TEST REPORT

FCC ID: 2AMSOCSTW-428

Product: Bluetooth Speaker

Model No.: CSTW-428

Additional Model No.: CSTW-428-BLK, CSTW-428-BLU, CSTW-428-GRB, CSTW-428-GRY, CSTW-428-TRQ, CSTW-428-WHT

Trade Mark: COBY

Report No.: TCT190306E009

Issued Date: Mar. 12, 2019

Issued for:

Summit Electronics LLC

1 Rewe Street, Brooklyn, New York 11211, United States

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. Test Certification	
2. Test Result Summary	4
3. EUT Description	5
4. General Information	
4.1. Test environment and mode	6
4.2. Description of Support Units	6
5. Facilities and Accreditations	
5.1. Facilities	7
5.2. Location	
5.3. Measurement Uncertainty	
6. Test Results and Measurement Data	
6.1. Antenna requirement	
6.2. Conducted Emission	
6.3. Conducted Output Power	
6.4. 20dB Occupy Bandwidth	17
6.5. Carrier Frequencies Separation	21
6.6. Hopping Channel Number	
6.7. Dwell Time	
6.8. Pseudorandom Frequency Hopping Sequence	
6.9. Conducted Band Edge Measurement	
6.10.Conducted Spurious Emission Measurement	
6.11.Radiated Spurious Emission Measurement	
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

1. Test Certification

Product:	Bluetooth Spea	aker				
Model No.:	CSTW-428	6				í.č
Additional Model No.:	CSTW-428-BL CSTW-428-TR	,	,	-428-GRB,	CSTW-428	-GRY,
Trade Mark:	СОВУ	(C)			(\mathbf{c}^{*})	
Applicant:	Summit Electro	onics LLC				
Address:	1 Rewe Street	, Brooklyn, Ne	w York 11211	, United Sta	ates	G
Manufacturer:	Summit Electro	onics LLC)			C
Address:	1 Rewe Street	, Brooklyn, Ne	w York 11211	, United Sta	ates	
Date of Test:	Mar. 07, 2019	– Mar. 11, 201	9			
Applicable Standards:	FCC CFR Title	e 47 Part 15 S	ubpart C Sect	tion 15.247		(, ć
			/			

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

	Tested By:	Pler	7 Date:	Mar. 11, 2019	
		Rleo	<u>c</u>	$\langle \mathcal{C} \rangle$	
	Reviewed By:	Bungland	Date:	Mar. 12, 2019	
				Ó	
	Approved By:	Joneson	Date:	Mar. 12, 2019	
		Tomsin	C)		
				Poge	2 of 54
Hotlin	e: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-276733		3 of 54

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Bluetooth Speaker
Model No.:	CSTW-428
Additional Model No.:	CSTW-428-BLK, CSTW-428-BLU, CSTW-428-GRB, CSTW-428-GRY, CSTW-428-TRQ, CSTW-428-WHT
Trade Mark:	СОВҮ
Hardware Version:	V01
Software Version:	V2.3.1.1
Bluetooth version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK
Modulation Technology:	FHSS
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just appearance are different for the marketing requirement.

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
(9)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	V		<u> </u>				
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-
Remark:	Channel 0, 3	9 &78 ha	ve been tes	ted for GI	FSK, π/4-DC	PSK mo	dulation mode.

4. General Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Fully-charged battery

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 54

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China


Tel: 86-755-27673339

5.3. Measurement Uncertainty

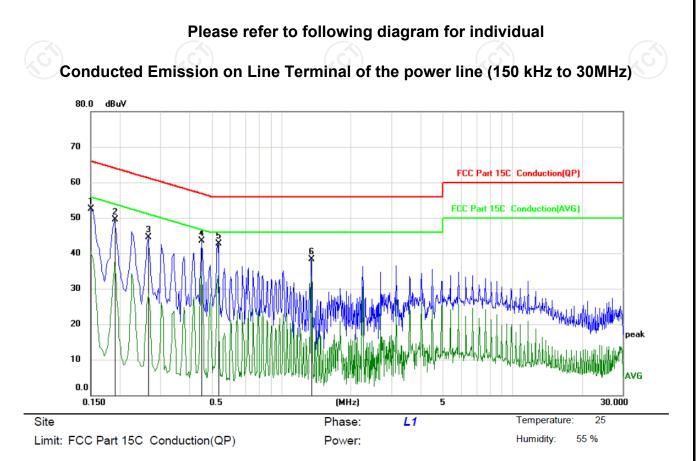
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6.2. Conducted Emission

6.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	<u>(</u> ()	(\mathbf{c})				
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto				
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Áverage				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Referenc	e Plane					
Test Setup:	E.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	- AC power				
Test Mode:	Refer to item 4.1						
Test Procedure:	 The E.U.T is connerimpedance stabilizing provides a 500hm/s measuring equipme The peripheral device power through a L coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the state for the block photograph of the state for the block photograph of the state for the block photograph of the state of the state of the state of the block photograph of the state of the block photograph of the state of	zation network 50uH coupling im ont. ces are also conne ISN that provides with 50ohm tern diagram of the line are checked nce. In order to fin re positions of equ	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all o				
	the interface cables ANSI C63.10:2013						


6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Test Receiver	R&S	ESPI	101402	Jul. 17, 2019				
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 20, 2019				
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 16, 2019				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 10 of 54

6.2.3. Test data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1500	42.30	10.12	52.42	66.00	-13.58	peak		
2	0.1905	39.36	10.12	49.48	64.01	<mark>-14.5</mark> 3	peak		
3	0.2670	34.46	10.13	44.59	61.21	<mark>-16.6</mark> 2	peak		
4	0.4515	33.28	10.13	43.41	56.85	-13.44	peak		
5 *	0.5325	32.48	10.13	42.61	56.00	-13.39	peak		
6	1.3515	28.18	10.12	38.30	56.00	-17.70	peak		

Note:

Freq. = Emission frequency in MHz

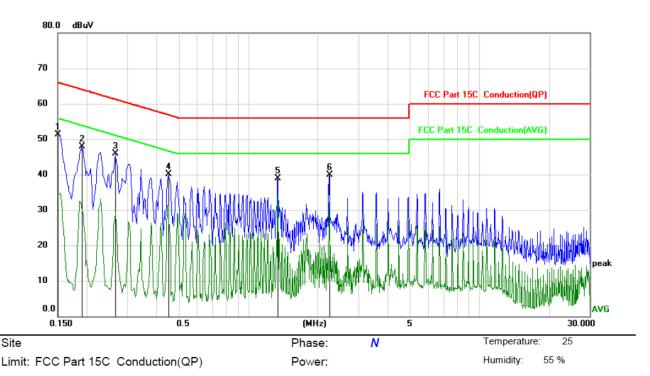
Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dB μ V) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)


Q.P. =Quasi-Peak AVG =average

Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 11 of 54

Report No.: TCT190306E009

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	41.15	10.12	51.27	66.00	-14.73	peak		
2		0.1905	37.78	10.12	47.90	64.01	-16.1 <mark>1</mark>	peak		
3		0.2670	35.68	10.13	45.81	61.21	-15.40	peak		
4		0.4515	30.07	10.13	40.20	56.85	-16.65	peak		
5		1.3425	28.86	10.12	38.98	56.00	-17.02	peak		
6		2.2470	29.85	10.12	39.97	56.00	-16.03	peak		

Note1:

Freq. = Emission frequency in MHz

TCT通测检测 TCT通测检测

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit ($dB\mu V$) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

Any value more than 10dB below limit have not been specifically reported.

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4DQPSK), and the worst case Mode (Lowest channel and Pi/4DQPSK) was submitted only.

Page 12 of 54

6.3. Conducted Output Power

6.3.1. Test Specification

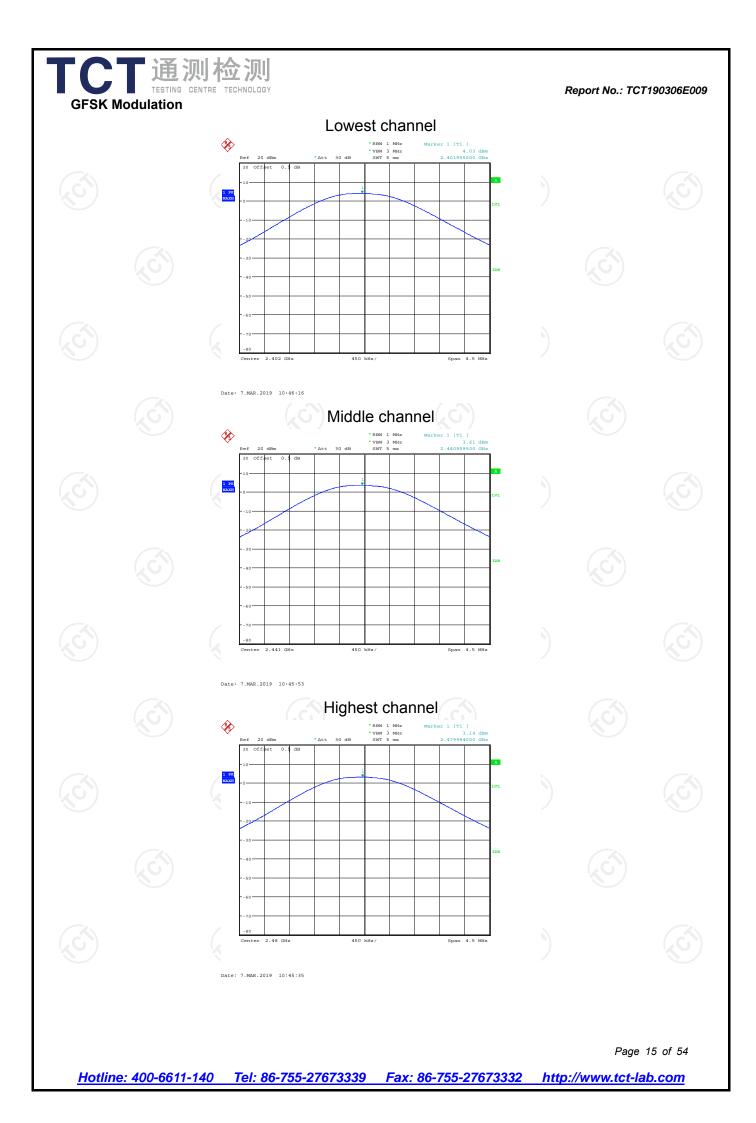
Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Contraction
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Test Result:	PASS

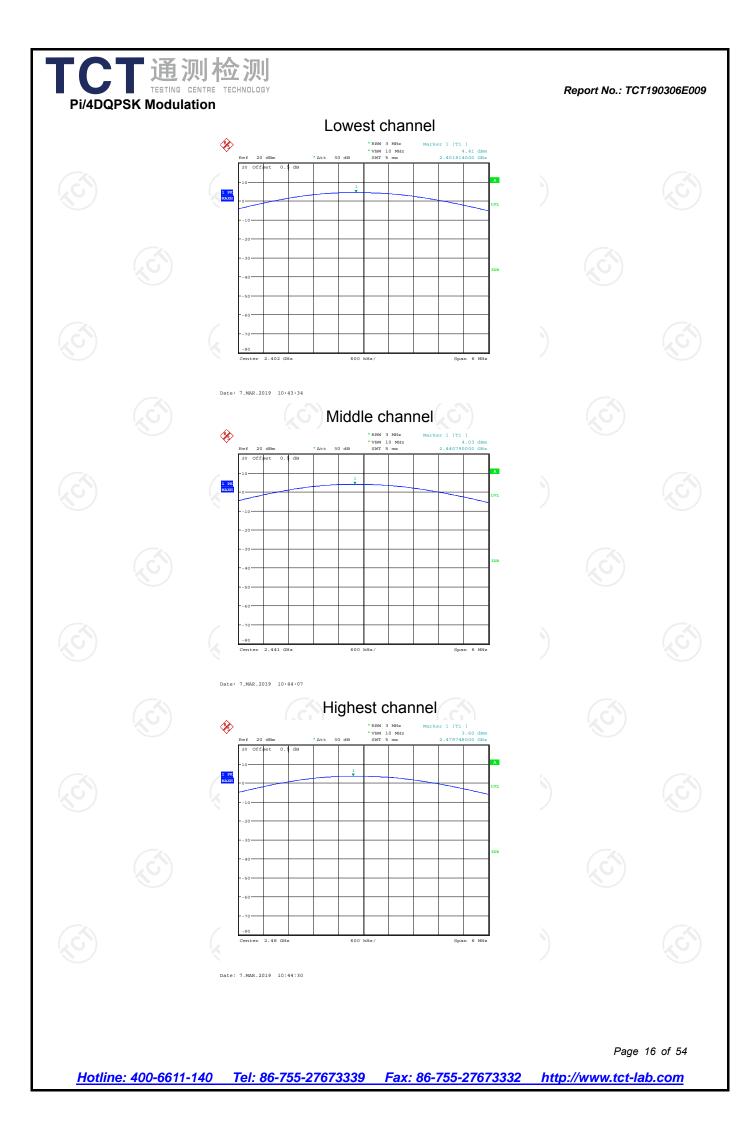
6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 54


6.3.3. Test Data


GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	4.03	30.00	PASS			
Middle	3.61	30.00	PASS			
Highest	3.14	30.00	PASS			

	Pi/4DQPSK mode						
X	Test channel Peak Output Power (dBm)		Limit (dBm)	Result			
	Lowest	4.41	21.00	PASS			
	Middle	4.03	21.00	PASS			
	Highest	3.60	21.00	PASS			

Test plots as follows:

Page	14	of	54
------	----	----	----

6.4. 20dB Occupy Bandwidth

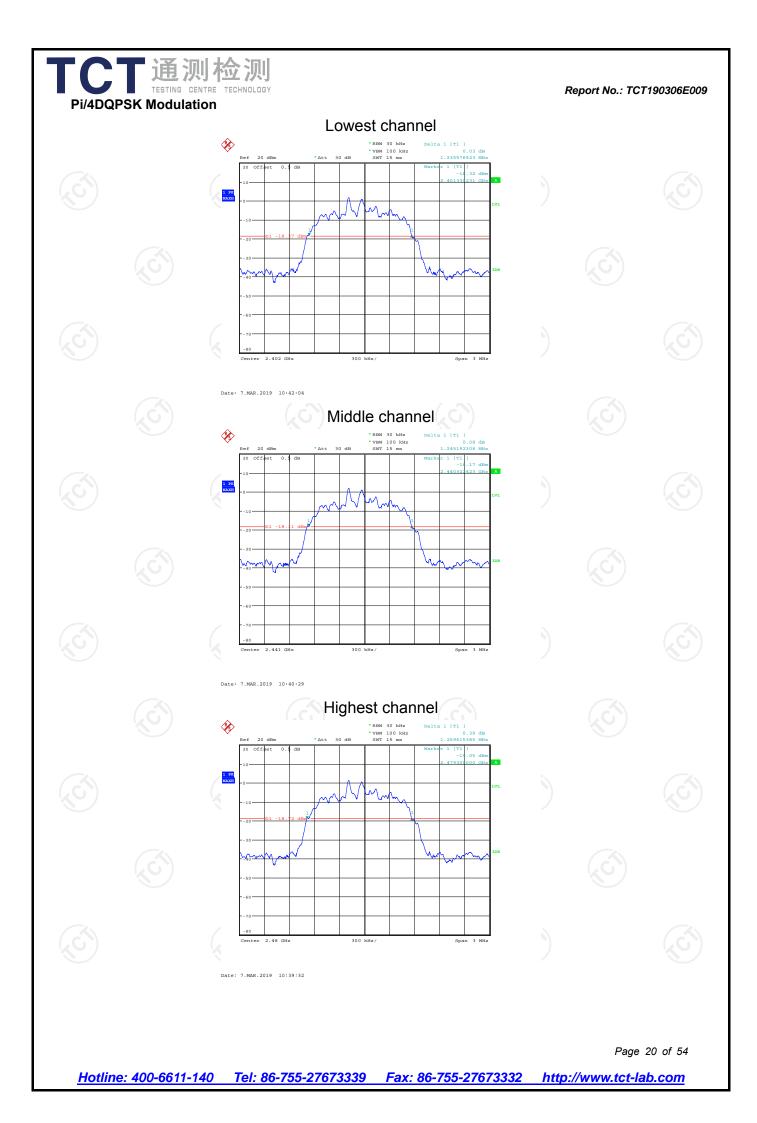
6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Limit:	N/A						
Test Setup:	Spectrum Analyzer		Ć				
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 Guidelines. 2. The RF output of E analyzer by RF ca was compensated measurement. 3. Set to the maximum EUT transmit cont 4. Use the following s Bandwidth measure span = approxima bandwidth, centere RBW≤5% of the 2 Sweep = auto; Defined. 	pectrum analyzer settings for 20	rum is OdB				
Test Result:	PASS						

6.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.4.3. Test data

	Test channel	20dB Occupy Bandwidth (kHz)			
	Test channel	GFSK	π/4-DQPSK	Conclusion	
)	Lowest	884.62	1235.58	PASS	
	Middle	889.42	1245.19	PASS	
	Highest	879.81	1259.62	PASS	

Test plots as follows:

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

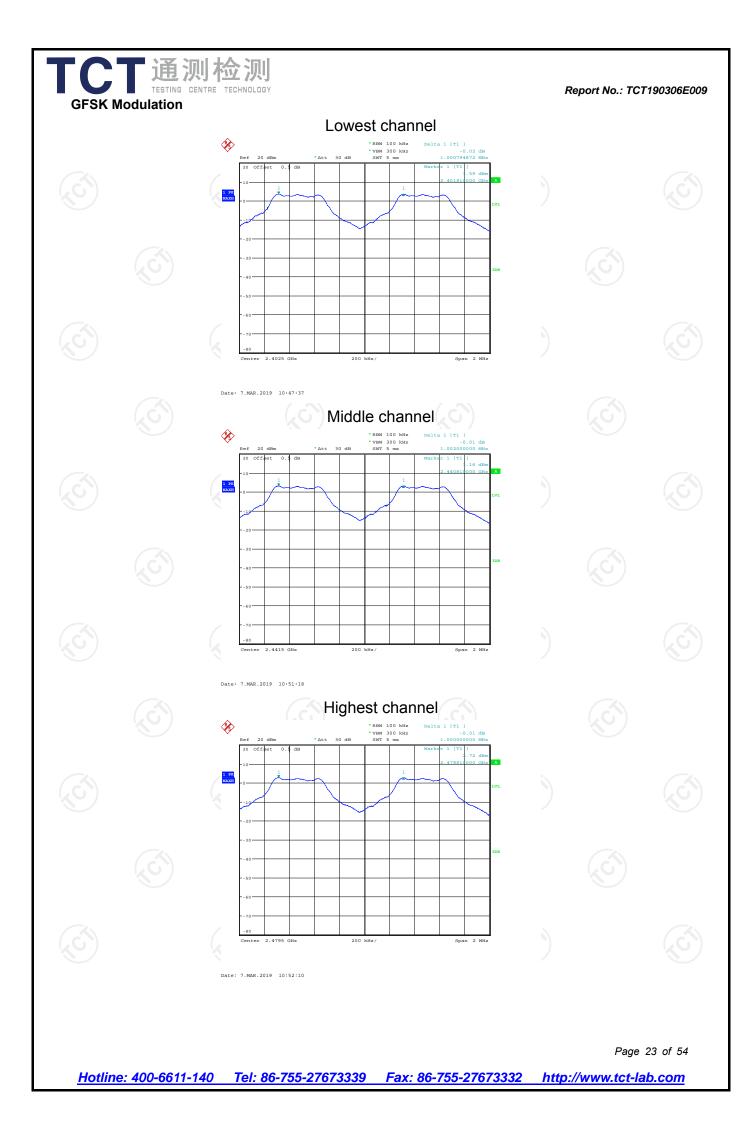
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems shall have hopping channe carrier frequencies separated by a minimum of 25 kHz o the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

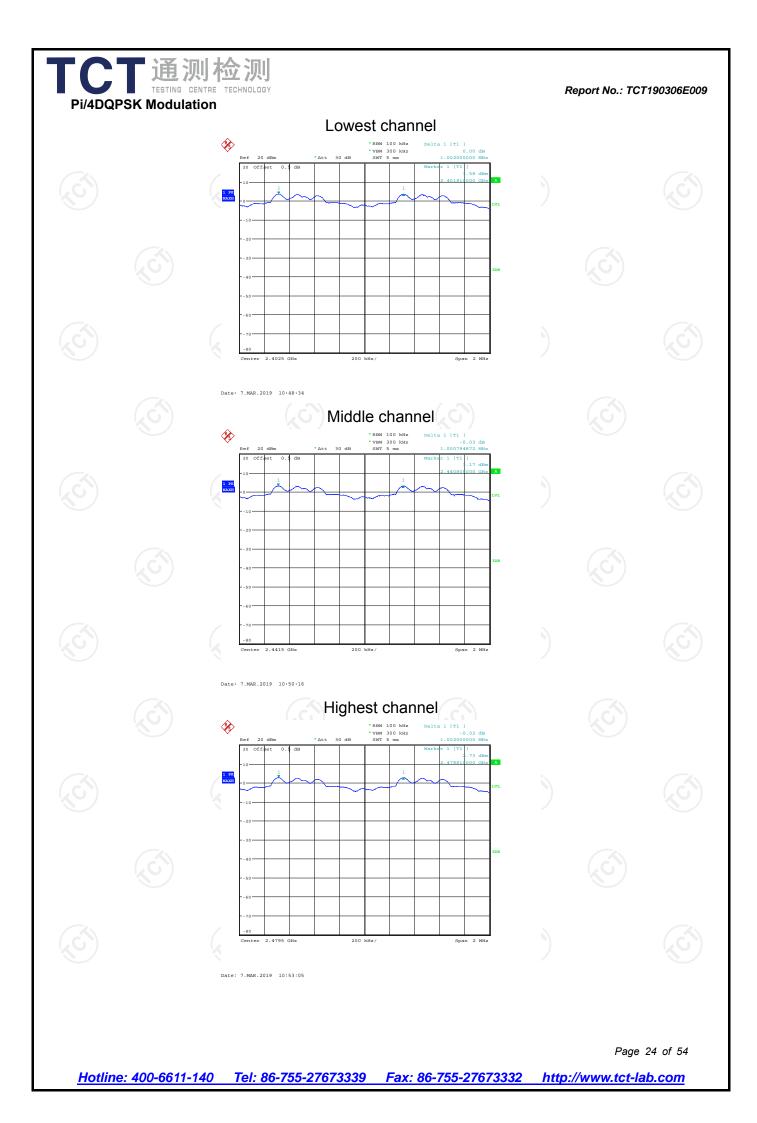
6.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	с тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.5.3. Test data


GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Lowest	1000.79	889.42	PASS		
Middle	1002.00	889.42	PASS		
Highest	1000.00	889.42	PASS		


Pi/4DQPSK mode					
Test channelCarrier Frequencies Separation (kHz)Limit (kHz)Result					
Lowest	1002.00	839.75	PASS		
Middle	1000.79	839.75	PASS		
Highest	1002.00	839.75	PASS		

Note: According to section 6.4

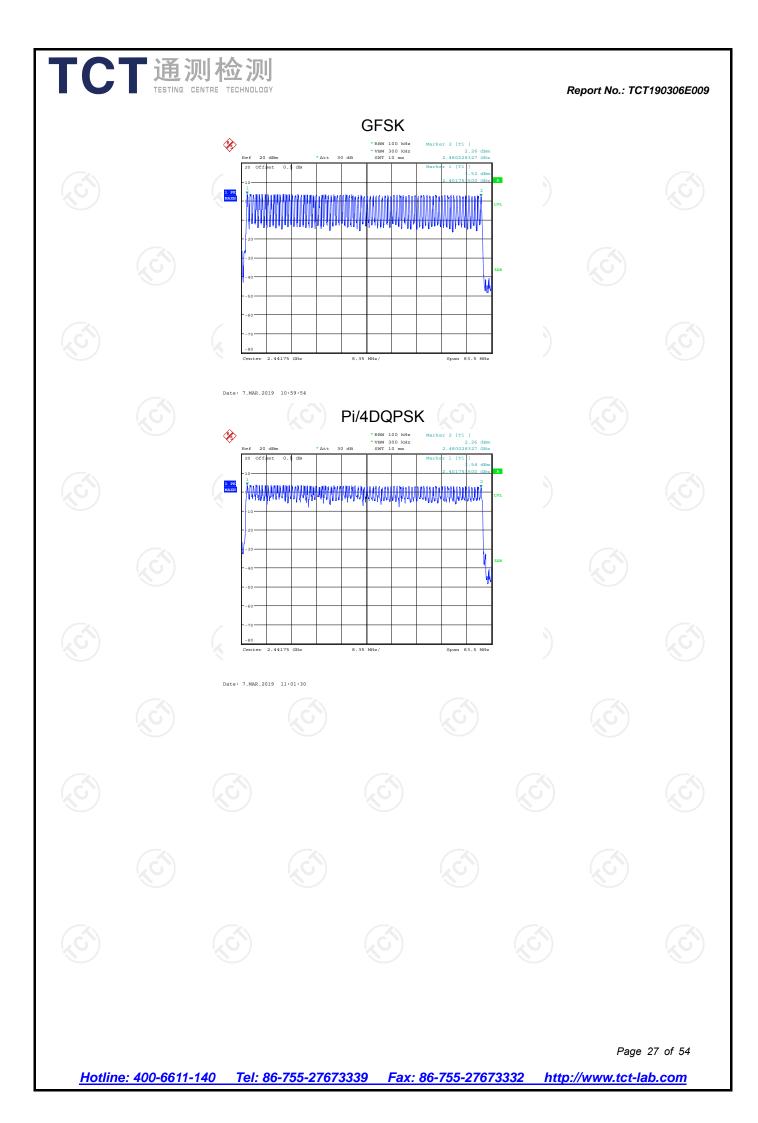
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	889.42	889.42
π/4-DQPSK	1259.62	839.75

6.6. Hopping Channel Number

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

6.6.2. Test Instruments


Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

Mode		Mode Hopping channel numbers		I	Limit	Resu	ult		
Č,	GFSK, P	i/4DQPSK		79		15	PAS	PASS	
Test p	lots as follow	vs:							
							Down	26 of 54	
11-41	<u>ne: 400-6611-</u>	140 Tol: 94	<u>6-755-2767:</u>	2220 Eax: 94	6-755-2767	2222 http	Page ://www.tct-la	26 of 54	

6.7. Dwell Time

6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.247 (a)(1)
ANSI C63.10:2013
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spectrum Analyzer EUT
Hopping mode
 The testing follows ANSI C63.10:2013 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

6.7.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

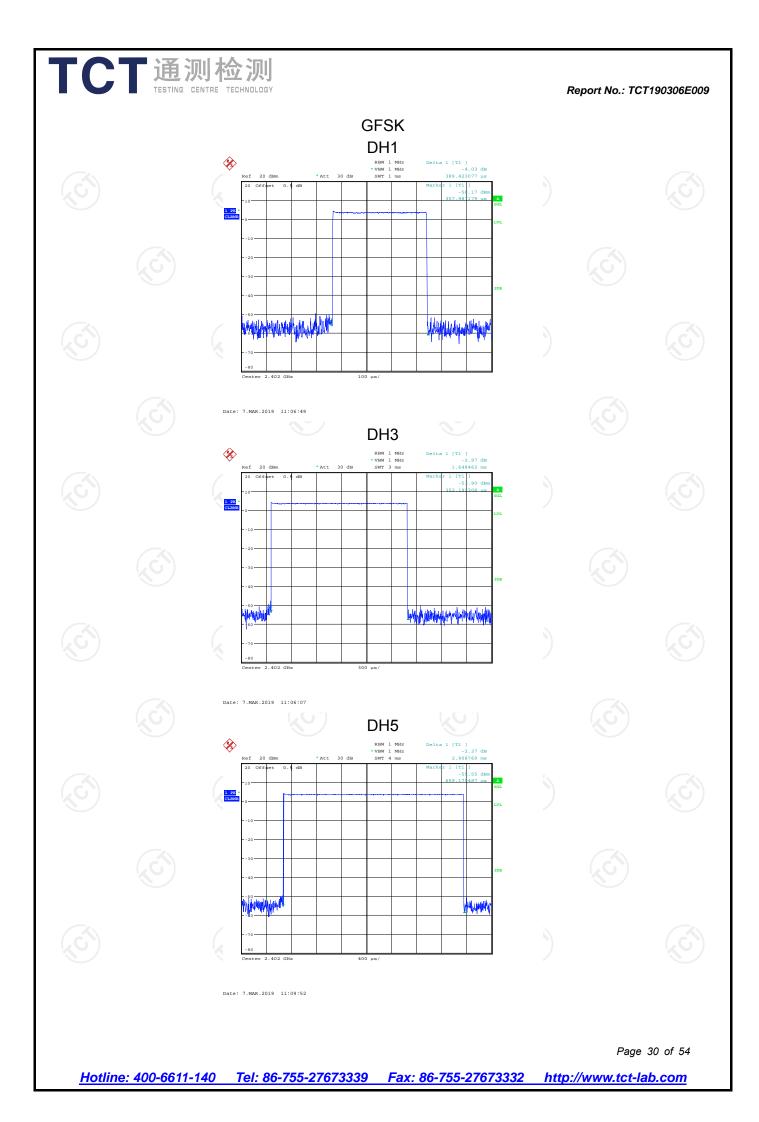
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

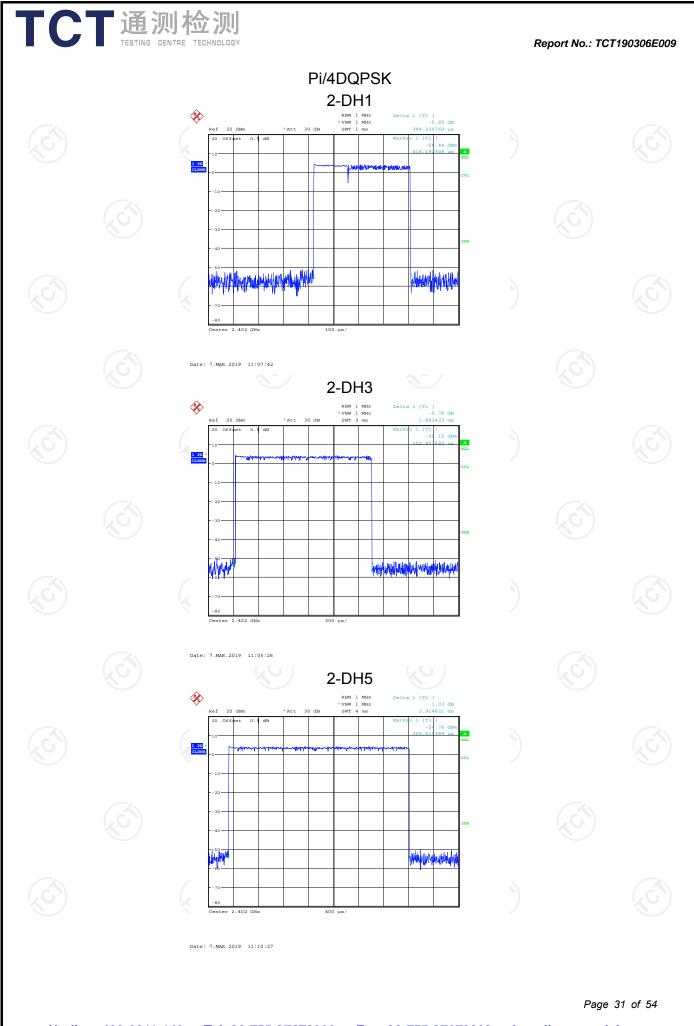
Page 28 of 54

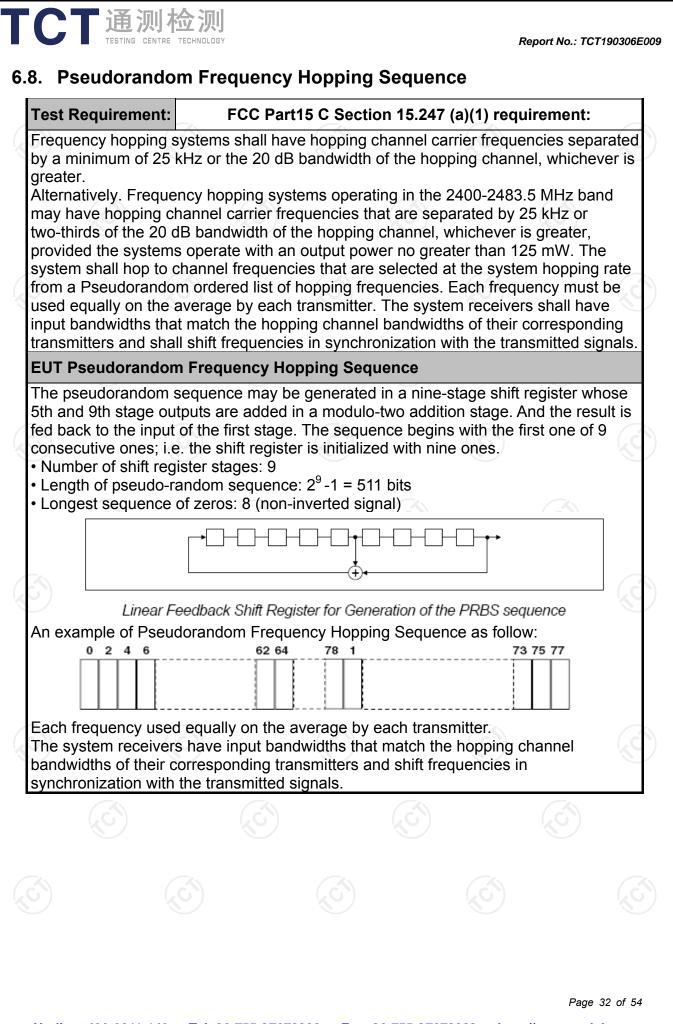
Report No.: TCT190306E009

6.7.3. Test Data

	Mode	Packet	Hops Over Occupancy Time (hops)	Package Transfer Time (ms)	Dwell time (second)	Limit (second)	Result
4	GFSK	DH1	320	0.389	0.124	0.4	PASS
	GFSK	DH3	160	1.648	0.264	0.4	PASS
	GFSK	DH5	106.67	2.909	0.310	0.4	PASS
F	Pi/4DQPSK	2-DH1	320	0.394	0.126	0.4	PASS
F	Pi/4DQPSK	2-DH3	160	1.662	0.266	0.4	PASS
F	Pi/4DQPSK	2-DH5	106.67	2.915	0.311	0.4	PASS


Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.


For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 2 / 79) \times (0.4 \times 79) = 320$ hops For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 4 / 79) \times (0.4 \times 79) = 160$ hops


For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

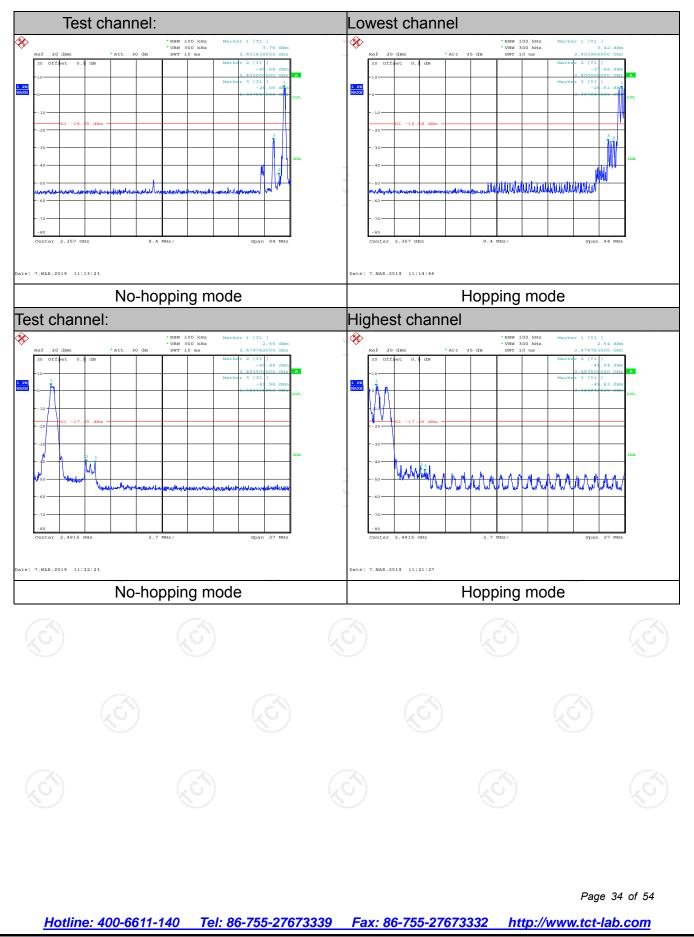
Test plots as follows:

TCT 通测检测 TESTING CENTRE TECHNOLOGY

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

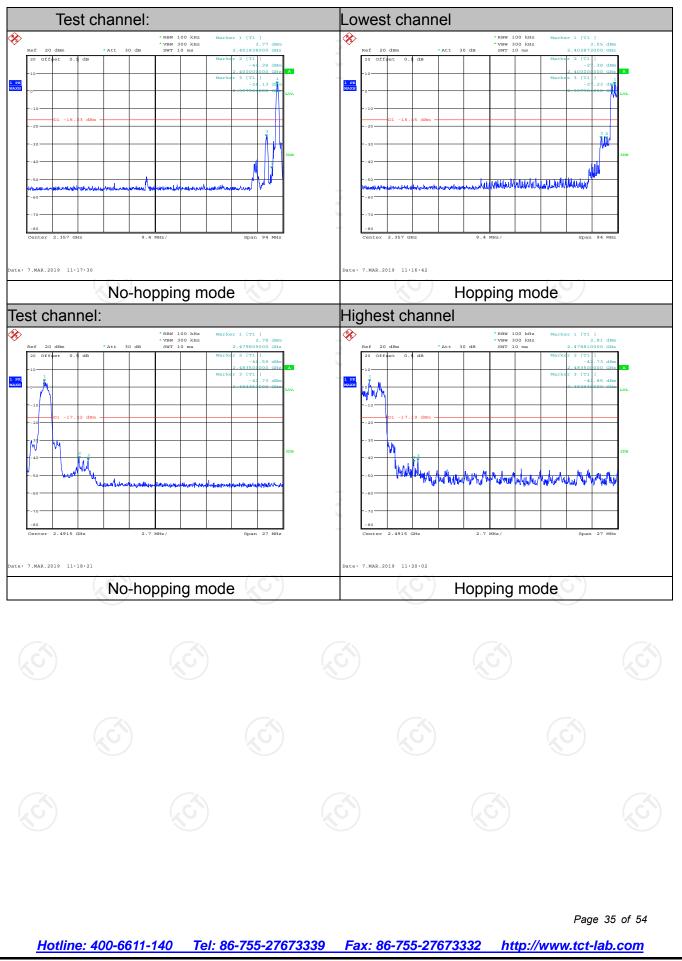
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which f in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 				
Test Result:	PASS				


6.9.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

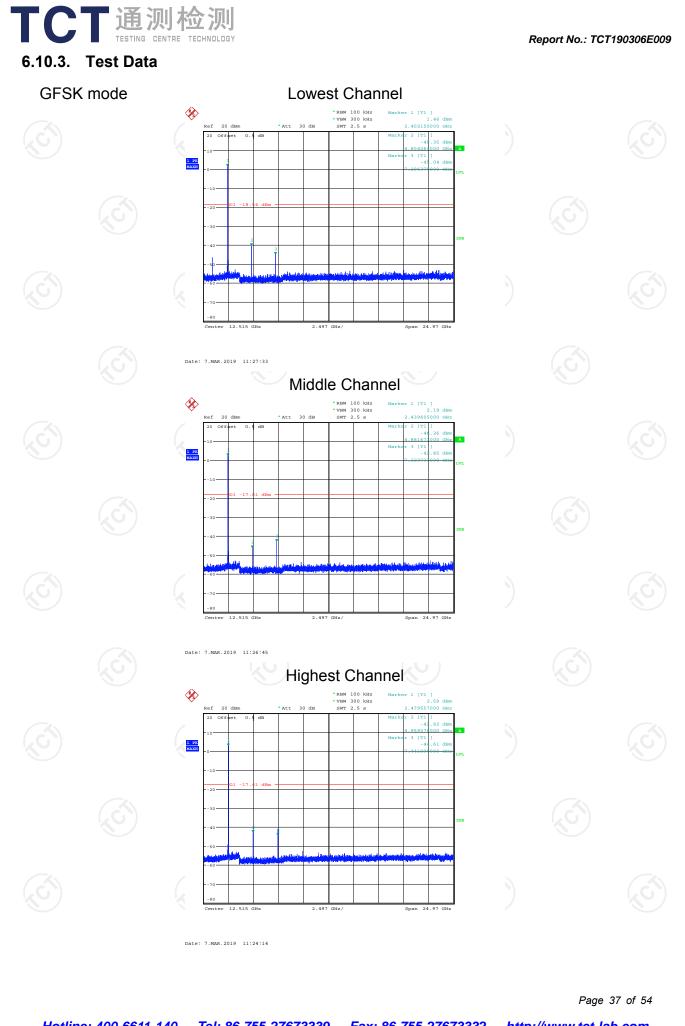
6.9.3. Test Data

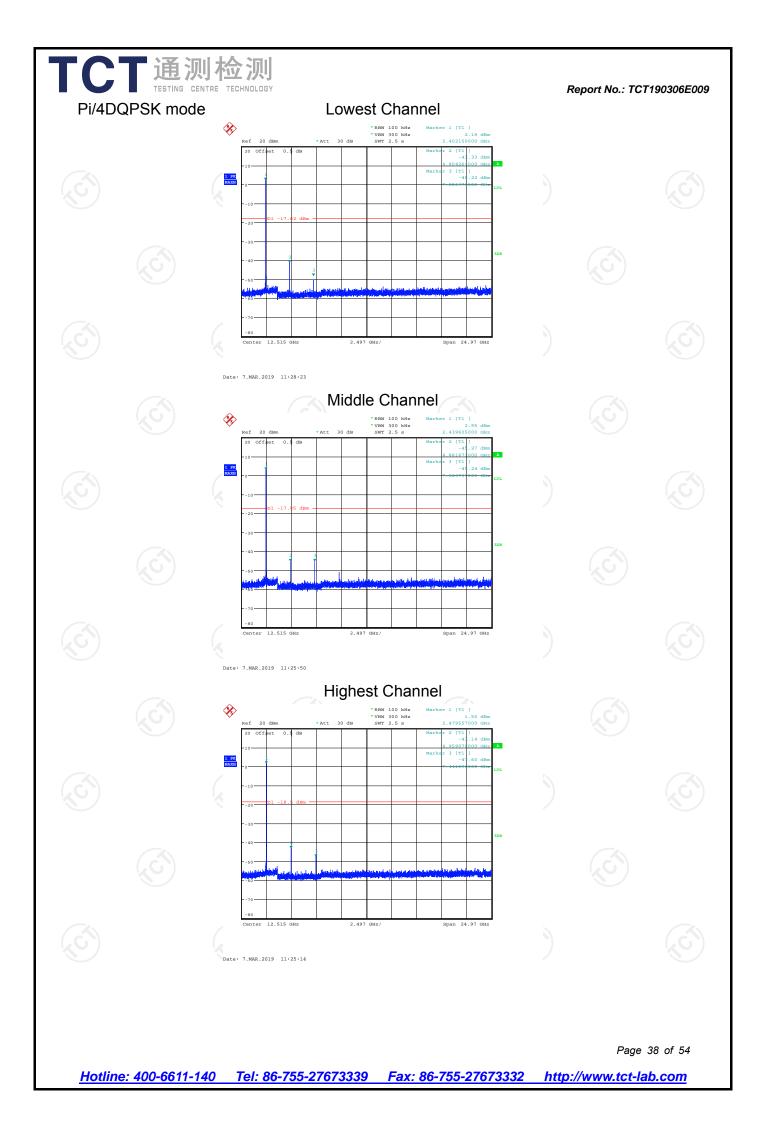

GFSK Modulation

Report No.: TCT190306E009

Pi/4DQPSK Modulation

6.10. Conducted Spurious Emission Measurement

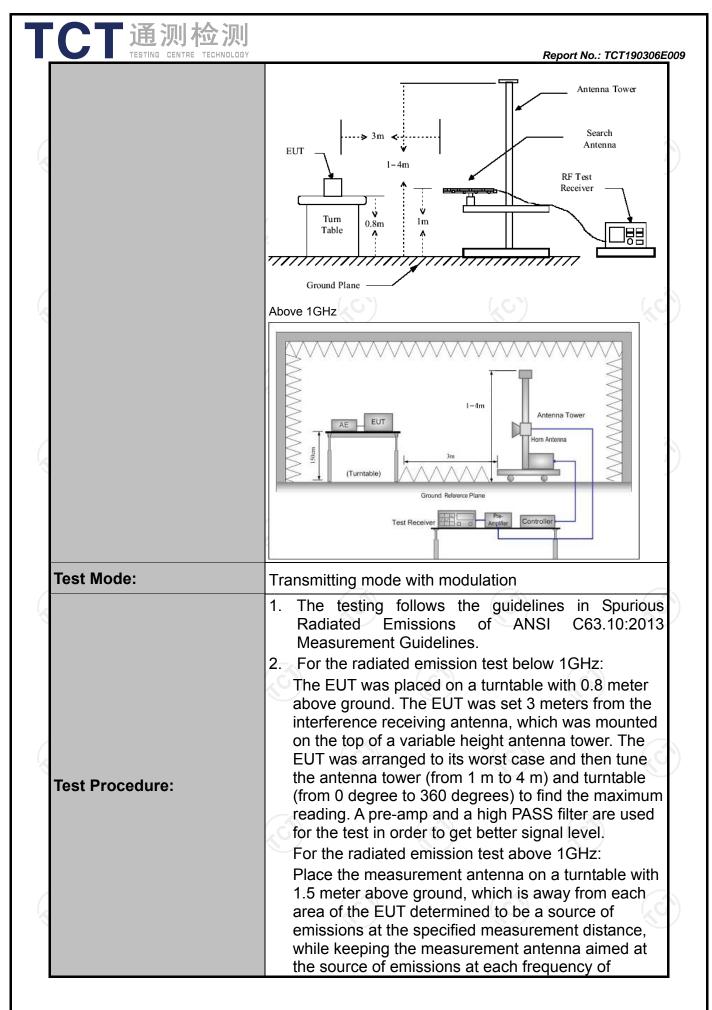

6.10.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2013 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Test Result:	PASS				

6.10.2. Test Instruments

	0)			
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 20, 2019
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ40	200061	Sep. 20, 2019
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 20, 2019
Antenna Connector	тст	RFC-01	N/A	Sep. 20, 2019

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).



6.11. Radiated Spurious Emission Measurement

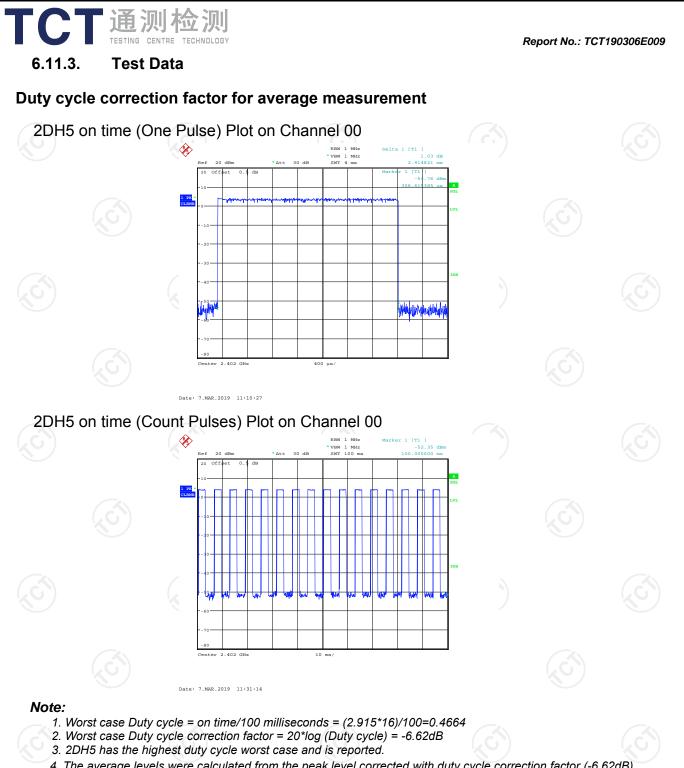
6.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

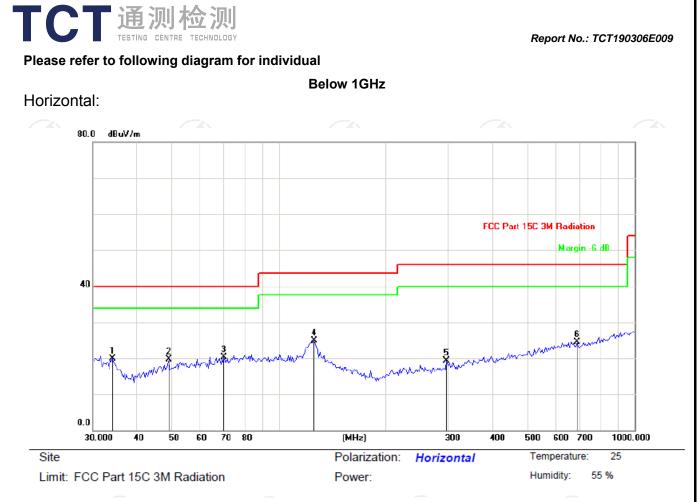
	C Section	15.209					
ANSI C63.10:2013							
9 kHz to 25 (GHz						
3 m	No.	9					
Horizontal & Vertical							
Frequency	Detector	RBW	VBW	Remark			
9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
150kHz- 30MHz	Quasi-peak	s 9kHz	30kHz	Quasi-peak Value			
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Peak	1MHz	3MHz	Peak Value			
Above IGHZ	Peak	1MHz	10Hz	Average Value			
E		Field Stre	ength	Measurement			
Frequen	су			Distance (meters)			
0.009-0.4	490	2400/F(I	KHz)	300			
			KHz)	30			
		30		30			
				3			
				3			
				3			
Above 9	00	500		3			
Frequency		volts/meter)	Measure Distan (mete	ice Detector			
Above 1GHz	<u>z</u>	5000	3				
				Computer Amplifier Receiver			
30MHz to 1GHz	Ground	Plane	_				
	Horizontal & Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequent 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	Horizontal & Vertical Frequency Detector 9kHz- 150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Frequency Field (microson) Above 1GHz Field (microson) For radiated emissions below Distance = 3m Image: EUT EUT	Horizontal & Vertical Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 120KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Field Street (microvolts) 0.009-0.490 2400/F(0 0.490-1.705 24000/F(0 0.490-1.705 24000/F(0 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 5000	Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz Peak 1MHz 10Hz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 0.009-0.490 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Krequency Field Strength (microvolts/meter) Distance Distance Above 1GHz 500 3 3 3 For radiated emissions below 30MHz Distance = 3m Image: Strength of the s			

CT 通测检测 TESTING CENTRE TECHNOLOGY			Report No.: TCT190306E
	max may dep and rece max ante rest abo 3. Se EU 4. Us (1) (2)	ificant emissions, with pola kimum response. The mease y have to be higher or lowe ending on the radiation par- staying aimed at the emiss eiving the maximum signal. asurement antenna elevation kimizes the emissions. The enna elevation for maximum ricted to a range of heights we the ground or reference to the maximum power so T transmit continuously. e the following spectrum ar) Span shall wide enough to emission being measured) Set RBW=120 kHz for f < for f>1GHz ; VBW≥RBW; Sweep = auto; Detector = max hold for peak 8) For average measureme correction factor method 15.35(c). Duty cycle = On On time =N1*L1+N2*L2+. Where N1 is number of t length of type 1 pulses, of Average Emission Level Level + 20*log(Duty cycle	arization oriented for surement antenna or than the EUT, ttern of the emission sion source for The final on shall be that which measurement in emissions shall be of from 1 m to 4 m e ground plane. Setting and enable the halyzer settings: o fully capture the l; 1 GHz, RBW=1MHz function = peak; Trace nt: use duty cycle per time/100 milliseconds +Nn-1*LNn-1+Nn*Ln ype 1 pulses, L1 is etc. = Peak Emission
		Corrected Reading: Anter Loss + Read Level - Prea	
Test results:	PASS		

Page 41 of 54

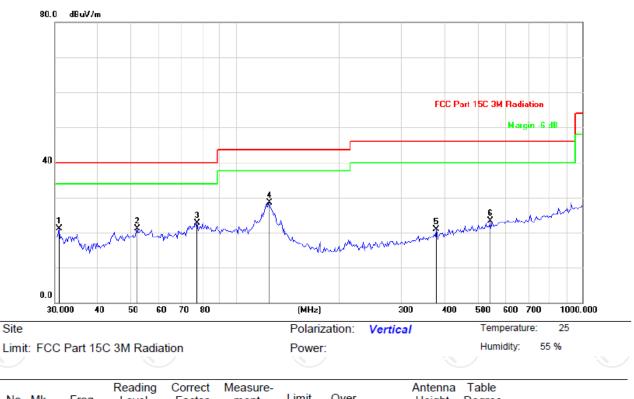


Report No.: TCT190306E009


6.11.2. Test Instruments

Radiated Emission Test Site (966)											
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due							
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 17, 2019							
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 20, 2019							
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 16, 2019							
Pre-amplifier	HP	8447D	2727A05017	Sep. 16, 2019							
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 20, 2019							
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 02, 2019							
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Oct. 20, 2019							
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 16, 2019							
Antenna Mast	Keleto	RE-AM	N/A	N/A							
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 16, 2019							
Coax cable (9KHz-40GHz)	отст	RE-high-02	N/A	Sep. 16, 2019							
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 16, 2019							
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 16, 2019							
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A							

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-6.62dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		34.0451	31.00	-11.02	19.98	40.00	-20.02	peak	100	214	
2		49.0627	29.78	-10.10	19.68	40.00	-20.32	peak	100	76	
3		70.2096	36.03	-15.65	20.38	40.00	-19.62	peak	100	360	
4	*	125.8059	38.76	-13.79	24.97	43.50	-18.53	peak	100	27	
5		296.5023	30.34	-11.03	19.31	46.00	-26.69	peak	100	0	
6		689.0510	30.07	-5.49	24.58	46.00	-21.42	peak	200	342	

Page 44 of 54

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		30.8552	32.08	-11.01	21.07	40.00	-18.93	peak	100	215	
2		51.8998	31.57	-10.46	21.11	40.00	-18.89	peak	100	76	
3		77.4680	39.17	-16.43	22.74	40.00	-17.26	peak	100	322	
4	* •	124.9249	41.88	-13.45	28.43	43.50	-15.07	peak	100	45	
5	;	379.1780	30.21	-9.25	20.96	46.00	-25.04	peak	100	146	
6	!	542.6104	30.30	-7.06	23.24	46.00	-22.76	peak	200	95	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Measurements were conducted in all three channels (high, middle, low) and two modulation (GFSK, Pi/4DQPSK) and the worst case Mode (Lowest channel and Pi/4DQPSK) was submitted only.

Report No.: TCT190306E009

Above 1GHz

Modulation	Type: Pi/4	4DQPSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	45.46		-8.27	37.19		74	54	-16.81
4804	Н	47.13		0.66	47.79		74	54	-6.21
7206	Н	38.57		9.50	48.07	<u> </u>	74	54	-5.93
	, GH)		-4-0	•)	()	·C `		(
			J.						
2390	V	43.96		-8.27	35.69		74	54	-18.31
4804	V	44.84		0.66	45.50		74	54	-8.50
7206	V	38.25		9.50	47.75		74	54	-6.25
	V			K)				

Middle channel: 2441 MHz

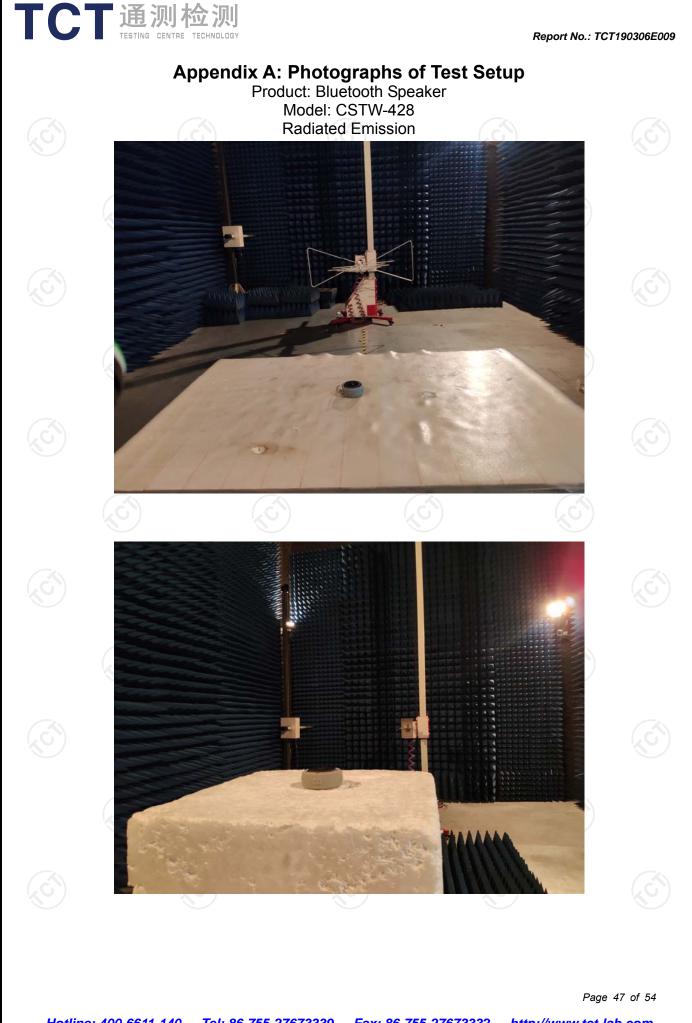
CT通测检测 TESTING CENTRE TECHNOLOGY

Frequency	Ant. Pol.	Peak	AV	Correction		on Level	Peak limit	AV limit (dBµV/m)	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)
4882	Ĥ	43.14		0.99	44.13		74	54	-9.87
7323	Н	38.03		9.87	47.90		74	54	-6.10
	Н								
4882	V	44.62		0.99	45.61		74	54	-8.39
7323	V	39.47		9.87	49.34		74	54	-4.66
	V								

High channel: 2480 MHz

nigh chan	IEI. 2400 IN			·)					
Frequency	Ant Pol	Peak	AV	Correction		on Level	Peak limit	AV limit	Margin
	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(dBµV/m)	(dB)
2483.5	Н	46.58		-7.83	38.75		74	54	-15.25
4960	Н	48.04		1.33	49.37		74	54	-4.63
7440	Н	39.12		10.22	49.34		74	54	-4.66
	Н								
2483.5	V	48.34		-7.83	40.51	<u> </u>	74	54	-13.49
4960	ω	47.75	-40	1.33	49.08		74	54	-4.92
7440	V	37.97		10.22	48.19		74	54	-5.81
	V								

Note:


1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all two modulation (GFSK, Pi/4DQPSK), and the worst case Mode (Pi/4DQPSK) was submitted only.

