

Test Report

Report No.: N	/ITi210630006-01E1
---------------	--------------------

Date of issue: July 29, 2021

Applicant: Guangdong SIRUI Optical Co., Ltd

Product: Remote Control Tripod

Model(s): 3T-R

FCC ID: 2AMTD-3T-R

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

测

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted.
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Contents

1.	Gene	eral Information	5
	1.1. 1.2. 1.3. 1.4. 1.5.	Description of EUT Operation channel list Test channel list Ancillary equipment list Description of Support Units	5 6 6
2.	Sum	mary of Test Results	7
3.	Test	Facilities and Accreditations	8
	3.1. 3.2. 3.3. 3.4.	Test laboratory Environmental conditions Measurement uncertainty Test software	8 8
4.	Equi	pment list	9
4. 5.	-	pment list Result	
	-		10 11 14 20 29 32 35 38

Page 4 of 43

Report No.: MTi210630006-01E1

TEST RESULT CERTIFICATION				
Applicant:	Guangdong SIRUI	Optica	Il Co., Ltd.	
Address	The Third Industrial Zone, Wuguishan Town, Zhongshan City, Guangdong, China			
Manufacturer:	Same as applicant			
Address:	Same address as ap	plican	t	
Product description				
Product name	Remote Control Tripo	bd		
Brand:	SIRUI			
Model name:	3T-R			
Serial model	N/A			
Standards	FCC Part 15.247			
Test mothed	ANSI C63.10-2013			
Date of Test				
Date (s) of test	July 15, 2021 ~ July 2	26, 20	21	
Test Result	Pass			
that the equipment under test (EUT to the tested sample identified in th) is in compliance wit		Crotest Co., Ltd. and the test results show FCC requirements. And it is applicable only	
		_	(Leon Chen)	
Тес	chnical Manager	:	Leo Su	
			(Leo Su)	
Authorized Signatory : Tom Kne				
			(Tom Xue)	
Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web:www.mtitest.com E-mail: mti@51mti.com				

Page 5 of 43

Report No.: MTi210630006-01E1

1. General Information

1.1. Description of EUT

Product name:	Remote Control Tripod
Model name:	3T-R
Serial model:	N/A
Difference in series models:	N/A
Operation frequency:	2402-2480MHz
Modulation type:	GFSK
Bit Rate of transmitter:	1 Mbps
Antenna type:	PCB Antenna
Antenna gain:	0dBi
Max. output power:	-3.147dBm
Hardware version:	1.0
Software version:	1.0
Power supply:	DC 5V from adapter AC 120V/60Hz or DC 3.7V from battery
Adapter information:	N/A
Battery:	DC 3.7V 200mAh
EUT serial number:	MTi210630006-01-S0001

1.2. Operation channel list

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.3. Test channel list

Channel	Channel	Frequency (MHz)
Low	00	2402
Middle	19	2440
High	39	2480

1.4. Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
Adapter	HW-090200CH0	/	Huizhou BYD Electronics Co., Ltd.	/

1.5. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
/	/	/	/	/	

Note:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

2. Summary of Test Results

检

测

Micr©test

测

微

Test procedures according to the technical standards:

No.	Standard Section	Test Item	Result	Remark
1	15.203	Antenna Requirement	Pass	
2	15.247 (b)	Peak Output Power	Pass	
3	15.207	Conducted Emission	Pass	
4	15.247 (d) & 15.209	Radiated Spurious Emission	Pass	
5	15.247 (e)	Power Spectral Density	Pass	
6	15.247 (a)(2)	6dB Bandwidth	Pass	
7	558074 D01 15.247 Meas Guidance v05r02 Chapter 6	Duty Cycle	Pass	
8	15.205	Band Edge Emission	Pass	
9	15.247(d)	Spurious RF Conducted Emissions	Pass	

3. Test Facilities and Accreditations

3.1. Test laboratory

Test Laboratory:	Shenzhen Microtest Co., Ltd.	
Location:	101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China	
FCC Registration No.:	448573	

3.2. Environmental conditions

Temperature:	15ºC~35ºC
Humidity	20%~75%
Atmospheric pressure	98kPa~101kPa

3.3. Measurement uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 providing a level of confidence of approximately 95 %

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3.4. Test software

Software Name	Manufacturer	Model	Version		
Bluetooth and Wi-Fi Test	Shenzhen JS tonscend	JS1120-3	2.5.77.0418		
System	co., ltd.	001120-0	2.5.77.0416		

Page 9 of 43

Report No.: MTi210630006-01E1

4. Equipment list

Broadband	Rohde&schwarz schwarabeck Hewlett-Packard Agilent Agilent	ESCI7 VULB 9163 8447F N5182A	101166 9163-1338 3113A0615 0 MY490604 55	2021/06/02 2021/05/30 2021/06/02	2022/06/01 2023/05/29 2022/06/01
tor Signal r es Analog enerator	Hewlett-Packard Agilent	9163 8447F	3113A0615 0 MY490604		
tor Signal r es Analog enerator	Agilent		0 MY490604	2021/06/02	2022/06/01
r es Analog enerator	0	N5182A			
enerator	Agilent		55	2021/06/02	2022/06/01
al Analyzer		E4421B	GB400512 40	2021/06/02	2022/06/01
	Agilent	N9030A	MY513502 96	2021/06/02	2022/06/01
nal Analyzer	Agilent	N9020A	MY501434 83	2021/06/02	2022/06/01
ed Sweeper	Agilent	83752A	3610A0195 7	2021/06/02	2022/06/01
r Supply	Agilent	E3632A	MY400276 95	2021/06/02	2022/06/01
idged id Horn	schwarabeck	BBHA 9120 D	9120D-227 8	2021/05/30	2023/05/29
Receiver	Rohde&schwarz	ESCS30	100210	2021/06/02	2022/06/01
niter	Schwarzbeck	VSTD 9561-F	00679	2021/06/02	2022/06/01
nains network	Schwarzbeck	NSLK 8127	NSLK 8127 #841	2021/06/02	2022/06/01
	Schwarzbeck	FMZB 1519 B	00044	2021/05/30	2023/05/29
op Antenna	Agilent	8449B	3008A0240 0	2021/06/02	2022/06/01
-	ains network	o Antenna Schwarzbeck	Anne networkSchwarzbeck8127AntennaSchwarzbeckFMZB 1519 B	Ains networkSchwarzbeck8127#841o AntennaSchwarzbeckFMZB 1519 B00044Agilent8449B3008A0240 0	Ains network Schwarzbeck 8127 #841 2021/06/02 o Antenna Schwarzbeck FMZB 1519 B 00044 2021/05/30 Agilent 8449B 3008A0240 2021/06/02

international system unit (SI).

Page 10 of 43

5. Test Result

5.1. Antenna requirement

5.1.1. Standard Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device

5.1.2. EUT Antenna

The EUT antenna is a PCB antenna (0dBi). It complies with the standard requirement. In case of replacement of broken antenna, the same antenna type must be used.

Page 11 of 43

5.2. Peak Output Power Test

5.2.1. Limit

	FCC Part15 Subpart C											
Section	Test Item	Limit	Frequency Range (MHz)									
15.247(b)(3)	Peak output power	1 watt(30dBm)	2400-2483.5									

5.2.2. Test setup

EUT	SPECTRUM
	ANALYZER

5.2.3. Test Procedure

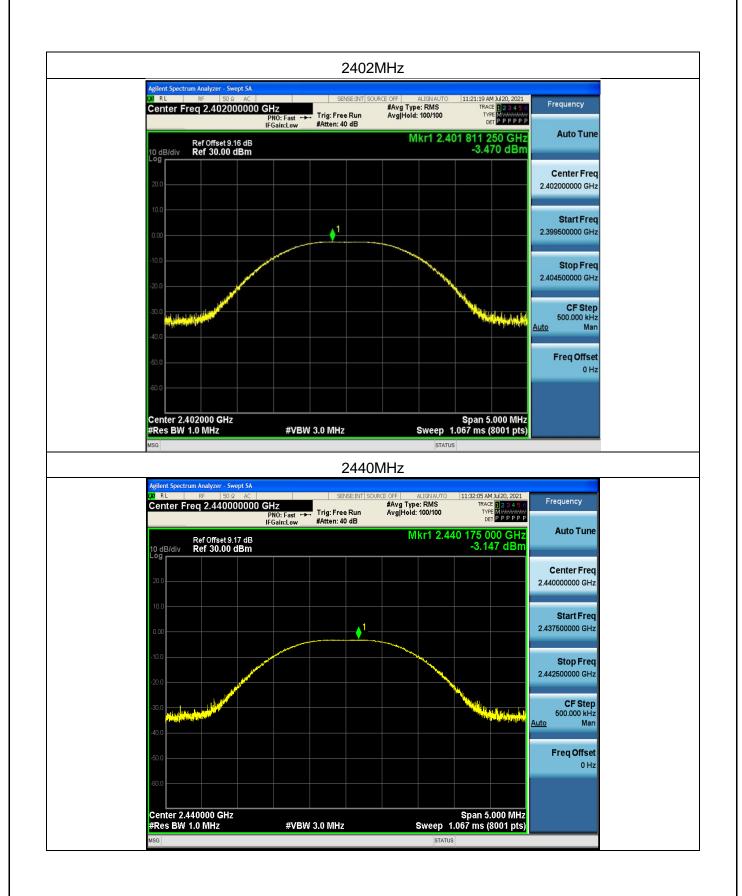
- (1) The EUT was directly connected to the spectrum analyser and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz)

RBW=3MHz, VBW=8MHz, Detector=Peak (If 20dB BW > 1 MHz)

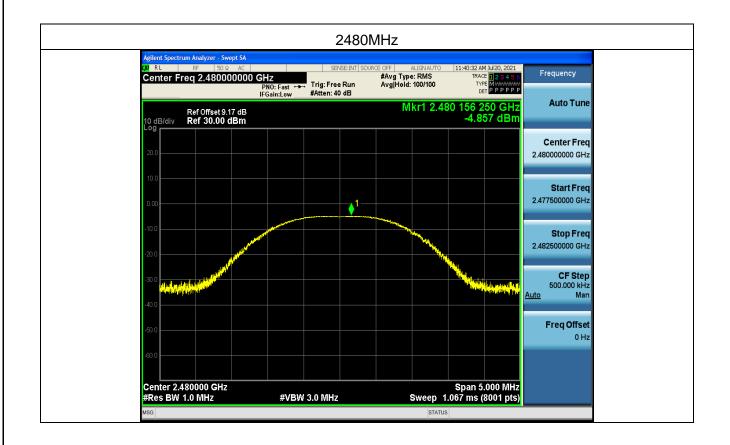
(3) The EUT was set to continuously transmitting in the max power during the test.

5.2.4. Test Results


EUT:	Remote Control Tripod	Model Name:	3T-R			
Pressure:	1012 hPa	Test Voltage:	DC 3.7V from battery			
Test Mode:	TX Mode /CH00, CH19,	Mode /CH00, CH19, CH39				

Test Channel	Frequency	Maximum Conducted Output Power(PK)	Limit
Criamion	(MHz) (dBm)		dBm
CH00	2402	-3.470	30
CH19	2440	-3.147	30
CH39	2480	-4.857	30

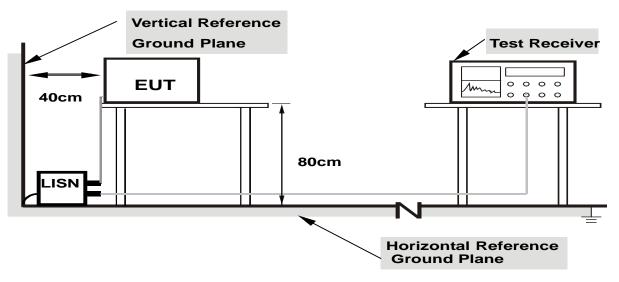
Page 12 of 43


Report No.: MTi210630006-01E1

Page 13 of 43

Report No.: MTi210630006-01E1

Page 14 of 43


5.3. Conducted emission

5.3.1. Limits

	Class B (dBµV)						
FREQUENCY (MHz)	Quasi-peak	Average					
0.15 -0.5	66 - 56 *	56 - 46 *					
0.50 -5.0	56.00	46.00					
5.0 -30.0	60.00	50.00					

Note: *Decreases with the logarithm of the frequency.

5.3.2. Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Page 15 of 43

5.3.3. Test Procedure

a. EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b. The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- c. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- d. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- e. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f. LISN at least 80 cm from nearest part of EUT chassis.

For the actual test configuration, please refer to the related Item - EUT Test Photos.

5.3.4. Test Results

Note:

- 1. The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is GFSK CH19.
- 2. Emission Level = Reading Level + Factor, Margin= Emission Level- Limit, Factor = LISN modulus + Cable Loss

Page 16 of 43

EUT:			R	Remote Control Tripod				el Na	me:		3T-R					
Press	ure:)10hF			Phase:					L			
Test \	/oltag	je:			C 5V 20V/6		adapter AC	Test	Mode	: :			Char	ging +	тх	
80.0	dBu	N														7
70																
60	<u> </u>									FCCF	Part15 C	lassB A	C Conduc	tion(QP)		
50	<u></u>									FCCF	art15 C	lassB A	C Conduc	tion(AVG)		
40			1	3 X			_									
	h	Λī	ηM	pМ	V1A 1	J.	MININA MARINA	ul Mallere	1 11 11 11 11							
30	$\left \right\rangle$	\mathcal{N}	₹ J	4	1 M	AN.	I THE ACTION AND A THE	White and a	myny My	ydwyd y	HM4H4	WMMMMM	dry	hile albert	J	
20	h~	A	A.A	¢^۹	4. Y. M	. Market	8 1 WWW AND	0 Wellen	ntron y X	2		1 W P	, Almandidda, Jal	ahara waka	Mannetter	[™] peak
10					(V ANT	T			-vn - w	water an	Nueseres.	el-elymenter-en	the second second second		AVG
0																
-10																-
-20 0.	.150			0.5	500	0.800	(M	Hz)		5	.000				:	 30.000
•			_			adir	-		eası			. 11	0	_		
-	No.	Mk.	Fre	<u> </u>		evel			men		Lin		Ove			
-			MF			Bu∨			dBu∨		dB		dB		ector	
-	1		0.30			0.18			41.1				-18.91		ΩP	
-	2		0.30)60	1	0.61	10.99		21.60)	50	.08	-28.48	3 A	٨VG	
	3	*	0.45	580	3	2.28	3 11.04	4	43.32	2	56	73	-13.41		ΩP	
-	4		0.45	80	1	2.59) 11.04		23.6	3	46	73	-23.10) /	٨VG	
-	5		0.71	80	2	3.43	3 11.13		34.50	6	56	00	-21.44	4 (γP	
-	6		0.71	80		4.98	3 11.13		16.1 ⁻	1	46	.00	-29.89) /	VG	_
-	7		1.19	00	2	2.91	13.67	÷	36.58	8	56	00	-19.42	2 (٩٢	
-	8		1.19	00		3.66	6 13.67		17.3	3	46	00	-28.67	7 <i> </i>	VG	
-	9		2.02	260	2	0.50) 15.45		35.9	5	56	.00	-20.05	5 (ΩΡ	
-	10		2.02	260		1.89) 15.45		17.34	4	46	.00	-28.66	6 A	VG	
-	11		3.83	800	2	2.20) 11.42		33.62	2	56	00	-22.38	3 (ΩΡ	
-	12		3.83	200		3.02	2 11.42		14.44	1	16	00	-31.56	s /	VG	

Page 17 of 43

EUT:			Remote Cont	rol Tripod	lodel Name):	3T-R			
Pressi	ure:		1010hPa	F	hase:		N			
Test V	/oltage:		DC 5V from a 120V/60Hz	adapter AC	est Mode:		Chargi	ng + TX		
80.0	dBuV									
70										
60					FC	CPart15 ClassB A	C Conduction	n(QP)		
			-		FC	CPart15 ClassB A	C Conduction	n(AVG)		
50		1 3								
40	h r	A M	March where	5 Z	9 LaWA in which is the	yı 🛛				
30	++		Y WIN	8 a	an a	When which which when he as	Kalakan	. L . J		
20	$h \cup r$	-A/W	Why A why	6 8 Mana and the second	10 10	12 X	, a numbrahally	MMMM MMMM peak		
10			v ~ MM			and the stand of the	Waynanahanak	www.www.www.aVG		
0										
-10										
-20										
0.	150		0.500 0.800	(MHz		5.000		30.000		
	No. M	k. Fred	Reading I. Level	g Correct Factor	Measure ment	e- Limit	Over			
_	110. 10	MHz	·	dB	dBu∨	dBu∨	dB	Detector		
_	1	0.306		10.92	42.99	60.08		QP		
_	2	0.306		10.92	25.64	50.08		AVG		
_	2 3 *									
_	-	0.466		10.90	46.44	56.58		QP		
	4	0.466		10.90	28.93	46.58		AVG		
_	5	1.166		13.57	38.03		-17.97	QP		
_	6	1.166	0 8.22	13.57	21.79	46.00	-24.21	AVG		
_	7	1.894	0 23.55	15.15	38.70	56.00	-17.30	QP		
_	8	1.894	0 7.13	15.15	22.28	46.00	-23.72	AVG		
_	9	2.670	0 26.36	11.39	37.75	56.00	-18.25	QP		
_	10	2.670	0 8.57	11.39	19.96	46.00	-26.04	AVG		
	11	5.054	0 21.18	11.39	32.57	60.00	-27.43	QP		
	12	5.054	0 6.36	11.39	17.75	50.00		AVG		

Page 18 of 43

EUT:				Rem	ote C	Model Name:						3T-R					
Pres	sure:			1010	hPa			Phase:						L			
Test	Volta	ge:			5V fro //60H		dapter AC	Test	Mode	: :				Charging	+ TX		
80.	.0 dE	luV														7	
70																_	
60										FCCF	Part15	Class	B AC	Conduction(QP)		
50										FCCF	art15	Class	В АС	Conduction(AV	G)		
40				5													
30	h		Å N		WHIN THE	wa.	AN WANNA	Int. III	New Land								
		2 X		Ň,	8	44			2 2	WWWWW	w Mhilinia	~wall	Alignat	Manyahlun	. Inde		
20	\square	$\sqrt{\Lambda}$	\mathbb{N}	Y	AUNAMIC NA	How Wan y	WWW.N.WWW.	W WAY	Werny Hawill	Maphage	ware an	The second	wyshie	11	A when the stand of the	∦ peak	
10		~~ ~												Ward Mar Adaption and a server	and the second s	AVG	
0																	
-10 -20																	
	0.150			0.500	0.8	00	(M	Hz)		5.	.000					 30.000	
			_		Rea	-			Mea			Lin		Over			
_	NO.	Mk.	Free	·	Le		Fact	or	me			Lin		Over			
_			MHz		dB		dB		dB			dB		dB	Detec		
_	1		0.234	0	23.	24	10.9	8	34.	22		62.			QF		
_	2		0.234	0	10.	05	10.9	8	21.	03		52.	31	-31.28	AV	'G	
	3		0.314	0	25.	62	10.9	9	36.	61		59.	86	-23.25	QF)	
	4		0.314	0	13.	87	10.9	9	24.	86		49.	86	-25.00	AV	'G	
	5	*	0.462	20	30.	68	11.0	4	41.	72		56.	66	-14.94	QF)	
	6		0.462	20	18.	07	11.0	4	29.	11	1	46.	66	-17.55	AV	'G	
	7		0.766	0	24.	60	11.1	4	35.	74		56.	00	-20.26	QF)	
_	8		0.766	0	11.	43	11.1	4	22.	57		46.	00	-23.43	AV	'G	
	9		1.898	0	20.	67	15.1	9	35.	86		56.	00	-20.14	QF	>	
	10		1.898	0	8.	12	15.1	9	23.	31		46.	00	-22.69	AV	'G	
	11		2.850	0	24.		11.3		35.					-20.23	QF		
	12		2.850			79	11.3		20.					-25.82	AV		
			2.000	-	Ŭ.			-						20.02	,	-	

Page 19 of 43

EUT:	R	emote Contro	l Tripod	Model Nar	ne:		3T-R	
Pressure:	1()10hPa	I	Phase:			N	
Test Voltage:		C 5V from ad 40V/60Hz	apter AC -	Test Mode	:		Charging	+ TX
80.0 dBuV							1	
70								
60					FCCPart1	5 ClassB AC	Conduction(QF	<u>ŋ</u>
50					FCCPart1	5 ClassB AC	Conduction(AV	G)
40 3	Å	7	9	11				
30	∖_∕₩ş્	Multimmul Why	IN ANY WWWWWW	hand the states	www.	www.	hutha u	
20		minun		12 X	But the		WWWWWWWWW	An AWA peak
10	V	м т. М.	ww ^{n/*}	When		and the second second second	when him and a second	AVG
0								
-10								
-20 0.150	0 F	500 0.800	(MH:	2]	5.000			30.000
		Reading	Correc					
No. Mk.	Freq.	Level	Factor			Limit	Over	
	MHz	dBu∨	dB	dBu	V	dBu∨	dB	Detector
1 0	.2300	24.07	10.92	34.9	9	62.45	-27.46	QP
2 0	.2340	10.15	10.92	21.0)7	52.31	-31.24	AVG
3 0	.3100	28.18	10.92	39.1	0	59.97	-20.87	QP
4 0	.3100	14.03	10.92	24.9	5	49.97	-25.02	AVG
5 * 0	.4620	32.49	10.89	43.3	8	56.66	-13.28	QP
6 0	.4620	18.88	10.89	29.7	7	46.66	-16.89	AVG
7 0	.6940	26.81	11.07	37.8	8	56.00	-18.12	QP
8 0	.6940	11.87	11.07	22.9	4	46.00	-23.06	AVG
9 1	.9020	24.37	15.17	39.5	4	56.00	-16.46	QP
10 1	.9020	8.74	15.17	23.9)1	46.00	-22.09	AVG
11 2	2.8500	26.23	11.39	37.6	2	56.00	-18.38	QP
12 2	2.8500	10.73	11.39	22.1	2	46.00	-23.88	AVG

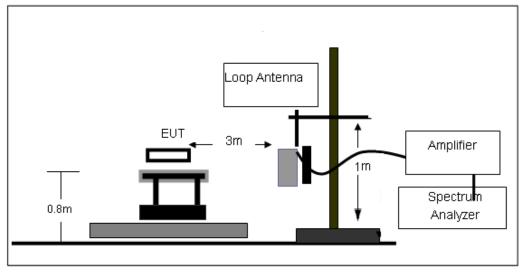
Page 20 of 43

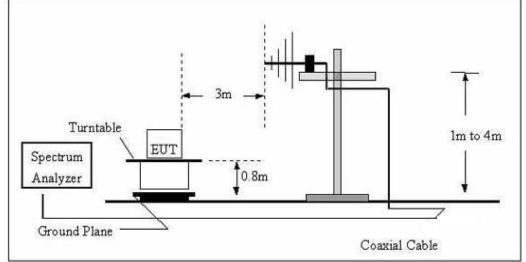
5.4. Radiated spurious emission

5.4.1. Limits

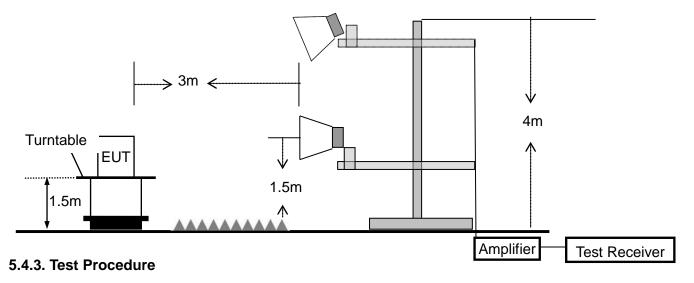
Frequency	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

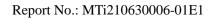
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for
band)	Average


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


Page 21 of 43

5.4.2. Test Setup


Radiated emission test-up frequency below 30MHz


Radiated emission test-up frequency 30MHz~1GHz

Radiated emission test-up frequency above 1GHz

Page 22 of 43

测

检

- a. EUT operating conditions. The EUT tested system was configured as the statements of 3.2 Unless otherwise a special operating condition is specified in the follows during the testing.
- b. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- c. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter shield area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For emission measurements above 1 GHz, the EUT shall be placed at a height of 1.5 m above the floor on a support that is RF transparent for the frequencies of interest. Final measurements for the EUT require a measurement antenna height scan of 1 m to 4 m.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode f. pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- h. For the actual test configuration, please refer to the related Item -EUT Test photos.

Note: Both horizontal and vertical antenna polarities were tested. The worst case emissions were reported.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Page 23 of 43

5.4.4. Test Results

Below 30MHz:

EUT:	Remote Control Tripod	Model Name:	3T-R
Pressure:	1010 hPa		DC 5V from adapter AC 120V/60Hz
Test Mode:	Charging + TX	Polarization::	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Pass
				Pass

Note:

- 1. For 9kHz-30MHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor =40 log (specific distance/test distance)(dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

Page 24 of 43

Between 30MHz – 1GHz:

EUT:			Remote Control Tripod			odel Name:	3	3T-R		
Pressure	:		1010	1010 hPa Phase:			ŀ	Н		
Test Mod	le:		Cha	rging + TX	Те	est Voltage:		DC 5V fror 20V/60Hz	n adapter A	
80.0	dBu	V/m								
70										
60							FCC ClassB 3	M Radiated QP		
50								Margin -6	dB	
40									<u>к</u>	
30				2	3 X		4	5	ew weter	
20	A . ANN	en prosen whether a	utter la	1	Anton	winner Wandstrangth	utilitation and the second	how make my and a film of the		
10 0.0			1997 Auder	NAN AND AND AND AND AND AND AND AND AND	- Contraction					
	0.000		50.000	90.000	(MHz)	300.	000	600.000	1000.0	
N	lo.	Frequent (MHz)	cy	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	1	96.0986	6	37.27	-13.36	23.91	43.50	-19.59	QP	
2	2	107.887	7	40.18	-12.75	27.43	43.50	-16.07	QP	
-	3	119.855	6	44.01	-13.92	30.09	43.50	-13.41	QP	
		40.4.005	1	30.63	-6.61	24.02	46.00	-21.98	QP	
	1	434.065	•							
3	-	434.065 689.564		32.00	-1.78	30.22	46.00	-15.78	QP	

Page 25 of 43

EUT:		Remote Control Tripod			del Name:	3	3T-R		
Pressure:		1010 h	Pa	Ph	ase:	١	V		
Test Mode:		Chargi	ng + TX	Te	st Voltage:		DC 5V fror 20V/60Hz	n adapter AC	
80.0 dBu	uV/m								
70									
60						FCC ClassB 3	M Radiated QP		
50							Margin -6	dB	
40									
				4 *					
30 1			2 3 X X	5 X			A Murth	b Mryw Amr peak	
20	s.k.u				When man she with Marine	Marken between the second	h-Approximation -		
	white may have have a second and a	multing and	Martin Way We	Mr My human	When we we we wanted the second	Net days and			
		140							
0.0 30.000		60.000	90.000	(MHz)	300.	000	600.000	1000.0	
	Frequen	CV F	Reading	Factor	Level	Limit	Margin		
No.	(MHz)	-	(dBuV)	(dB/m)		(dBuV/m)		Detector	
1	30.105	4	39.65	-15.20	24.45	40.00	-15.55	QP	
2	96.098	6	42.63	-13.36	29.27	43.50	-14.23	QP	
	107.887	7	42.81	-12.75	30.06	43.50	-13.44	QP	
3	101.001					10 -0			
3 4 *	119.855	6	48.18	-13.92	34.26	43.50	-9.24	QP	
			48.18 42.17	-13.92 -15.11	34.26 27.06	43.50 43.50	-9.24 -16.44	QP QP	

Note:

- 1. Emission Level = Meter Reading + Factor, Margin= Emission Level- Limit, Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. The three modulated high, medium and low channels have been tested. The report only shows the worst mode. The worst mode is CH19.

测 检 测

Page 26 of 43

Report No.: MTi210630006-01E1

1GHz-25GHz:

Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	Comment			
	Level	loss	Factor	Factor	Level							
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)					
Low Channel (2402 MHz)-Above 1G												
4804.338	61.80	4.36	32.92	45.53	53.55	74.00	-20.45	Pk	Vertical			
4804.338	41.45	4.36	32.92	45.53	33.20	54.00	-20.80	AV	Vertical			
7206.107	61.32	5.02	37.63	45.56	58.41	74.00	-15.59	Pk	Vertical			
7206.107	42.44	5.02	37.63	45.56	39.53	54.00	-14.47	AV	Vertical			
4804.169	64.02	4.36	32.92	45.53	55.77	74.00	-18.23	Pk	Horizontal			
4804.169	41.64	4.36	32.92	45.53	33.39	54.00	-20.61	AV	Horizontal			
7206.214	62.27	5.02	37.63	45.56	59.36	74.00	-14.64	Pk	Horizontal			
7206.214	41.24	5.02	37.63	45.56	38.33	54.00	-15.67	AV	Horizontal			
			Mid C	Channel (24	440 MHz)-A	Above 1G						
4880.473	63.49	4.41	33.01	45.76	55.15	74.00	-18.85	Pk	Vertical			
4880.473	43.51	4.41	33.01	45.76	35.17	54.00	-18.83	AV	Vertical			
7320.265	66.10	5.02	37.68	45.59	63.21	74.00	-10.79	Pk	Vertical			
7320.265	41.66	5.02	37.68	45.59	38.77	54.00	-15.23	AV	Vertical			
4880.366	63.63	4.41	33.01	45.76	55.29	74.00	-18.71	Pk	Horizontal			
4880.366	41.29	4.41	33.01	45.76	32.95	54.00	-21.05	AV	Horizontal			
7320.234	60.43	5.02	37.68	45.59	57.54	74.00	-16.46	Pk	Horizontal			
7320.234	43.87	5.02	37.68	45.59	40.98	54.00	-13.02	AV	Horizontal			
			High C	Channel (24	480 MHz)-	Above 1G						
4960.482	64.45	4.50	33.26	46.07	56.14	74.00	-17.86	Pk	Vertical			
4960.482	42.11	4.50	33.26	46.07	33.80	54.00	-20.20	AV	Vertical			
7440.131	65.29	5.02	37.78	45.77	62.32	74.00	-11.68	Pk	Vertical			
7440.131	48.16	5.02	37.78	45.77	45.19	54.00	-8.81	AV	Vertical			
4960.326	63.03	4.50	33.26	46.07	54.72	74.00	-19.28	Pk	Horizontal			
4960.326	45.41	4.50	33.26	46.07	37.10	54.00	-16.90	AV	Horizontal			
7440.199	64.57	5.02	37.78	45.77	61.60	74.00	-12.40	Pk	Horizontal			
7440.199	44.39	5.02	37.78	45.77	41.42	54.00	-12.58	AV	Horizontal			

Note:

All Readings are Peak Value (VBW=3MHz) and AV Value (VBW=10Hz). 1.

2. Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

3. All the modulation modes have been tested, and the worst results are reflected in the report.

Micr©test 微测检测

Page 27 of 43

Report No.: MTi210630006-01E1

5.4.5. Band edge-radiated

Frequency	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	Comment
	Reading	Loss	Factor	Factor	Level				
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
				GFS	K				
2310.00	63.06	2.40	27.70	40.40	52.76	74	-21.24	Pk	Horizontal
2310.00	42.73	2.40	27.70	40.40	32.43	54	-21.57	AV	Horizontal
2310.00	61.46	2.40	27.70	40.40	51.16	74	-22.84	Pk	Vertical
2310.00	41.61	2.40	27.70	40.40	31.31	54	-22.69	AV	Vertical
2390.00	64.55	2.44	28.30	40.10	55.19	74	-18.81	Pk	Vertical
2390.00	44.13	2.44	28.30	40.10	34.77	54	-19.23	AV	Vertical
2390.00	64.14	2.44	28.30	40.10	54.78	74	-19.22	Pk	Horizontal
2390.00	42.71	2.44	28.30	40.10	33.35	54	-20.65	AV	Horizontal
2483.50	62.40	2.48	28.70	39.80	53.78	74	-20.22	Pk	Vertical
2483.50	43.77	2.48	28.70	39.80	35.15	54	-18.85	AV	Vertical
2483.50	65.15	2.48	28.70	39.80	56.53	74	-17.47	Pk	Horizontal
2483.50	45.00	2.48	28.70	39.80	36.38	54	-17.62	AV	Horizontal

5.4.6. Spurious Emission in Restricted Band 3260MHz-18000MHz

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Reading	Cable	Antenna	Preamp	Emission	Limits	Margin	Detector	Comment
	Level	Loss	Factor	Factor	Level				
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
3260	61.43	3.27	30.02	38.05	56.67	74	-17.33	Pk	Vertical
3260	40.21	3.27	30.02	38.05	35.45	54	-18.55	AV	Vertical
3260	64.65	3.27	30.02	38.05	59.89	74	-14.11	Pk	Horizontal
3260	42.50	3.27	30.02	38.05	37.74	54	-16.26	AV	Horizontal
3332	63.56	3.31	30.00	37.91	58.96	74	-15.04	Pk	Vertical
3332	42.74	3.31	30.00	37.91	38.14	54	-15.86	AV	Vertical
3332	64.56	3.31	30.00	37.91	59.96	74	-14.04	Pk	Horizontal
3332	41.59	3.31	30.00	37.91	36.99	54	-17.01	AV	Horizontal
17797	43.53	8.63	44.23	39.60	56.79	74	-17.21	Pk	Vertical
17797	30.41	8.63	44.23	39.60	43.67	54	-10.33	AV	Vertical
17788	42.84	8.63	44.23	39.60	56.10	74	-17.90	Pk	Horizontal
17788	31.06	8.63	44.23	39.60	44.32	54	-9.68	AV	Horizontal

5.5. Power spectral density test

5.5.1. Limit

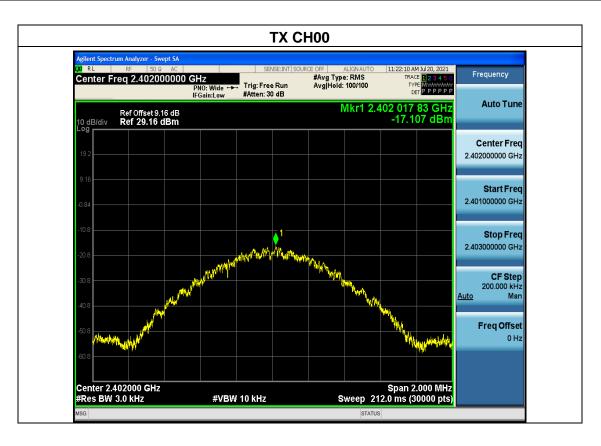
FCC Part15 (15.247), Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)						
15.247	Power Spectral Density	8 dBm (in any 3kHz)	2400-2483.5						

5.5.2. Test Procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.5.3. Test Setup

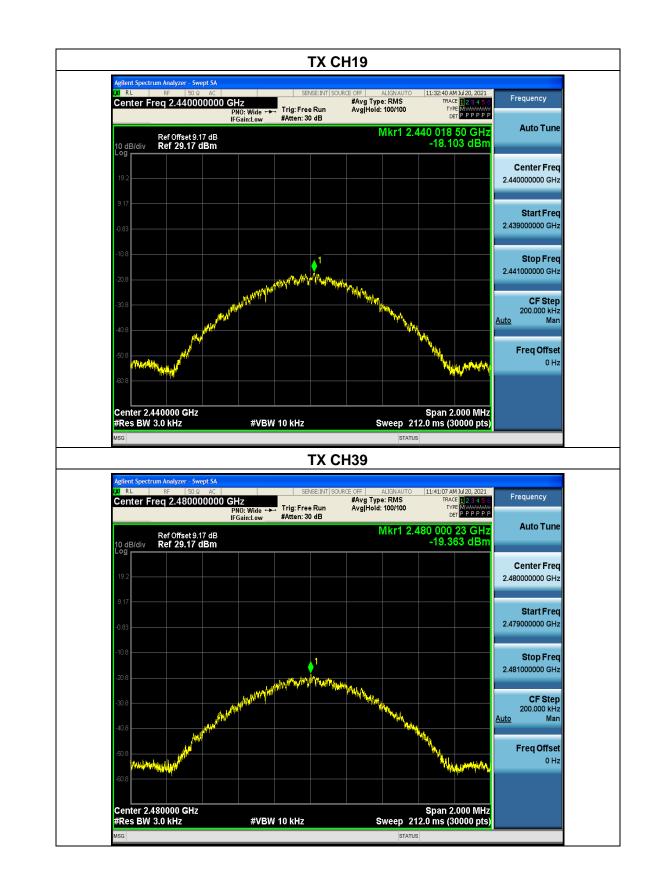
EUT	SPECTRUM
	ANALYZER



Page 30 of 43

5.5.4. Test Results

EUT:	Remote Control Trip	ood Model Name:	3T-R
Pressure:	1015 hPa	Test Voltage:	DC 3.7V from battery
Test Mode:	TX Mode /CH00, CI	H19, CH39	


Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-17.107	8	PASS
2440 MHz	-18.103	8	PASS
2480 MHz	-19.363	8	PASS

Page **31** of **43**

Report No.: MTi210630006-01E1

Page 32 of 43

5.6. 6dB bandwidth

5.6.1. Limit

FCC Part15 (15.247), Subpart C					
Section Test Item Limit Frequency Range (MHz)					
15.247(a)(2)	Bandwidth	>= 500kHz (6dB bandwidth)	2400-2483.5		

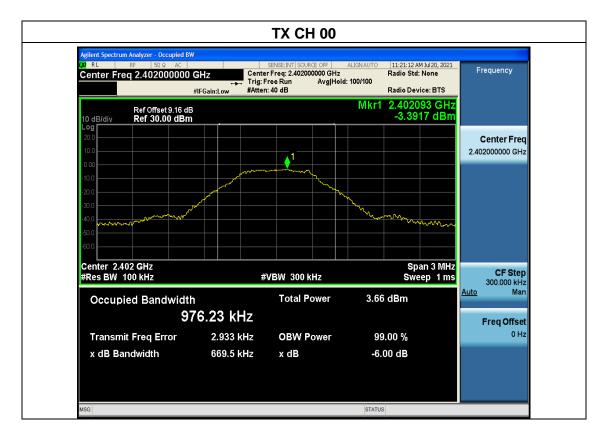
5.6.2. Test Procedure

- 1. Set RBW= 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the

two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum

level measured in the fundamental emission.

5.6.3. Test Setup



5.6.4. Test Result

EUT:	Remote Control Tripod		3T-R	
Pressure:	1012 hPa	Test Voltage:	DC 3.7V from battery	
Test Mode:	TX Mode /CH00, CH19, CH39			

Channel	Frequency (MHz)	6dB bandwidth (kHz)	Limit (kHz)	Result
Low	2402	669.5	500	Pass
Middle	2440	657.5	500	Pass
High	2480	677.6	500	Pass

5.7. Duty Cycle

5.7.1. Conformance Limit

No limit requirement.

5.7.2. Measuring Instruments

The Measuring equipment is listed in the section 4 of this test report.

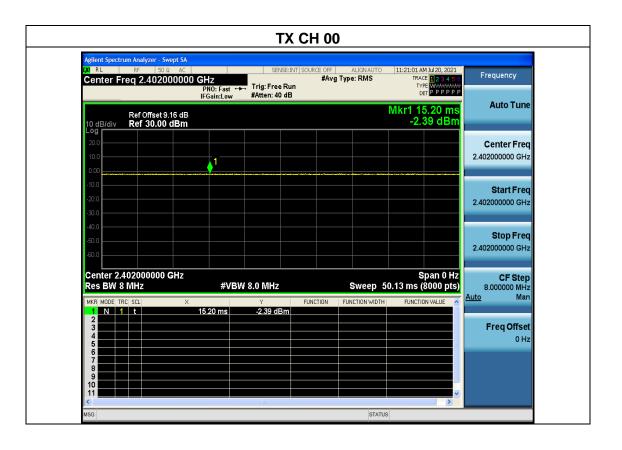
5.7.3. Test Setup

5.7.4. Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

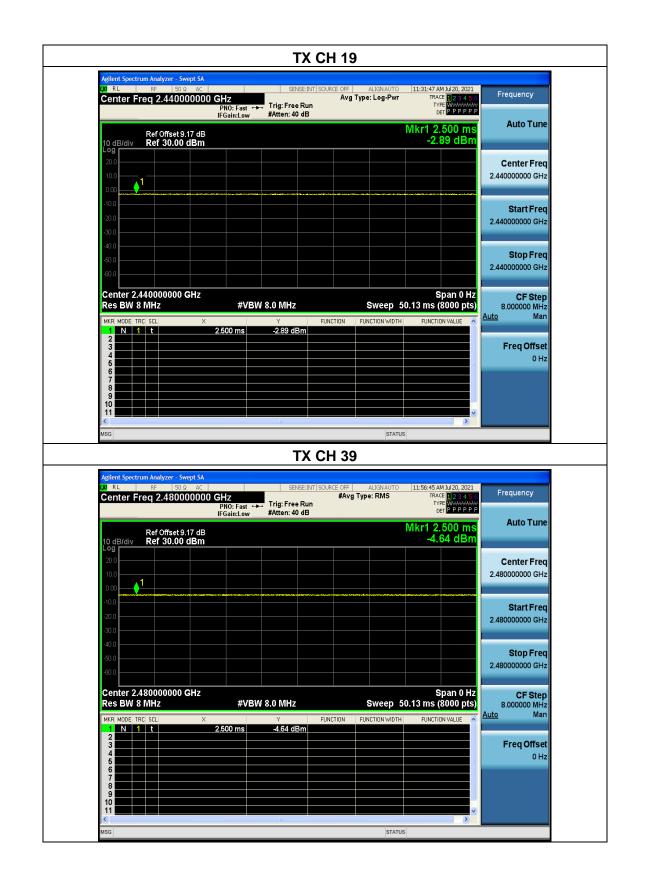
The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero-span measurement method, 6.0(b) in KDB 558074 D01 DTS Meas Guidance v05r02.

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)


The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz (the largest available value) $VBW = 8MHz (\geq RBW)$ Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure Total and Ton Calculate Duty Cycle = Ton / Total Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao' an District, Shenzhen, Guangdong, China Tel: (86-755)88850135 Fax: (86-755) 88850136 Web:www.mtitest.com E-mail: mti@51mti.com

5.7.5. Test Results


EUT:	Remote Control Tripod	Model Name:	3T-R
Pressure:	1012 hPa	Test Voltage:	DC 3.7V from battery
Test Mode:	TX Mode /CH00, CH19, CH39		

Page **37** of **43**

Report No.: MTi210630006-01E1

Page 38 of 43

5.8. Conducted band edge

5.8.1. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.8.2. Test Setup

5.8.3. Test Procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

5.8.4. Test Result

EUT:	Remot	e Control Tripod	Model Name:	3T-R DC 3.7V from battery	
Pressure:	1012 h	Pa	Test Voltage:		
Test Mode:	TX Mo	de /CH00, CH39			
		BLE: Band I	Edge, Left Side		
IX.	gilent Spectrum Analyzer - Swept S R L RF 50 Ω A	C SENSE:INT	SOURCE OFF ALIGN AUTO 11:22:19 AM Jul 20, 2021	Frequency	
•	Center Freq 2.3570000	PNO: Fast +++ IFGain:Low #Atten: 26 dB	#Avg Type: RMS Avg Hold: 300/300 Det P P P P P		
1	Ref Offset 9.16 c 0 dB/div Ref 16.00 dB		Mkr5 2.386 046 GHz -50.743 dBm	Auto Tune	
	6.00			Center Freq	
	4.00		-22 96 5Em	2.357000000 GHz	
	34.0		-2236 2911	Start Freq 2.31000000 GHz	
	44.0 54.0	nau an Linke ann a' se a thuis a st	$5 \sqrt{3}$		
	64.0		Denne a dronaf sakt of dron dronds under a star of a dama drone a sette	Stop Freq 2.404000000 GHz	
s	Start 2.31000 GHz		Stop 2.40400 GHz	CF Step	
		#VBW 300 kHz	Sweep 9.000 ms (1001 pts) FUNCTION FUNCTION WIDTH FUNCTION VALUE	9.400000 MHz <u>Auto</u> Man	
	2 N 1 f 3 N 1 f	2.402 120 GHz -2.956 dBm 2.400 000 GHz -52.585 dBm 2.390 000 GHz -56.280 dBm		Freq Offset	
	4 N 1 f 2	2.310 000 GHz -56.137 dBm 2.386 046 GHz -50.743 dBm	ана	0 Hz	
	7 8 9				
	10				
M	SG		STATUS		
A	gilent Spectrum Analyzer - Swept S		dge, Right Side		
	RL RF 50 Ω A Center Freq 2.4890000		SOURCE OFF ALIGNAUTO 11:41:16 AM Jul 20, 2021 #Avg Type: RMS TRACE 2 3 4 5 6 Avg Hold: 300/300 TYPE	Frequency	
	Def Offect 0 47 a	IFGain:Low #Atten: 26 dB	Mkr4 2.484 754 GHz	Auto Tune	
	0 dB/div Ref 16.00 dB		-53.527 dBm		
	4.00			Center Freq 2.489000000 GHz	
	24.0			Start Freq	
	34.0			2.478000000 GHz	
	54.0 m	2 4 marine and a second and a second and a second a	3/ managenetication and the second and the second s	Stop Freq	
	74.0			2.50000000 GHz	
	Start 2.47800 GHz Res BW 100 kHz	#VBW 300 kHz	Stop 2.50000 GHz Sweep 2.133 ms (1001 pts)	CF Step 2.200000 MHz	
	MKR MODE TRC SCL	× Y 2.480 002 GHz -5.641 dBm		Auto Man	
	2 N 1 f 2 3 N 1 f 2 4 N 1 f 2	.483 500 GHz -54.803 dBm 2.500 000 GHz -57.026 dBm 2.484 754 GHz -53.527 dBm		Freq Offset 0 Hz	
	5 6 6 7 C C C C C C C C C C C C C C C C C				
	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
<	11 sg		STATUS		
117					

Page 40 of 43

5.9. Spurious RF Conducted Emissions

5.9.1. Conformance Limit

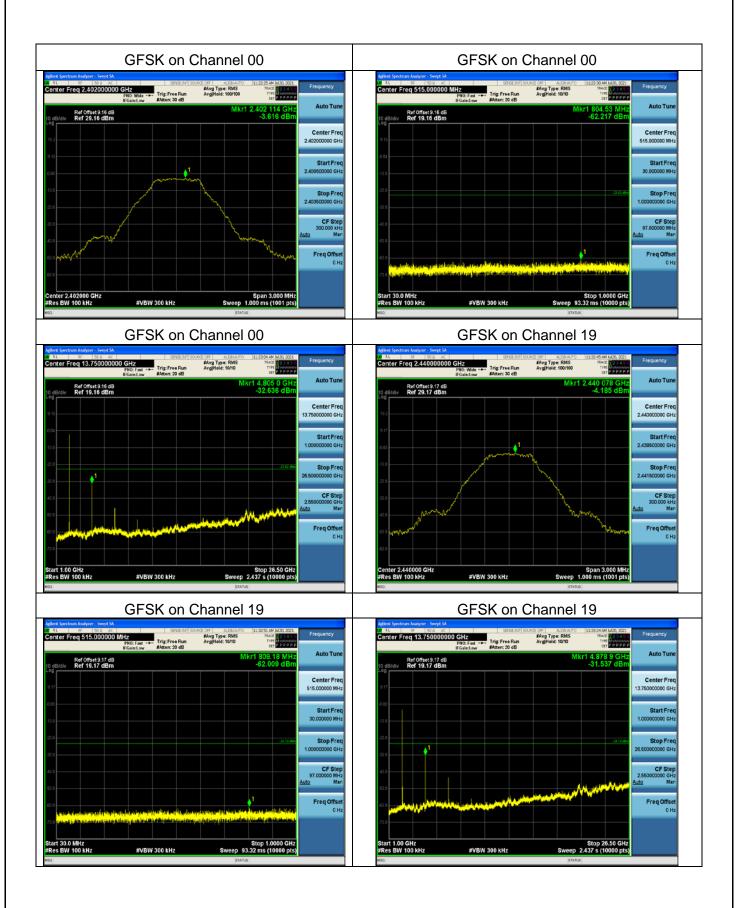
Below -20dB of the highest emission level in operating band.

5.9.2. Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

5.9.3. Test Setup

Please refer to Section 6.1 of this test report.


5.9.4. Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300kHz to measure the peak field strength, and measure frequency range from 9kHz to 26.5GHz.

5.9.5. Test Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.

Frequency

Auto Tu

Center Fr 515.000000 M

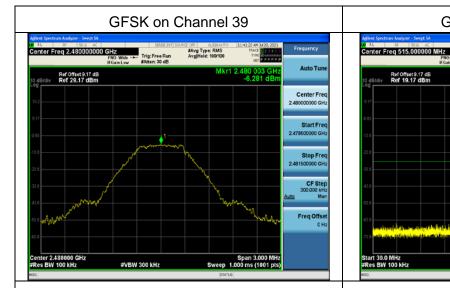
art Fr

Stop Fr

CF Ste

Freq Offse

GFSK on Channel 39


Fast +++ Trig: Free Run #Atten: 20 dB

W 300 kHz

#Avg Type: RMS Avg[Hold: 10/10

♦¹

Stop 1.0000 GHz p 93.32 ms (10000 pts

GFSK on Channel 39

Center F	req 13.7500000	PNO: Fast	SENSE:NT SO Trig: Free Run #Atten: 20 dB	Avg[Hold: 10/10	11:42:00 AM 3ul 20, 2021 TRACE 1 2 3 4 5 6 TYPE M WANNAULD DET P P P P P P	Frequency
10 dB/div	Ref Offset 9.17 dB Ref 19.17 dBm			M	kr1 4.960 5 GHz -31.491 dBm	Auto Tune
9.17						Center Freq 13.75000000 GHz
-10.8						Start Freq 1.000000000 GHz
-20.8	• ¹				326	Stop Freq 26.50000000 GHz
-4).8						CF Step 2.55000000 GHz Auto Mar
-63.8	and the second		مرون المراجع المان المراجع الم	in the second		Freq Offset 0 Hz
Start 1.00			300 kHz		Stop 26.50 GHz 2.437 s (10000 pts)	

Page 43 of 43

EUT Photographs

Please refer to the following exhibits: Exhibit- EUT Test Setup Photographs Exhibit- EUT External Photographs Exhibit- EUT Internal Photographs

----END OF REPORT----