

Report No.: NTC2211009FV00

FCC RADIO TEST REPORT

Applicant:	Summit Electronics LLC
Address:	1 Rewe Street, Brooklyn, New York, 11211 United States
Manufacturer:	Summit Electronics LLC
Address:	1 Rewe Street, Brooklyn, New York, 11211 United States
Factory:	Summit Electronics LLC
Address:	1 Rewe Street, Brooklyn, New York, 11211 United States
Product Name:	Portable Alarm Clock Wireless Speaker
Brand Name:	COBY
Model No:	CCR101
	(For addition model and model difference refer to section 2)
FCC ID	2AMSOSTW003
Measurement Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247)
Receipt Date of Samples :	November 01, 2022
Date of Tested:	November 01, 2022 to November 05, 2022
Date of Report:	November 10, 2022

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by Julie Xiao / Project Engineer

Dongguan Nore Testing Center Co., Ltd. Address: Building D, Gaosheng Science and Technology park, Hongtu road, Nancheng district, Dongguan city, Guangdong province, China Web: <u>www.ntc-c.com</u> <u>Tel:+86-769-2202 2444</u> Fax:+86-769-2202 2799

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Test Channels and Modes Detail	8
4. Configuration of EUT	8
5. Modification of EUT	8
6. Description of Support Device	9
7. Test Facility and Location	10
8. Applicable Standards and References	11
9. Deviations and Abnormalities from Standard Conditions	11
10. Test Conditions	12
11. Measurement Uncertainty	13
12. Sample Calculations	14
13. Test Items and Results	15
13.1 Conducted Emissions Measurement	15
13.2 Radiated Spurious Emissions and Restricted Bands Measurement	19
13.3 Channel Separation test	26
13.4 20dB Bandwidth	29
13.5 Hopping Channel Number	31
13.6 Time of Occupancy (Dwell Time)	33
13.7 Maximum Peak Output Power	
13.8 Band Edge Conducted Spurious Emission Measurement	
13.9 Antenna Requirement	40
14. Test Equipment List	44

Revision History

Report Number	Description	Issued Date
NTC2211009FV00	Initial Issue	2022-11-10

1. Summary of Test Result

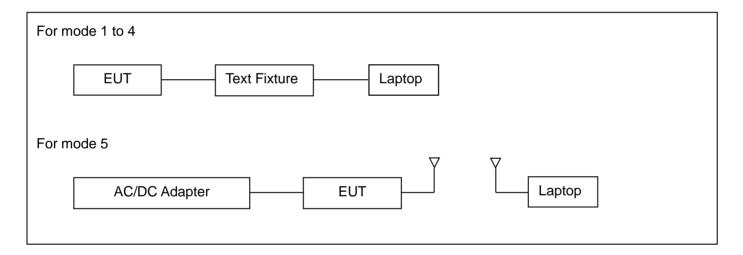
FCC Rules	Description of Test	Result	Remarks
§15.247(a)(1)	Channel Separation test	PASS	
§15.247(a)(1)	20dB Bandwidth	PASS	
§15.247(a)(1)(iii)	Hopping Channel Number	PASS	
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	PASS	
§15.247(b)	Max Peak output Power test	PASS	
§15.247(d)	Band edge test	PASS	
§15.207 (a)	AC Power Conducted Emission	PASS	
§15.247(d),§15.209, §15.205	Radiated Emission	PASS	
§15.203	Antenna Requirement	PASS	
§15.247(d)	Conducted Spurious Emission	PASS	

2. General Description of EUT

Product Information	
Product Name:	Portable Alarm Clock Wireless Speaker
Main Model Name:	CCR101
Additional Model Name:	CCR500, CCR501, CCR502, CCR503, CCR504, CCR505, CCR506, CCR507, CCR508
Model Difference:	These models have the same circuitry, electrical mechanical, PCB Layout and physical construction. The differences are model number and the shell color due to marketing purpose.
S/N:	2211-5743
Brand Name	СОВҮ
Hardware Version:	DY-Q38-CLK-V2.1
Software Version:	DY-Q38S-CLK-V3.0
Rating:	DC 5V /500mA from Micro USB port or DC 3.7V from one 18650 Lithium-ion battery
Classification:	Class B
Typical Arrangement:	Tabletop / Portable
I/O Port:	Refer to the user manual
Accessories Information	
Adapter:	N/A
Cable:	USB line: 0.5m unshielded, detachable
Other:	N/A
Additional Information	
Note:	According to the model differences, all the tests performed on model CCR101.
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.

Technical Specification	
Bluetooth Version:	V5.0
Frequency Range:	2402-2480MHz
Modulation Type:	GFSK, Π4/-DQPSK
Number of Channel:	79 (refer to following channel list for details)
Channel Space:	1MHz
Antenna Type:	PCB Antenna
Antenna Gain:	-0.58 dBi (Declared by the manufacturer)
Note: The EUT does not of the manufacturer.	t support 8DPSK and Bluetooth Low Energy feature in accordance with the declaration

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		



3. Test Channels and Modes Detail

No.	Mode	Channel	Frequency (MHz)	Modulation
1	ТХ	Hopping	2402-2480	GFSK, П4/-DQPSK
2	ТХ	Low	2402	GFSK, Π4/-DQPSK
3	ТХ	Mid	2441	GFSK, Π4/-DQPSK
4	ТХ	High	2480	GFSK, Π4/-DQPSK
5.	BT Link			

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
1.	Laptop	Lenovo	ThinkPad E450c	PF-0DS3 YC		Provide by the Lab
2.	Power supply of the Laptop	Lenovo	ADLX65NLC3A	45N0257	Power cord: 1.5m, unshielded	Provide by the Lab
3.	Test fixture					Provide by the Lab
4.	Adapter	HUWEI	HW-050200C01		Input: AC100-240V 50/60Hz, 0.5A Output: DC 5V 2A	Provide by the Lab

Ν	о.	Test Software	Modulation	Power Setting
1	1.	FCC Assist 2.4	GFSK П4/-DQPSK	5

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with
Authorizations		CNAS/CL01
		Listed by CNAS, August 13, 2018
		The Certificate Registration Number is L5795.
		The Certificate is valid until August 13, 2024
		The Laboratory has been assessed and proved to be in compliance with
		ISO17025
		Listed by A2LA, November 01, 2017
		The Certificate Registration Number is 4429.01
		The Certificate is valid until December 31, 2023
		Listed by FCC, November 06, 2017
		Test Firm Registration Number: 907417
		Listed by Industry Canada, June 08, 2017
		The Certificate Registration Number. Is 46405-9743A
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng
		District, Dongguan City, Guangdong Province, China

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.247 ANSI C63.10-2013

References Test Guidance:

DTS KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

The EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	Channel Separation test	1	DC 3.7V	Sean Yuan	See note ¹
2.	20dB Bandwidth	2-4	DC 3.7V	Sean Yuan	See note ¹
3.	Hopping Channel Number	1	DC 3.7V	Sean Yuan	See note ¹
4.	Time of Occupancy (Dwell Time)	1	DC 3.7V	Sean Yuan	See note ¹
5.	Max Peak output Power test	2-4	DC 3.7V	Sean Yuan	See note ¹
6.	Band edge test	1-4	DC 3.7V	Sean Yuan	See note ¹
7.	AC Power Conducted Emission	5	AC 120V 60Hz	Sean Yuan	See note ¹
8.	Radiated Emission	1-5	DC 3.7V AC 120V 60Hz	Sean Yuan	See note ¹
9.	Antenna Requirement				
10.	Conducted Spurious Emission	1-4	DC 3.7V	Sean Yuan	See note ¹

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%, 86~106kPa

2. Test voltage AC 120V 60Hz was come from the adapter.

3. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±3.04 dB	
		9kHz ~ 30MHz	±5.04 dB	
2	Dedicted Emission	30MHz ~ 1GHz	±5.04 dB	
2.	Radiated Emission	1GHz ~ 18GHz	±5.23 dB	
		18GHz ~ 40GHz	±5.23 dB	
3.	RF Conducted	10Hz ~ 40GHz	±0.78 dB	
4.	Occupied Channel Bandwidth		±0.94 dB	

Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

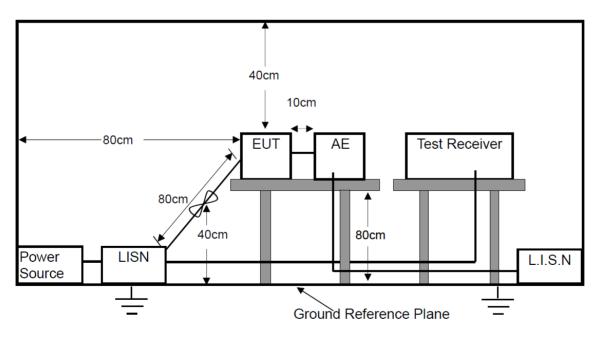
	Conducted Emission											
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector						
0.2379	16.70	20.60	37.30	62.17	-24.87	QP						
Where,												
Freq.	= Emiss	ion frequency in MH	łz									
Reading Lev	el = Spect	rum Analyzer/Recei	ver Reading									
Corrector Fa	ctor = Inserti	on loss of LISN + C	able Loss + RF Sw	vitching Unit	attenuation							
Measuremer	nt = Readi	ng + Corrector Factor	or									
Limit	= Limit s	= Limit stated in standard										
Margin	= Measu	urement - Limit										
Detector	= Readi	ng for Quasi-Peak /	Average / Peak									

	Radiated Spurious Emissions and Restricted Bands											
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector						
185.2000	35.99	-9.24	26.75	43.50	-16.75	QP						
Where,												
Freq.	= Emiss	ion frequency in MH	lz									
Reading Lev	el = Spect	rum Analyzer/Recei	ver Reading									
Corrector Fa	ctor = Anten	na Factor + Cable L	oss - Pre-amplifier									
Measuremer	nt = Readi	= Reading + Corrector Factor										
Limit	= Limit s	= Limit stated in standard										
Over	= Margii	= Margin, which calculated by Measurement - Limit										
Detector	= Readi	ng for Quasi-Peak /	Average / Peak									

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Test Items and Results

13.1 Conducted Emissions Measurement


LIMITS

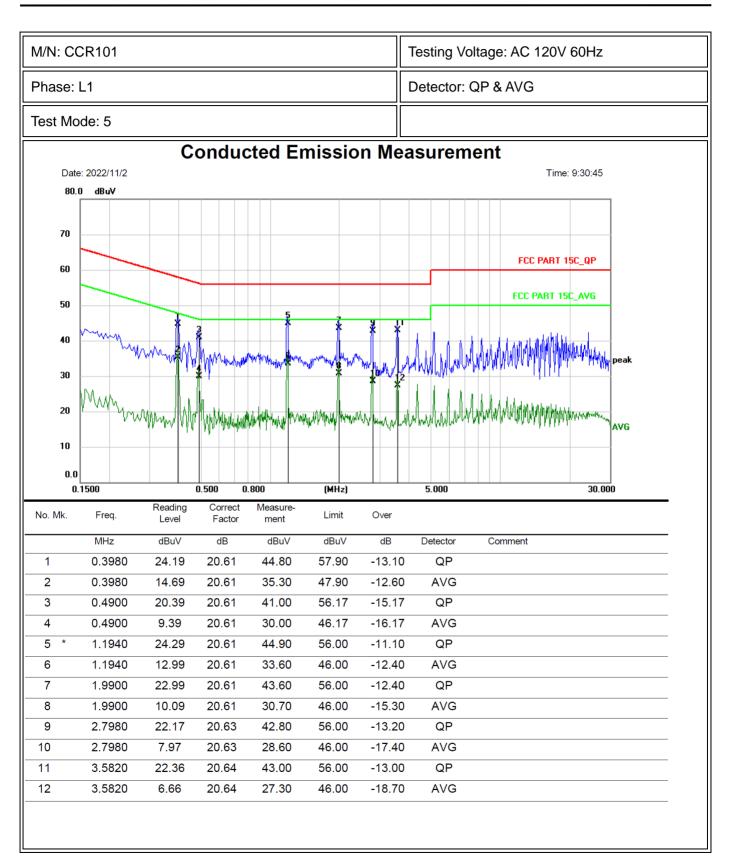
According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz)	Quasi-peak	Average
0.15 to 0.5	66 to 56	56 to 46
0.5 to 5	56	46
5 to 30	60	50
Note: 1. If the limits for th	e average detector are met whe	en using the quasi-peak detector, then the limits
for the measuren	nents with the average detector	are considered to be met.
2. The lower limit sh	all apply at the transition freque	ncies.

3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

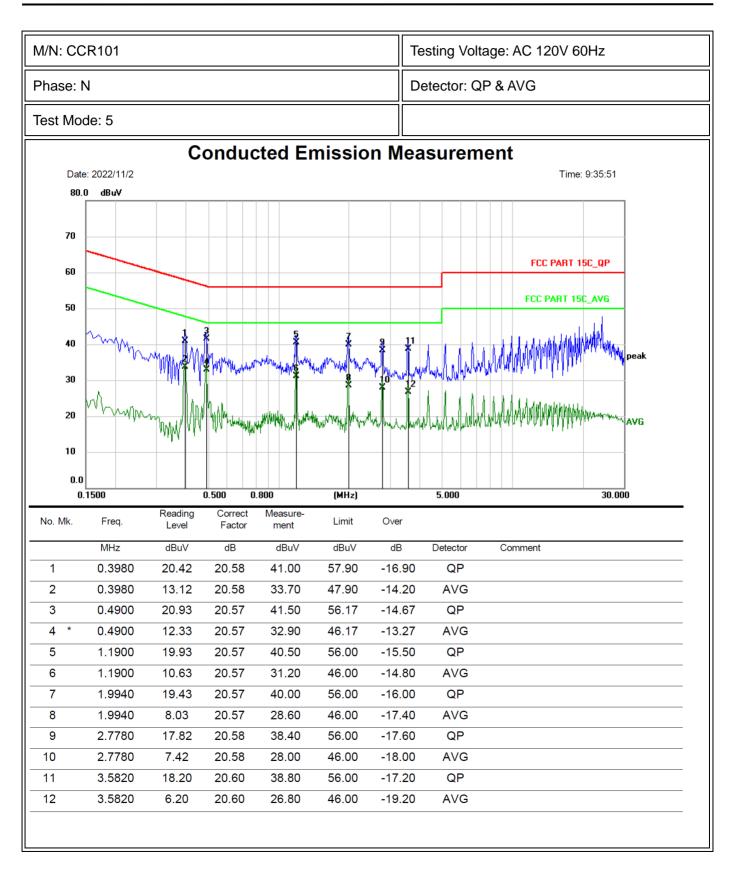
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES


- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

PASS


Please refer to the following pages.

13.2 Radiated Spurious Emissions and Restricted Bands Measurement

LIMIT of Radiated Band Edges and non-restricted bands

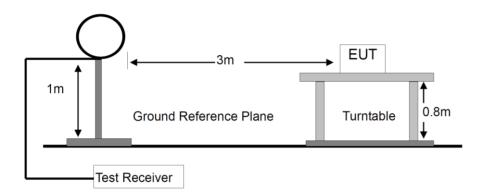
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB.

LIMIT of Restricted bands

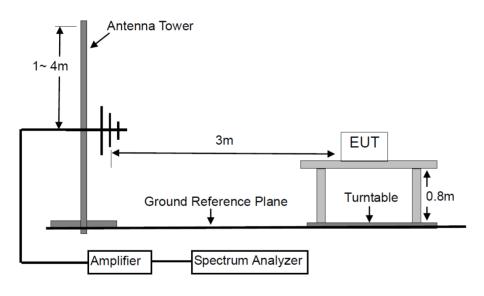
In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below:

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz	Distance meters	μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

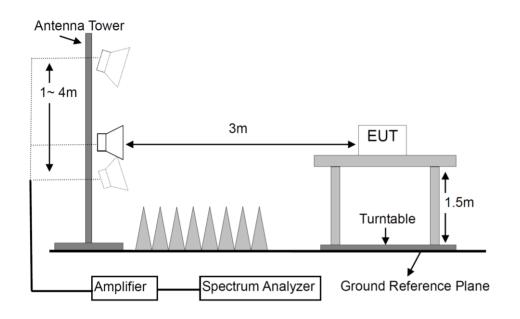

(2) The smaller limit shall apply at the cross point between two frequency bands.

- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.



BLOCK DIAGRAM OF TEST SETUP

For Radiated Emission below 30MHz



For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

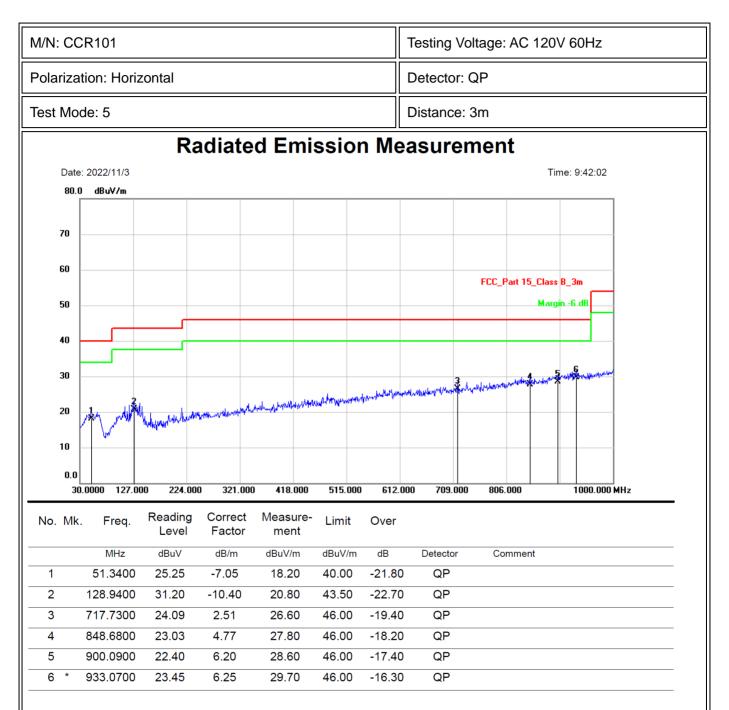
The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.
- g. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and packet type.

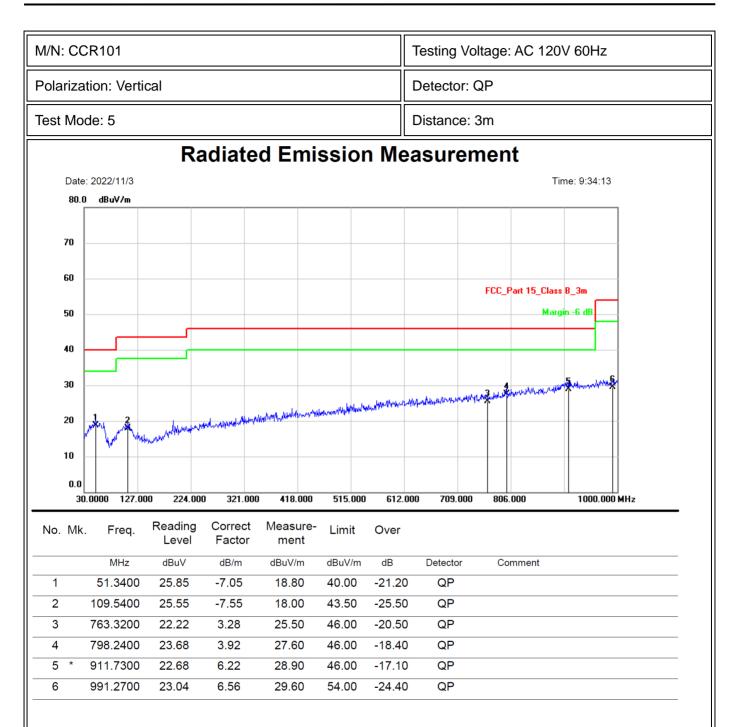
The worst case was found when the EUT was positioned on X axis for radiated emission.

During the radiated emission test, the spectrum analyzer was set with the following configurations:


Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
,	Average	1 MHz	10 Hz

TEST RESULTS

PASS


Please refer to the following pages of the worst case.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Modulation: П4/-DQPSK				Test Resu	t: PASS	Test frequ	uency ran	ge: 1-25G	Hz	
Freq.	Ant. Pol.	Read Level(d	-	Factor (dB/m)	Emissio (dBu [\]		Limi (dBu		Mar (dl	-
(MHz)	(H/V)	PK	AV		PK	AV	PK	AV	PK	AV
			Oper	ation Mod	de: TX Moo	de (Low)				
4804	Н	42.66	32.30	6.30	48.96	38.60	74.00	54.00	-25.04	-15.40
7206	Н	49.35	38.71	10.44	59.79	49.15	74.00	54.00	-14.21	-4.85
4804	V	40.91	28.78	6.30	47.21	35.08	74.00	54.00	-26.79	-18.92
7206	V	43.74	32.63	10.44	54.18	43.07	74.00	54.00	-19.82	-10.93
			Оре	ration Mo	de: TX Mo	de (Mid)				
4882	Н	42.90	31.83	6.60	49.50	38.43	74.00	54.00	-24.50	-15.57
7323	Н	49.60	39.95	10.55	60.15	50.50	74.00	54.00	-13.85	-3.50
4882	V	42.28	30.81	6.60	48.88	37.41	74.00	54.00	-25.12	-16.59
7323	V	43.54	32.26	10.55	54.09	42.81	74.00	54.00	-19.91	-11.19
			Oper	ation Mod	le: TX Mod	le (High)				
4960	Н	42.27	31.95	6.89	49.16	38.84	74.00	54.00	-24.84	-15.16
7440	Н	51.27	40.26	10.60	61.87	50.86	74.00	54.00	-12.13	-3.14
4960	V	39.51	28.58	6.89	46.40	35.47	74.00	54.00	-27.60	-18.53
7440	V	44.50	32.61	10.60	55.10	43.21	74.00	54.00	-18.90	-10.79
			Spuriou	s Emissio	on in restri	icted ban	d:			
2390.000	Н	43.70	28.39	0.13	43.83	28.52	74.00	54.00	-30.17	-25.48
2390.000	V	51.98	32.11	0.13	52.11	32.24	74.00	54.00	-21.89	-21.76
2483.500	Н	54.53	36.11	0.34	54.87	36.45	74.00	54.00	-19.13	-17.55
2483.500	V	52.95	35.10	0.34	53.29	35.44	74.00	54.00	-20.71	-18.56
Remark:				•	ency rango re than 20d					ans the

13.3 Channel Separation test

LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

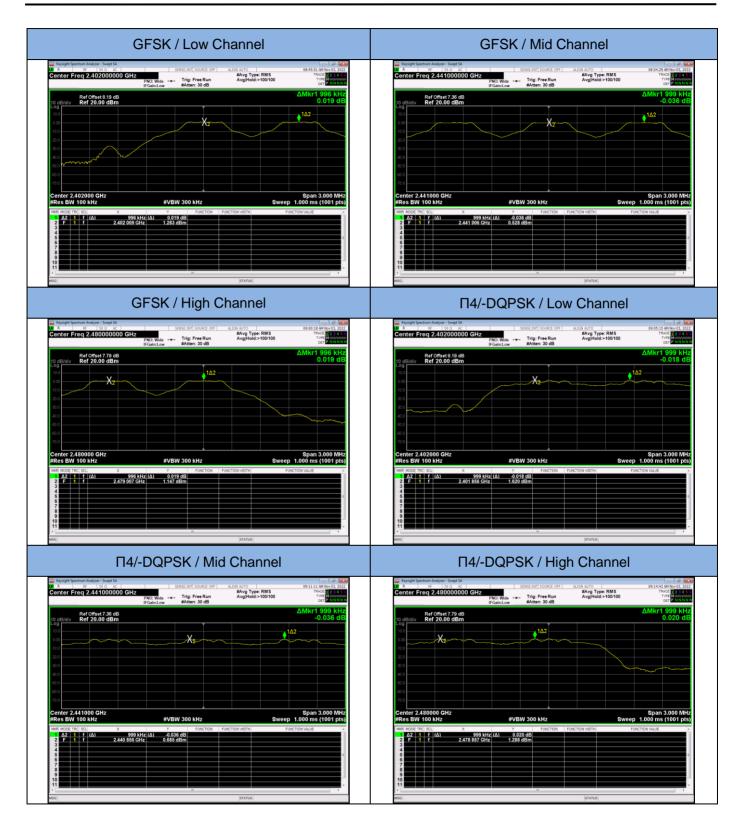
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 7.8.2.

TEST RESULTS

PASS


Please refer to the following tables.

Modulation	Channel	Frequency (MHz)	Hopping Separation Measurement (MHz)	Hopping Separation Limit (MHz)	Test Result
	Low	2402	0.996	>0.635	Pass
GFSK	Mid	2441	0.999	>0.635	Pass
	High	2480	0.996	>0.634	Pass
	Low	2402	0.999	>0.873	Pass
П4/-DPQSK	Mid	2441	0.999	>0.875	Pass
	High	2480	0.999	>0.881	Pass

13.4 20dB Bandwidth

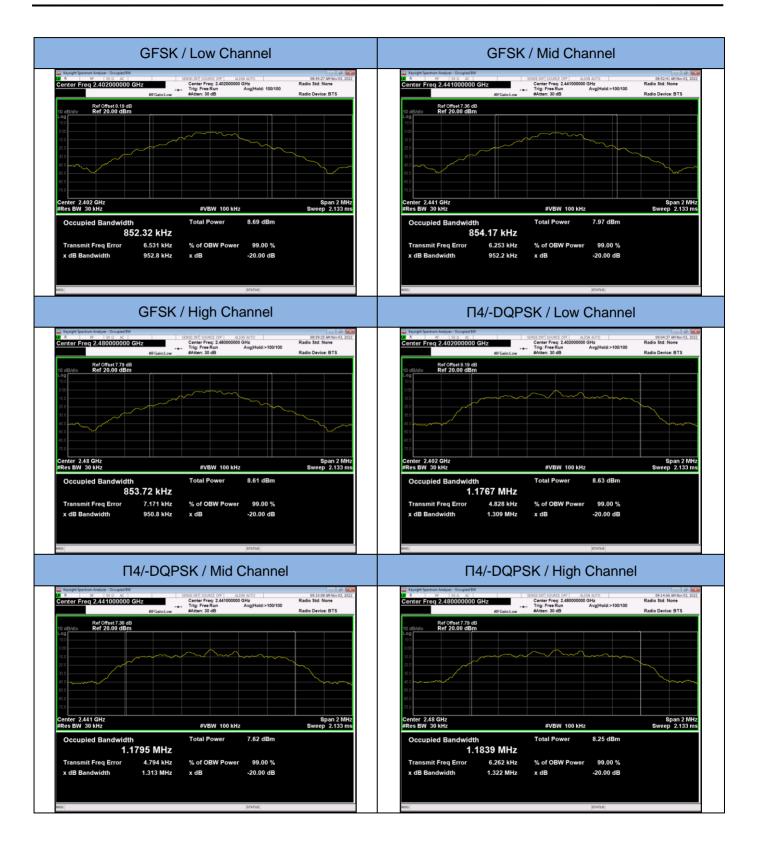
LIMIT

N/A

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

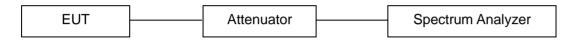
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 6.9.2.


TEST RESULTS

PASS

Please refer to the following tables.

Modulation	Channel	Frequency (MHz)	20dB Measurement (MHz)	Limit (MHz)	Remark
	Low	2402	0.953	N/A	
GFSK	Mid	2441	0.952	N/A	
	High	2480	0.951	N/A	Reporting
	Low	2402	1.309	N/A	only
П4/-DPQSK	Mid	2441	1.313	N/A	
	High	2480	1.322	N/A	



13.5 Hopping Channel Number

LIMIT

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

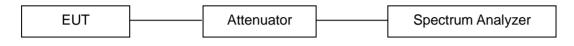
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 7.8.3.

TEST RESULTS

PASS

Please refer to the following table.

<i>I</i> odulation	Number of Hopping Channe Measurement	els	Limit	Test Re
4/-DPQSK	79		≥15	PASS
Keysight Spectrum Analyzer - Swept	AC SENSE:INT SOURCE OFF ALIGN /	AUTO Avg Type: RMS	09:06:07 AM Nov 03, TRACE 1 2 3	2022
Center Freq 2.441750	PNO: Fast +++ Trig: Free Run A IFGain:Low #Atten: 30 dB	vg Hold:>100/100	TYPE MWWP DET P N N	456 WWW NNN
Ref Offset 8.19 10 dB/div Ref 20.00 dB	dB		ΔMkr1 78.156 0 M 3.889	
				Δ2
	white the the the second the second	ILAAAA MAANA		
182 [×] • • • • • • • • • • • •	A d A d m K o d white a d a m d d k h d a d wheel a b d d b d d d d d d d d d d d d d d d	4.044.045.4.84	Addid south a set for	
-10.0		1 - VA 4 V + V - A V		
-10.0				ρ
-20.0				n Troy
-100				n t _{rev}
-10.0			Stop 2.48350 G	The second se
-10.0	#VBW 300 kHz	s		SHZ pts)
-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -60.0 -70.0 Start 2,40000 GHz #Res BW 100 kHz MKR MODE TRC SCL MKR MODE TRC SCL 1 Δ2 1 f (Δ) 2 F 1 f (Δ)	#VBW 300 kHz	s	Stop 2.48350 G weep 8.000 ms (1001 p	SHZ
-10.0 -20.0 -30.0 -40.0 -40.0 -60.0 -70.0 Start 2.40000 GHz #Res BW 100 kHz MKR MODE TRC SCL 1 Δ2 1 f (Δ) 2 F 1 f 2 3 4	#VBW 300 kHz #VBW 300 kHz Χ Υ FUNCTION FUNCTION 78.156 0 MHz (Δ) 3.889 dB	s	Stop 2.48350 G weep 8.000 ms (1001 p	SHz pts)
-10.0 -20.0 -30.0 -40.0 -40.0 -50.0 -7	#VBW 300 kHz #VBW 300 kHz Χ Υ FUNCTION FUNCTION 78.156 0 MHz (Δ) 3.889 dB	s	Stop 2.48350 G weep 8.000 ms (1001 p	BHZ BHZ DtS)
-10.0 -20.0 -30.0 -40.0 -60.0 -60.0 -70.0 Start 2.400000 GHz #Res BW 100 kHz MKR MODE TRC SCL 1 Δ2 1 f (Δ) 2 F 1 f 2.3 4 5 6 6 7 9 9 1 7 2	#VBW 300 kHz #VBW 300 kHz Χ Υ FUNCTION FUNCTION 78.156 0 MHz (Δ) 3.889 dB	s	Stop 2.48350 G weep 8.000 ms (1001 p	SHz ots)



13.6 Time of Occupancy (Dwell Time)

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

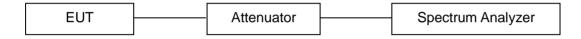
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 7.8.4.

TEST RESULTS

PASS

Please refer to the following table.

Modulation	Packet	Frequency (MHz)	Dwell Time Measurement (msec)			Limit (msec)	Test Result
	DH1	2441	0.377	(ms)*(1600/(2*79))*31.6=	120.64	400	Pass
GFSK	DH3	2441	1.635	(ms)*(1600/(4*79))*31.6=	261.60	400	Pass
	DH5	2441	2.885	(ms)*(1600/(6*79))*31.6=	307.73	400	Pass
	2-DH1	2441	0.388	(ms)*(1600/(2*79))*31.6=	124.16	400	Pass
П4/-DPQS К	2-DH3	2441	1.635	(ms)*(1600/(4*79))*31.6=	261.60	400	Pass
	2-DH5	2441	2.885	(ms)*(1600/(6*79))*31.6=	307.73	400	Pass



13.7 Maximum Peak Output Power

LIMIT

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

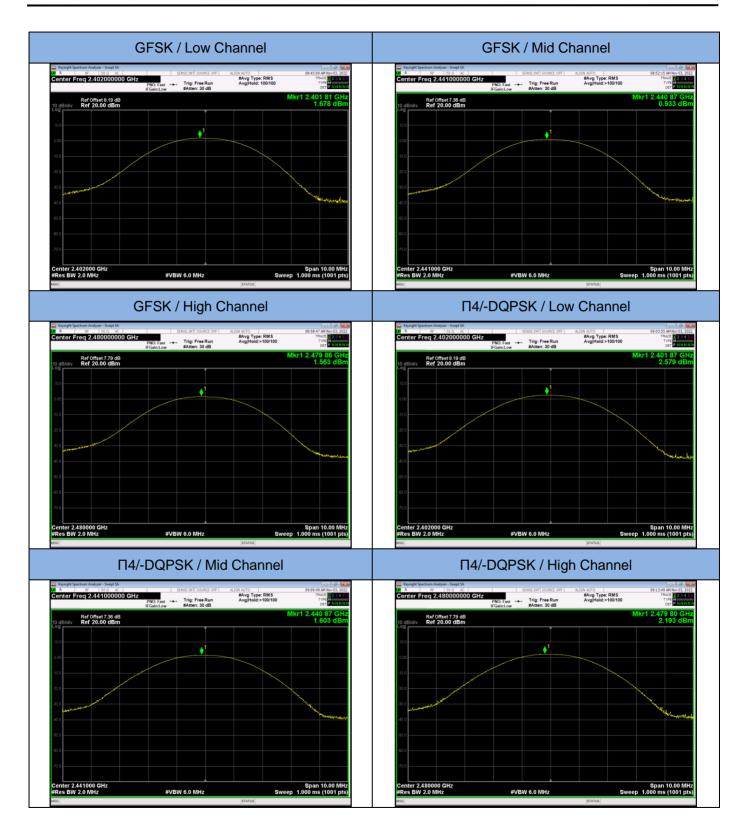
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 7.8.5.

TEST RESULTS

PASS


Please refer to the following tables.

Modulation	Frequency (MHz)	Peak Power output Measurement (dBm)	Peak Power output Measurement (mW)	Peak Power Limit (dBm)	Test Result
	2402.00	1.678	1.47	21	Pass
GFSK	2441.00	0.933	1.24	21	Pass
	2480.00	1.563	1.43	21	Pass
	2402.00	2.579	1.81	21	Pass
Π4/-DPQSK	2441.00	1.603	1.45	21	Pass
	2480.00	2.193	1.66	21	Pass

13.8 Band Edge Conducted Spurious Emission Measurement

LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

BLOCK DIAGRAM OF TEST SETUP

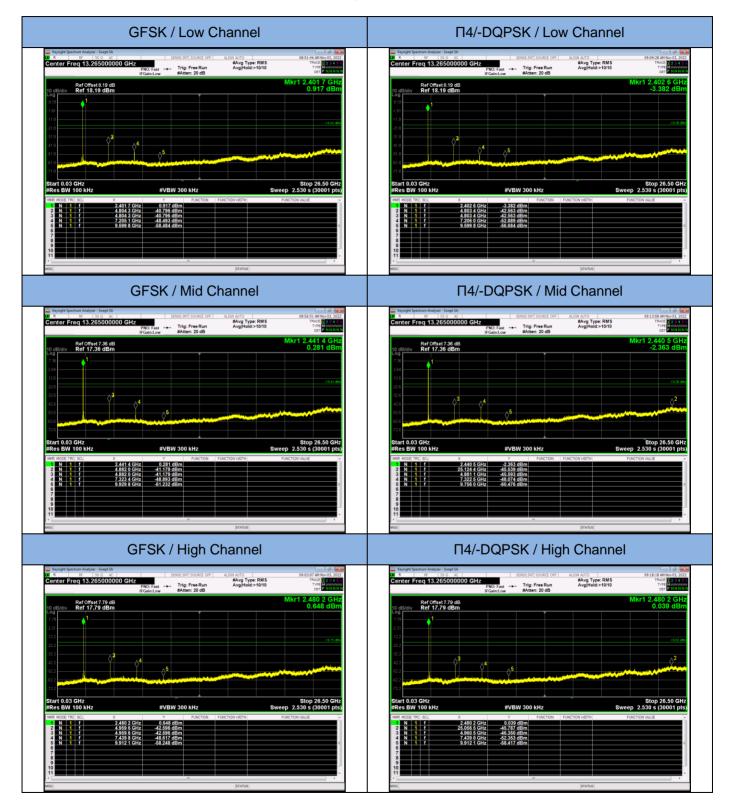
TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10 clause 7.8.6 and 6.10.
- d. Enable hopping function of the EUT and then repeat steps above.

TEST RESULTS

PASS

Please refer to the following test plots.



Conducted Spurious Emission

13.9 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.247:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best-case gain of the antenna is -0.58 dBi, Therefore, the antenna is considered to meet the requirement.

14. Test Equipment List

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2022	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2022	2 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2022	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2022	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2022	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 23, 2022	2 Year
7.	Power Sensor	DARE	RPR3006W	15l00041SNO 64	Mar. 13, 2022	1 Year
8.	Communication Tester	Rohde & Schwarz	CMW500	149004	Mar. 13, 2022	1 Year
9.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2022	2 Year
10.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2022	1 Year
11.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2022	1 Year
12.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2022	2 Year
13.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2022	1 Year
14.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2022	1 Year
15.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2022	1 Year
16.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2022	1 Year
17.	Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	Mar. 13, 2022	1 Year
18.	DC Source	Maynuo	MY8811	N/A	Mar. 13, 2022	1 Year
19.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
20.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2021	2 Year
21.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.