

Test Model: ARC360-P1

Additional Model No :/

Prepared for Address	:	AtGames Digital Media Inc. 258 Kansas Street, El Segundo, CA 90245
Prepared by Address		Shenzhen LCS Compliance Testing Laboratory Ltd 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	July 03, 2017
Number of tested samples	:	1
Sample number	:	Prototype
Date of Test	:	July 03, 2017~July 12, 2017
Date of Report	:	July 12, 2017

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 28

	FCC TEST REPORT	
F	FCC CFR 47 PART 15 C(15.249): 2015	
Report Reference No	: LCS170703108AE	
Date of Issue	. :July 12, 2017	
Testing Laboratory Name	: Shenzhen LCS Compliance Testin	g Laboratory Ltd.
Address	. : 1/F., Xingyuan Industrial Park, Tongo Bao'an District, Shenzhen, Guangdo	
Testing Location/ Procedure	: Full application of Harmonised stand	ards ∎
	Partial application of Harmonised sta	indards □
	Other standard testing method \square	
Applicant's Name	. : AtGames Digital Media Inc.	
Address	. : 258 Kansas Street, El Segundo, CA	90245
Test Specification		
Standard	. : FCC CFR 47 PART 15 C(15.249): 20	015 / ANSI C63.10: 2013
Test Report Form No	: LCSEMC-1.0	
TRF Originator	: Shenzhen LCS Compliance Testing	Laboratory Ltd.
Master TRF	: Dated 2011-03	
This publication may be reproduce Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compliance	ing Laboratory Ltd. All rights reserver ced in whole or in part for non-comme ng Laboratory Ltd. is acknowledged as pliance Testing Laboratory Ltd. takes n Iting from the reader's interpretation of	ercial purposes as long as the copyright owner and source o to responsibility for and will no
Test Item Description.	. : 2.4 GHz Wireless Controller	
Trade Mark	: ATARI	
Test Model	: ARC360-P1	
Ratings	. : Operate voltage: DC 3.0V	
Result	: Positive	
Compiled by: Demi Lin	Supervised by: DUR SU	Approved by: Graving Liang

Demi Lin/ File administrators

Dick Su/ Technique principal

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 28

FCC -- TEST REPORT

Test Report No. : LCS	170703108AE	July 12, 2017 Date of issue
Test Model	: ARC360-P1	
EUT	: 2.4 GHz Wireless Controlle	er
Applicant	: AtGames Digital Media In	IC.
Address	: 258 Kansas Street, El Seg	undo, CA 90245
Telephone	: /	
Fax	: /	
Manufacturer	: Digital Media Cartridge L	td.
Address	: 16F,United Bldg., 1069 Na District,Shenzhen,China .	nhai Blvd.,Nanshan
Telephone	: /	
Fax	: /	
P erstan		
Factory	: Digital Media Cartridge L	td.
Address	: 16F,United Bldg., 1069 Na District,Shenzhen,China .	nhai Blvd.,Nanshan
Telephone	: /	
Fax	: /	

Test Result	Positive
	• ·

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 28

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2AMTQARC360-P1 Report No.: LCS170703108AE	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2AMTQARC360-P1	Report No.: LCS170703108AE
---	---	------------------------	----------------------------

Revision History

Revision	Issue Date	Revisions	Revised By
00	July 12, 2017	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 28

TABLE OF CONTENTS

1. GENERAL INFORMATION	. 6
1.1. Description of Device (EUT)	6
1.2. Support Equipment List	
1.3. External I/O	
1.4. Description of Test Facility	
1.5. Statement of the measurement uncertainty	
1.6. Measurement Uncertainty	
1.7. Description Of Test Modes	
2. TEST METHODOLOGY	
2.1. EUT Configuration	
2.2. EUT Exercise	
2.3. General Test Procedures	
3. CONNECTION DIAGRAM OF TEST SYSTEM	10
3.1. Justification	
3.2. EUT Exercise Software	
3.3. Special Accessories	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	
5. SUMMARY OF TEST EQUIPMENT	12
6. ANTENNA REQUIREMENT	13
6.1. Standard Applicable	13
6.2. Antenna Connected Construction	13
7. RADIATED EMISSION MEASUREMENT	14
7.1. Standard Applicable	14
7.2. Instruments Setting	
7.3. Test Procedure	
7.4. Block Diagram of Test Setup	
7.5. Test Results	
7.6. Results for Radiated Emissions (Above 1GHz)	
7.7. Results for Band edge Testing (Radiated)	
8. 20 DB BANDWIDTH MEASUREMENT	26
8.1. Standard Applicable	
8.2. Block Diagram of Test Setup	
8.3. Test Procedure	
8.4. Test Results	
9. TEST SETUP PHOTOGRAPHS	28
10. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	28

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 28

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	:	2.4 GHz Wireless Controller
Test Model	:	ARC360-P1
List Model No.	:	ARC360-P1
Model Declaration	:	1
Power Supply	:	Operate voltage: DC 3.0 V
Hardware Version	:	Chipwise_V2.3
Software Version	:	Atari(G)E21014 170711.HEX
Frequency Range	:	2407.00MHz-2469.00MHz
Modulation Type	:	GFSK
Antenna Description	:	PIFA Antenna, 5.5 dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.3. External I/O

I/O Port Description	Quantity	Cable

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 899208. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Radiation Uncertainty		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	4.00dB	(1)
Conduction	•••	150kHz~30MHz	1.63dB	(1)
Uncertainty				
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit and was set to transmit at 100% duty cycle. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (MHz)		
	2407		
GFSK	2442		
	2469		
For Conduct	ed Emission		
Test Mode	TX Mode		
For Radiate	ed Emission		
Test Mode	TX Mode		

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX-2404MHz.

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX-2411MHz.

***Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Channel List & Frequency:

Frequency Band	: Frequency(MHz)					
	2407	2413				
	2420	2426				
	2431	2436				
2407 2460MU-	2439	2442				
2407~2469MHz	2447	2449				
	2452	2454				
	2459	2462				
	2467	2469				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 28

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting.

Press "Fire Boutton" and push "Joystick" Down together, then power on, to select High Channel;

Press "Fire Boutton" and push "Joystick" Left together, then power on, to select Middle Channel;

Press "Fire Boutton" and push "Joystick" Right together, then power on, to select Low Channel;

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	N/A
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.205	Band Edges Measurement	Compliant
§15.249, §15.215	20 dB Bandwidth	Compliant

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 28

5. SUMMARY OF TEST EQUIPMENT

Instrument	Manufacturer	Manufacturer Model No.		Serial No. Characteristics		Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18,2017	June 17,2018
EMC TEST SOFTWARE	AUDIX	E3	N/A	N/A	N/A	N/A
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16,2016	July 15,2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18,2017	June 17,2018
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18,2017	June 17,2018
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18,2017	June 17,2018
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18,2017	June 17,2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-1GHz 3m	June 18,2017	June 17,2018
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18,2017	June 17,2018
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16,2016	July 15,2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16,2016	July 15,2017
Spectrum Analyzer	Agilent	E4407B	MY41440292	9k-26.5GHz	July 16,2016	July 15,2017
MAX Signal Analyzer	Agilent	N9020A	MY50510140	20Hz~26.5GHz	Oct. 27, 2016	Oct. 26, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18,2017	June 17,2018
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	June 10,2017	June 09,2018
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10,2017	June 09,2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	June 10,2017	June 09,2018
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18,2017	June 17,2018
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18,2017	June 17,201
Power Meter	R&S	NRVS	100444	DC-40GHz	June 18,2017	June 17,201
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	June 18,2017	June 17,201
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	June 18,2017	June 17,201
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18,2017	June 17,201
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	June 18,2017	June 17,201

Note: All equipment through GRGT EST calibration

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 28

6. ANTENNA REQUIREMENT

6.1. Standard Applicable

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 3.0dBi, and the antenna is connect to PCB board and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

7.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 28 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2AMTQARC360-P1 Report No.: LCS170703108AE

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^\circ)$ and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height is 1.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 12.75 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

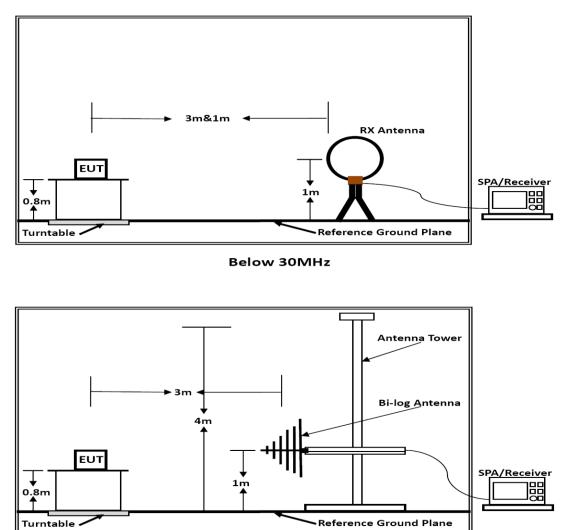
--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

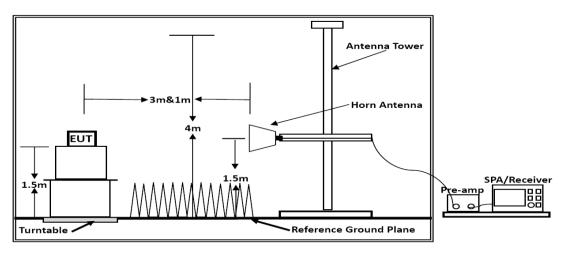
--- The measurement distance is 1 meter.

--- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

Final measurement:


--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS detector.

--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

7.4. Block Diagram of Test Setup

Below 1GHz

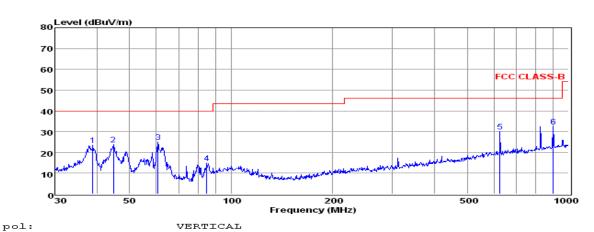
Above 1GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 28

7.5. Test Results

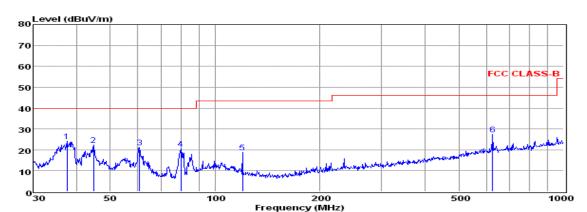
Results of Radiated Emissions (9kHz~30MHz)

Frequency	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note


Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.


Results of Radiated Emissions (30MHz~1000MHz)

Temperature	25.6 ℃	Humidity	50.4%
Test Engineer	Demi Lin	Test Date	June 13, 2017
Test Mode	TX-2411MHz		

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	38.89	9.74	0.38	13.30	23.42	40.00	-16.58	QP
2	44.74	9.82	0.41	13.55	23.78	40.00	-16.22	QP
з	60.70	12.13	0.49	12.41	25.03	40.00	-14.97	QP
4	84.70	4.25	0.54	10.20	14.99	40.00	-25.01	QP
5	625.08	10.03	1.49	18.54	30.06	46.00	-15.94	QP
6	900.15	9.42	1.88	21.09	32.39	46.00	-13.61	QP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

pol:

HORIZONTAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	37.55	10.62	0.38	12.95	23.95	40.00	-16.05	QP
2	44.74	8.37	0.41	13.55	22.33	40.00	-17.67	QP
з	60.70	8.32	0.49	12.41	21.22	40.00	-18.78	QP
4	79.80	11.50	0.65	8.51	20.66	40.00	-19.34	QP
5	119.86	7.63	0.64	10.51	18.78	43.50	-24.72	QP
6	625.08	7.19	1.49	18.54	27.22	46.00	-18.78	QP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that ate 20db blow the offficial limit are not reported

Notes: Only record the worst case.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 28

	Field Strength Of Eurodemontal (TV 2407MHz)										
Field Strength Of Fundamental (TX-2407MHz)											
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result					
2407.00	Н	83.38	77.03	114	94	Pass					
2407.00	V	89.35	79.44	114	94	Pass					

7.6. Results for Radiated Emissions (Above 1GHz)

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4808.00	43.77	33.06	35.04	3.94	45.73	74	-28.27	Peak	Horizontal
4808.00	32.23	33.06	35.04	3.94	34.19	54	-19.81	Average	Horizontal
12020.00	44.06	36.52	35.37	10.22	55.43	74	-18.57	Peak	Horizontal
12020.00	33.23	36.52	35.37	10.22	44.60	54	-9.40	Average	Horizontal
4808.00	45.98	33.06	35.04	3.94	47.94	74	-26.06	Peak	Vertical
4808.00	33.60	33.06	35.04	3.94	35.56	54	-18.44	Average	Vertical
12020.00	45.86	36.52	35.37	10.22	57.23	74	-16.77	Peak	Vertical
12020.00	34.65	36.52	35.37	10.22	46.02	54	-7.98	Average	Vertical

	Field Strength Of Fundamental (TX-2442MHz)								
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result			
2442.00	Н	90.72	74.85	114	94	Pass			
2442.00	V	92.18	81.35	114	94	Pass			

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4888.00	45.81	33.16	35.15	3.96	47.78	74	-26.22	Peak	Horizontal
4888.00	33.01	33.16	35.15	3.96	34.98	54	-19.02	Average	Horizontal
12220.00	46.39	36.52	35.37	10.22	57.76	74	-16.24	Peak	Horizontal
12220.00	32.87	36.52	35.37	10.22	44.24	54	-9.76	Average	Horizontal
4888.00	43.48	33.16	35.15	3.96	45.45	74	-28.55	Peak	Vertical
4888.00	36.72	33.16	35.15	3.96	38.69	54	-15.31	Average	Vertical
12220.00	40.93	36.52	35.37	10.22	52.30	74	-21.70	Peak	Vertical
12220.00	35.12	36.52	35.37	10.22	46.49	54	-7.51	Average	Vertical

Field Strength Of Fundamental (TX-2469MHz)									
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result			
2469.00	Н	85.43	77.67	114	94	Pass			
2469.00	V	93.23	82.36	114	94	Pass			

Freq. MHz	Reading dBuv	Ant. Fac dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4956.00	44.20	33.26	35.14	3.98	45.86	74	-28.14	Peak	Horizontal
4956.00	33.82	33.26	35.14	3.98	36.51	54	-17.49	Average	Horizontal
12390.00	44.16	36.52	35.37	10.22	56.42	74	-17.58	Peak	Horizontal
12390.00	35.57	36.52	35.37	10.22	46.45	54	-7.55	Average	Horizontal
4956.00	43.22	33.26	35.14	3.98	46.61	74	-27.39	Peak	Vertical
4956.00	34.46	33.26	35.14	3.98	37.21	54	-16.79	Average	Vertical
12390.00	44.24	36.52	35.37	10.22	56.13	74	-17.87	Peak	Vertical
12390.00	34.34	36.52	35.37	10.22	46.17	54	-7.83	Average	Vertical

Notes: Only record the worst case.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 28

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

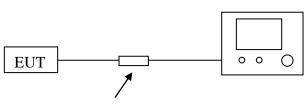
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 28

7.7. Results for Band edge Testing (Radiated)

Temperature	25.6 ℃	Humidity	50.4%
Test Engineer	Demi Lin	Test Date	July 09, 2017

	GFSK-Low channel									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict			
2310.000	-56.633	5.5	0.0	44.067	Peak	74.00	PASS			
2310.000	-71.238	5.5	0.0	29.462	AV	54.00	PASS			
2390.000	-54.534	5.5	0.0	46.166	Peak	74.00	PASS			
2390.000	-70.152	5.5	0.0	30.548	AV	54.00	PASS			
			GFSK-Hig	h channel						
2483.500	-58.286	5.5	0.0	42.414	Peak	74.00	PASS			
2483.500	-71.265	5.5	0.0	29.435	AV	54.00	PASS			
2500.000	-58.514	5.5	0.0	42.186	Peak	74.00	PASS			
2500.000	-70.970	5.5	0.0	29.730	AV	54.00	PASS			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 28


Band-edge measure	ements for radiated emissions
	GFSK
Agilent Spectrum Analyzer - Swept SA Ig RF 50 g AC SERKE-PULSE ALIGNAUTO 02:10:15 PM 3d 11, 2017	Agilent Spectrum Analyzer - Swept SA UI RF SD Q AC SBREEPULSE ALIGNAUTO 02:05:41 PM Jul 11, 2017
Marker 1 2.407410000000 GHz PN0: Fast () Trig: Free Run Avg Type: Log-Pwr Avg Jhold:>100/100 TPACE 12.3.4.5.6 Peak St TYPE MWWWWWW	Search Marker 1 2.407308000000 GHz Avg Type: Log-Pwr TRACE 12.3456 Peak Search PRO: Fast Trig: Free Run Avg[Hold>100/100 TYPE WWWWWW
Mkr1 2.407 410 GHZ	NextPeak Mkr1 2.407 308 GHz NextPeak
	In definitive fef 10.00 dBm -45.875 dBm
500 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	xt Pk Left 400
80.0	rker Delta
MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	Start 2.31000 GHz Stop 2.41200 GHz MkrCF #Res BW 1.0 MHz #VBW 330 Hz Sweep 241.1 ms (1001 pts) MrrICF Mrr.Hodel TRC SQL X Y RinkTohn Wolfe
1 N f 2.407.410.0Hz 6.856.dBm 2 N f 2.330.00.0Hz 5.4534.dBm 3 N f 2.310.00.0Hz 5.4534.dBm 4 - 2.310.00.0Hz 56.644.dBm 6 - - -	1 N f 2.407 398 GHz 45.875 dBm 2 N f 2.300 GHz -7.1238 dBm 3 N f 2.310 00 GHz -7.1238 dBm 4 2.310 00 GHz -7.0152 dBm Mkr→RefLvt 5 6 6 6 6
	More 1 of 2 11
MSG STATUS	MSG STATUS
2407 MHz – Peak	
	2407 MHz – Average
Agliont Spectrum Antilyzer - Swept SA B 50 0 AC SPREPAUSE ALIGNAUTO 0147/137 PM M11, 2017 Marker 1 2.468764000000 GHz PHO: Exet C. Trig: Free Run Avg Tigle: 100/100 Trive Tive New Avg	Agina Spectrum Analyze: Swarts A. Starts A. S
Agilant Spectrum Analyzer - Swept SA. ISPREPAUSE AUXIMA/TO DUT727PH 3/L1,2017 Peak St. Marker 1 2.468764000000 GHz IFGaind.sw Frig: Free Run Atten: 20 dB Avg Type: Log-Pwr Avg Heid>100/f00 Tride: Free Run Avg Heid>100/f00 Tride: Free Run Ref P NNNN N Peak St. Multication Marker 1 2.468764.000/f00 GLARADIN OLIFICITIES Avg Net P NNNN N Net P NNNN N	Agitant Spectrum Analyzer - Swept SA Search AllSHAUTO 0151:10PH MI1, 2017 Value PE 050 - AC SEBGEPALSE ALISHAUTO 0151:10PH MI1, 2017 Warker 12, 246506580000000 GHz Log-Ave Read Spectrum Analyzer (123:45.5) Peak Search
Agilant Spectrum Analyzer Swept SA. ISDEEPLAGE ALIONALITIC DULY12/PH MILL 2012 Peak Si Marker 1 2.468764000000 GHz PHO: Feat Trig: Free Run Arg Type: Log Pwr Tric: Gree Run Arg Type: Log Pwr Tric: Free Run Arg Type: Log Pwr T	Aglent Spectrum Analyzer - Swept SA ISBNE PALSE AUSPLATO Dist:00PM MI1, 2017 Search PF S0 @ AC ISBNE PALSE AUSPLATO 0151:10PM M11, 2017 Marker 1 2.469068000000 GHz Frig: Free Run IF Gaint.ow Trig: Free Run Atten: 20 dB AugHold>100/100 Trig: Free Run Kr1 2.469 068 GHz Next Peak
Agelant Spectrum Antiyzer - Swept SA. ISPREPALSE ALISNA/TO IOL/P12/PH MI1L 2012 Peak St Marker 1 2.46876400000 GHz FriGainLaw Trig: Free Run FriGainLaw Aug Type: Log Pwr Avg Type: Log Pwr Avg Type: Log Pwr - set Company Inverting the set Company Peak St 10 dB/div Ref 10.00 dBm -9.861 dBm Next P 000 1 -9.861 dBm Next P 000 1 -9.861 dBm Next P 000 1 -9.861 dBm Next P 000 -9.861 dBm -9.861 dBm Next P 000 -0.01 -0.02 -0.02 -0.02	Search Aglent Spectrum Analyzer Normal Spectrum Analyzer Peak Search Next Peak 100 0000 GHz 1900 620 0000 GHz Avg Type Log Pure Trig: Frae Run Atten: 20 dB Avg Type Log Pure Avg Heid> 100/100 Intel [2:3:0; 0] Trig: Frae Run ArgHeid> 100/100 Peak Search Iod Biddiv Ref 10.00 dBm Arg Type Log Pure Historical Search Mkr1 2.469 068 GHz -47.960 dBm Next Peak Iod Biddiv Ref 10.00 dBm -47.960 dBm Next Peak
Agelant Spectrum Antiyzer - Swept SA. ISPREPAUE ALISNAUTO IOL/P127PH MI1L 2012 Peak St Marker 1 2.468764000000 GHZ PR05 Fast GradinLaw Trig: Free Run Atton: 20 dB Aug Type: Leg Bwr Avg Type: Leg Bwr - 9.861 dBm Peak St Ne 10 dB/div Ref 10.00 dBm - 9.861 dBm - 9.861 dBm Ne 000 - 9.861 dBm - 9.861 dBm - 9.861 dBm Next P 000 - 9.961 dBm - 9.861 dBm - 9.861 dBm Next P 000 - 9.861 dBm - 9.861 dBm - 9.861 dBm Next P 000 - 9.901 - 9.901 dBm - 9.901 dBm - 9.901 dBm Next P 000 - 9.901 - 9.901 dBm - 9.901 d	Search Aglend Spectrum Analyze: Swarps M. BERCH Aug Type: Log-Pure Distribution Million Peak Search Marker 1 2.469068000000 GHz Hext Peak Trig: Free Run Hor Factor Avg Type: Log-Pure Trig: Trig: Free Run Arginido: 100/100 Next Peak Search 10 dB/div Ref 10.00 dBm
Alginnt Spectrum Andyzer - Swept SA ISPREPAUSE ALIZNATIO OLIZNITIO OLIZNITIO <tholiznitio< th=""> OLIZNITIO <th< th=""><th>Search Aglinn Spectrum Analyze: SwarpS A. StarpS A. Sta</th></th<></tholiznitio<>	Search Aglinn Spectrum Analyze: SwarpS A. StarpS A. Sta
Alginnt Spectrum Andyzer - Swept SA. I SPECEAUSE ALIZNATIC IOL 71279H MI1.2012 Peak SG Marker 1 2.468764000000 GHz PHO: Fast 00 Trig: Free Rum Aten: 20 dB Aug/Preiz Log/Pwr Arg/Preiz Log/Pwr Arg/Preiz Log/Pwr -9.861 dBm Peak SG Peak SG 10 dB/div Ref 10.00 dBm Mir 1 2.468 764 GHz -9.861 dBm Ne 00 00 00 00 00 00 00 00 00 00 00 00 00	Search Aglent Spectrum Analyze: Swept SA Search Search Aug Type: Leg Pure Marker 1 2.46906B000000 GHz; Fast Pitic Frast In Search Warker 2 2.46906B000000 GHz; Fast Pitic Frast In Search Warker 2 2.46906B GHz Aug Type: Leg Pure Marker 1 2.46906B GHZ -47.980 dBm Peak Search Pask Search Mkr1 2.469 068 GHz -47.980 dBm 10 dB/div Ref 10.00 dBm -47.980 dBm Next Peak -47.980 dBm Next Peak Next Peak 10 dB/div Ref 10.00 dBm -47.980 dBm Next Peak Next Peak Next Peak 10 dB/div Ref 10.00 dBm -47.980 dBm Next Peak Next Peak 10 dB/div Ref 10.00 dBm -47.980 dBm Next Peak Next Peak 10 dB/div Ref 10.00 dBm -47.980 dBm Next Pk Right Next Pk Right 100
Alginnt Spectrum Andyzer - Swept SA. I SPECEAUSE ALIZNATIC IOL 71279H MI1.2012 Peak SG Marker 1 2.468764000000 GHz PHO: Fast 00 Trig: Free Rum Aten: 20 dB Aug/Preiz Log/Pwr Arg/Preiz Log/Pwr Arg/Preiz Log/Pwr -9.861 dBm Peak SG Peak SG 10 dB/div Ref 10.00 dBm Mir 1 2.468 764 GHz -9.861 dBm Ne 00 00 00 00 00 00 00 00 00 00 00 00 00	Search Aglend Spectrum Analyze: Swerpt Al. B2002FR122 B1202FR122 B1202FR122 B1202FR122 B1202FR122 B202FR122 <
Alginnt Spectrum Andyzer - Swept SA. I SPECEAUSE ALIZNATIC IOL 71279H MI1.2012 Peak SG Marker 1 2.468764000000 GHz PHO: Fast 00 Trig: Free Rum Aten: 20 dB Aug/Preiz Log/Pwr Arg/Preiz Log/Pwr Arg/Preiz Log/Pwr -9.861 dBm Peak SG Peak SG 10 dB/div Ref 10.00 dBm Mir 1 2.468 764 GHz -9.861 dBm Ne 00 00 00 00 00 00 00 00 00 00 00 00 00	Search Adjunt Spectrum Analyze: Swerpt A. Statt 2.469068000000 GHz. Avg Type: Log-Pure Avg Type: Log-Pure Type: Type: T

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 28

8. 20 DB BANDWIDTH MEASUREMENT

- 8.1. Standard Applicable According to §15.215
- 8.2. Block Diagram of Test Setup

Spectrum Analyzer

DC Filter

8.3. Test Procedure

Use the following spectrum analyzer settings:

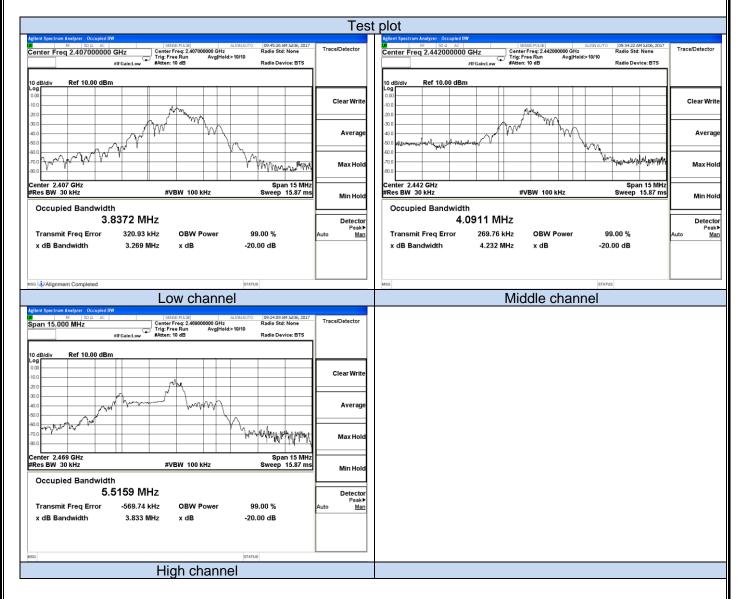
Span = 3MHz

RBW = 30KHz

VBW = 100KHz

Sweep = auto

Detector function = peak


Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

8.4. Test Results

Temperature	25.6 ℃	Humidity	50.4%
Test Engineer	Demi Lin	Test Date	July 09, 2017

Test Result Of 20dB Bandwidth Measurement							
Test Frequency 20dB Bandwidth Limit							
(MHz)	(MHz)	(MHz)					
2407	3.269	Non-Specified					
2442	4.232	Non-Specified					
2469	3.833	Non-Specified					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 28

9. TEST SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Please refer to separated files for External Photos and Internal Photos of the EUT.

.

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 28 of 28