Report No.: NTC2203140FV00

FCC RADIO TEST REPORT

Applicant: Summit Electronics LLC
Address : 1 Rewe Street, Brooklyn,New York,11211 United States
Manufacturer : Summit Electronics LLC
Address : 1 Rewe Street, Brooklyn,New York,11211 United States
Factory: Summit Electronics LLC
Address 1 Rewe Street, Brooklyn,New York,11211 United States
Product Name : True Wireless Speaker
Brand Name : COBY
Model No : CPA909BK, CPA909 (For model difference refer to section 2)
FCC ID : 2AMSOCPA909
Measurement Standard : 47 CFR FCC Part 15, Subpart C (Section 15.247)
Receipt Date of Samples:March 11, 2022
Date of Tested : March 11, 2022 to March 30, 2022
Date of Report: April 07, 2022

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by *f* Jenny Liu / Project Engineer

Dongguan Nore Testing Center Co., Ltd. Address: Building D, Gaosheng Science and Technology park, Hongtu road, Nancheng district, Dongguan city, Guangdong province, China Web: <u>www.ntc-c.com</u> <u>Tel:+86-769-2202 2444</u> Fax:+86-769-2202 2799

Page 1 of 50

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Test Channels and Modes Detail	8
4. Configuration of EUT	8
5. Modification of EUT	8
6. Description of Support Device	9
7. Test Facility and Location	10
8. Applicable Standards and References	11
9. Deviations and Abnormalities from Standard Conditions	11
10. Test Conditions	12
11. Measurement Uncertainty	13
12. Sample Calculations	14
13. Test Items and Results	15
13.1 Conducted Emissions Measurement	15
13.2 Radiated Spurious Emissions and Restricted Bands Measurement	19
13.3 Channel Separation test	26
13.4 20dB Bandwidth	
13.5 Hopping Channel Number	34
13.6 Time of Occupancy (Dwell Time)	36
13.7 Maximum Peak Output Power	40
13.8 Band Edge Conducted Spurious Emission Measurement	44
13.9 Antenna Requirement	49
14. Test Equipment List	50

Revision History

Report Number	Description	Issued Date
NTC2203140FV00	Initial Issue	2022-04-07

1. Summary of Test Result

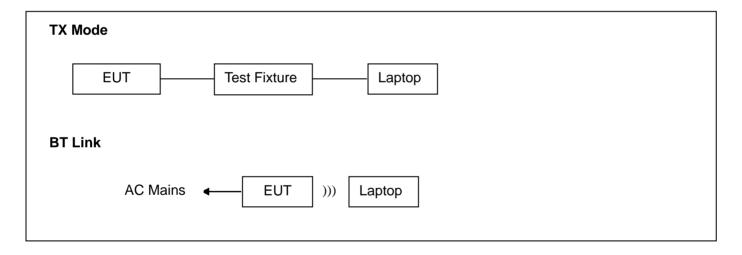
FCC Rules	Description of Test	Result	Remarks
§15.247(a)(1)	Channel Separation test	PASS	
§15.247(a)(1)	20dB Bandwidth	PASS	
§15.247(a)(1)(iii)	Hopping Channel Number	PASS	
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	PASS	
§15.247(b)	Max Peak output Power test	PASS	
§15.247(d)	Band edge test	PASS	
§15.207 (a)	AC Power Conducted Emission	PASS	
§15.247(d),§15.209, §15.205	Radiated Emission	PASS	
§15.203	Antenna Requirement	PASS	
§15.247(d)	Conducted Spurious Emission	PASS	

2. General Description of EUT

Product Information	
Product name:	True Wireless Speaker
Main Model Name:	СРА909ВК
Additional Model Name:	CPA909
Model Difference:	Both models have the same circuitry, electrical mechanical, PCB Layout and physical construction. The difference is model name due to marketing purpose.
S/N:	2203-0884
Brand Name	СОВҮ
Hardware version:	Not Stated
Software version:	Not Stated
Rating:	DC 5V from adapter or DC 3.7V from internal battery
Classification:	Class B
Typical arrangement:	Floor-standing
I/O Port:	MIC Port*1, TF Card Port*1, USB Port*1, DC Port *1
Accessories Information	
Adapter:	N/A
Cable:	USB Line: 0.5m, unshielded, detachable
Other:	N/A
Additional Information	
Note:	N/A
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.

Technical Specification	
Bluetooth Version:	V5.1
Frequency Range:	2402-2480MHz
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Number of Channel:	79 (refer to following channel list for details)
Channel Space:	1MHz
Antenna Type:	PCB antenna
Antenna Gain:	-0.68 dBi (Declared by manufacturer)
Note:	The EUT does not support Bluetooth Low Energy feature in accordance with the manufacturer declaration.

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		



3. Test Channels and Modes Detail

No.	Mode	Channel	Frequency (MHz)	Modulation
1	ТХ	Hopping	2402-2480	GFSK/π/4-DQPSK /8DPSK
2	ТХ	Low	2402	GFSK/π/4-DQPSK /8DPSK
3	ТХ	Mid 2441		GFSK/π/4-DQPSK /8DPSK
4	ТХ	High	2480	GFSK/π/4-DQPSK /8DPSK
5.	BT Link			

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks
1.	Laptop	Lenovo	R720-151KBN	PF0Z35FH	Power cord, 1.8m,	Provided by the lab
2.	Power supply (Laptop)	Delta	ADL135NDC3A		unshielded	Provided by the lab
3.	Test fixture					Provided by manufacturer

No.	Test Software	Modulation	Power Setting
1.		GFSK	10
2.	FCC_assist_1.0.2.2	π/4-DQPSK	10
3.		8DPSK	10

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)			
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with			
Authorizations		CNAS/CL01			
		Listed by CNAS, August 13, 2018			
		The Certificate Registration Number is L5795.			
		The Certificate is valid until August 13, 2024			
		The Laboratory has been assessed and proved to be in compliance with ISO17025			
		Listed by A2LA, November 01, 2017			
		e Certificate Registration Number is 4429.01			
		Listed by FCC, November 06, 2017			
		Test Firm Registration Number: 907417			
		Listed by Industry Canada, June 08, 2017			
		The Certificate Registration Number. Is 46405-9743A			
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng			
		District, Dongguan City, Guangdong Province, China			

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.247 ANSI C63.10-2013

References Test Guidance:

DTS KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

The EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	Channel Separation test	1	DC 3.7V	Sean	See note ¹
2.	20dB Bandwidth	2-4	DC 3.7V	Sean	See note ¹
3.	Hopping Channel Number	1	DC 3.7V	Sean	See note ¹
4.	Time of Occupancy (Dwell Time)	1	DC 3.7V	Sean	See note ¹
5.	Max Peak output Power test	2-4	DC 3.7V	Sean	See note ¹
6.	Band edge test	1-4	DC 3.7V	Sean	See note ¹
7.		5	AC 120V 60Hz	Sean Se	See note ¹
1.	AC Power Conducted Emission	0	AC 240V 50Hz	Ocan	
			AC 120V 60Hz		
8.	Radiated Emission	1-5	AC 240V 50Hz	Sean	See note ¹
			DC 3.7V		
9.	Antenna Requirement				
10.	Conducted Spurious Emission	1-4	DC 3.7V	Sean	See note ¹

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%,

86~106kPa

2. For test voltage, only the worst case was recorded in this report.

3. AC 120V 60Hz, 240V 50Hz come from the Adapter.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±2.52 dB	
		9kHz ~ 30MHz	±2.60 dB	
0	Dedicted Engineering Test	30MHz ~ 1GHz	±4.68 dB	
2.	Radiated Emission Test	1GHz ~ 18GHz	±5.14 dB	
		18GHz ~ 40GHz	±5.14 dB	
3.	RF Conducted Test	10Hz ~ 40GHz	±1.06 dB	
Note:		1		1

Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

Conducted Emission								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector		
0.1620 38.50		10.60	49.10	65.36	-16.26	QP		
Where,								
Freq.	= Emiss	ion frequency in MH	łz					
Reading Lev	el = Spect	= Spectrum Analyzer/Receiver Reading						
Corrector Fa	ctor = Inserti	= Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation						
Measuremer	nt = Readi	= Reading + Corrector Factor						
Limit	= Limit s	= Limit stated in standard						
Margin	= Measu	= Measurement - Limit						
Detector	= Readi	= Reading for Quasi-Peak / Average / Peak						

Radiated Spurious Emissions and Restricted Bands								
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector		
65.890	33.10	-7.90	25.20	40.00	-14.80	QP		
Where,								
Freq.	= Emiss	ion frequency in MH	lz					
Reading Lev	el = Spect	= Spectrum Analyzer/Receiver Reading						
Corrector Fa	ctor = Anten	= Antenna Factor + Cable Loss - Pre-amplifier						
Measuremer	nt = Readi	= Reading + Corrector Factor						
Limit	= Limit s	= Limit stated in standard						
Over	= Margii	= Margin, which calculated by Measurement - Limit						
Detector	= Readi	ng for Quasi-Peak /	Average / Peak					

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Test Items and Results

13.1 Conducted Emissions Measurement

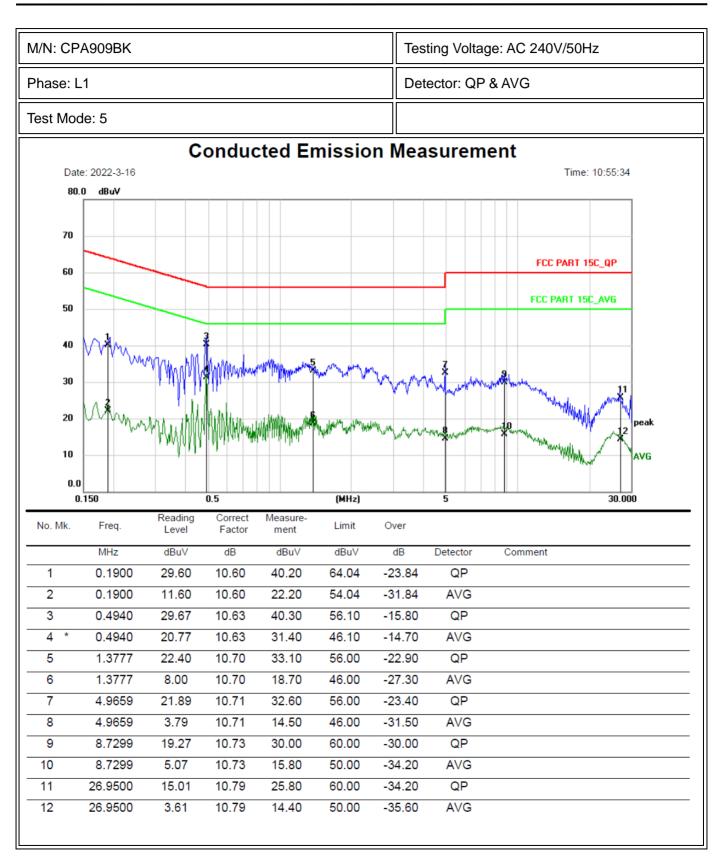
LIMIT

According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz)	Quasi-peak	Average	
0.15 to 0.5	66 to 56	56 to 46	
0.5 to 5 56		46	
5 to 30	60	50	
Note: 1. If the limits for the average detector are met when using the quasi-peak detector, the			
for the	for the measurements with the average detector are considered to be met.		
2. The lower limit shall apply at the transition frequencies.			
3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MI			

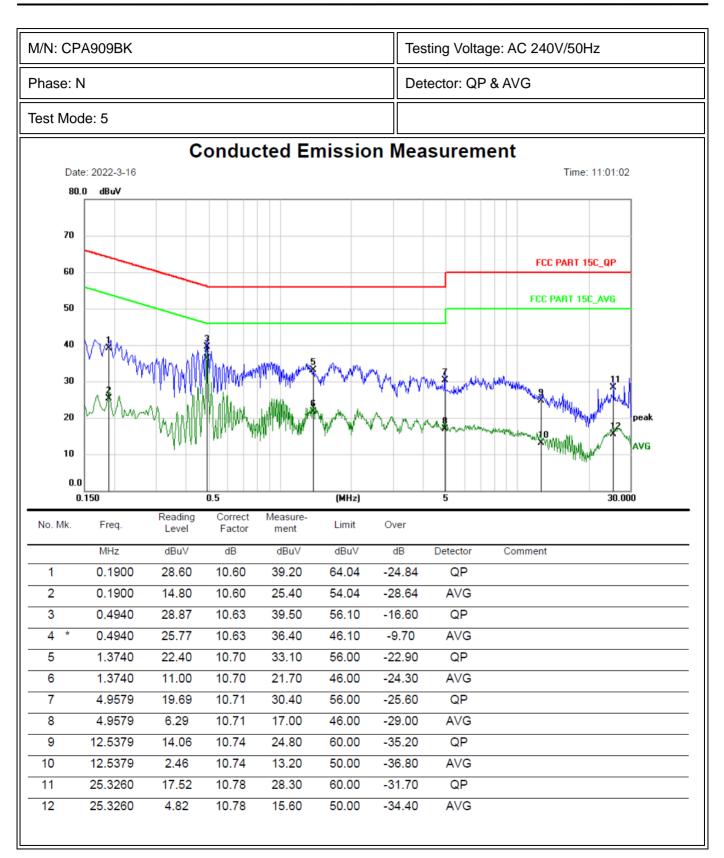
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES


- a. The EUT was placed on a wooden table 0.01m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

PASS



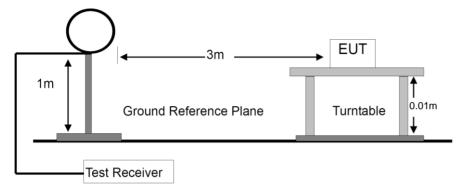
13.2 Radiated Spurious Emissions and Restricted Bands Measurement

LIMIT

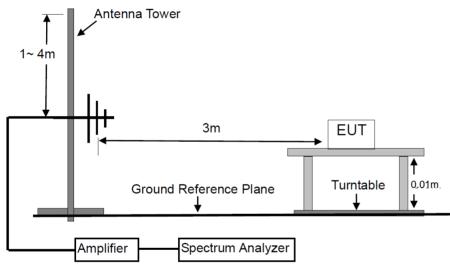
Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz	Distance meters	μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

(2) The smaller limit shall apply at the cross point between two frequency bands.

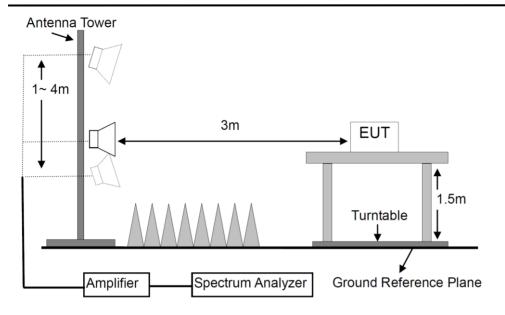

(3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.



BLOCK DIAGRAM OF TEST SETUP

For Radiated Emission below 30MHz



For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

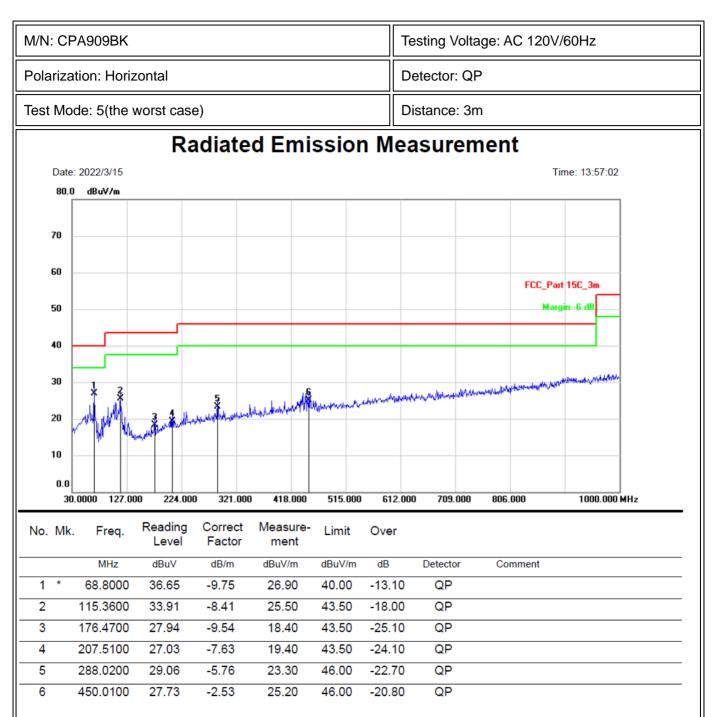
TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.01 meters above the ground at a 3 meters semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meters full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

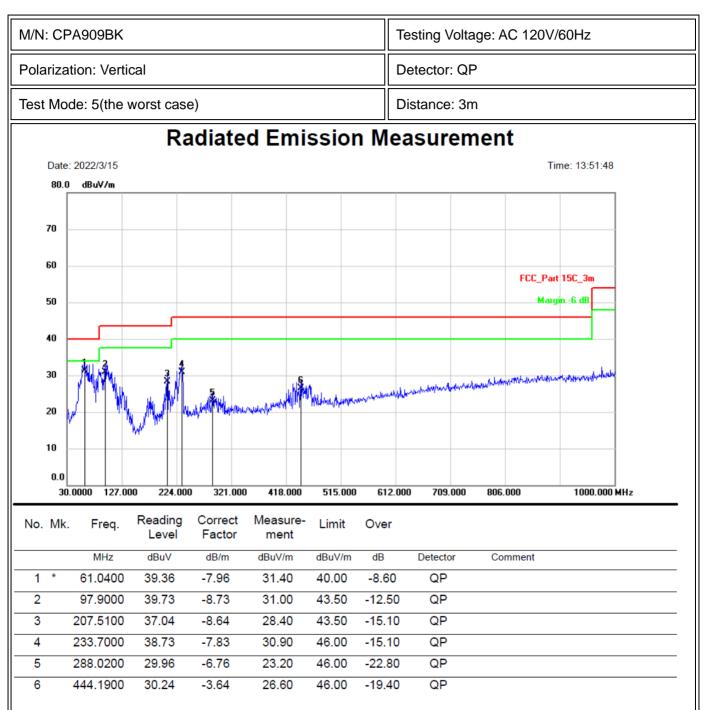
c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.


During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

TEST RESULTS


PASS

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Modulation: 8DPSK(the worst case)			Test Result: PASS		Test frequency range: 1-25GHz					
Freq.			Reading Level(dBuV)		Factor (dBuV/m)		Limit 3m (dBuV/m)		Margin (dB)	
(MHz)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
			Ope	ration Mod	le: TX Mod	le (Low)				
4804	V	49.97	36.83	6.30	56.27	43.13	74.00	54.00	-17.73	-10.87
7206	V	48.68	35.93	10.44	59.12	46.37	74.00	54.00	-14.88	-7.63
4804	Н	49.37	38.43	6.30	55.67	44.73	74.00	54.00	-18.33	-9.27
7206	Н	48.88	36.07	10.44	59.32	46.51	74.00	54.00	-14.68	-7.49
			Ope	eration Mod	de: TX Moo	le (Mid)				
4882	V	50.22	38.11	6.60	56.82	44.71	74.00	54.00	-17.18	-9.29
7323	V	48.59	36.34	10.55	59.14	46.89	74.00	54.00	-14.86	-7.11
4882	Н	50.71	39.08	6.60	57.31	45.68	74.00	54.00	-16.69	-8.32
7323	Н	49.24	37.27	10.55	59.79	47.82	74.00	54.00	-14.21	-6.18
			Ope	ration Mod	le: TX Mod	e (High)				
4960	V	49.26	39.09	6.89	56.15	45.98	74.00	54.00	-17.85	-8.02
7440	V	48.36	36.33	10.60	58.96	46.93	74.00	54.00	-15.04	-7.07
4960	Н	50.20	39.86	6.89	57.09	46.75	74.00	54.00	-16.91	-7.25
7440	Н	48.60	36.43	10.60	59.20	47.03	74.00	54.00	-14.80	-6.97
			Spurio	ous Emissio	on in restric	cted banc	l:			
2390.000	V	56.77	37.23	0.09	56.86	37.32	74.00	54.00	-17.14	-16.68
2390.000	Н	55.44	37.75	0.09	55.53	37.84	74.00	54.00	-18.47	-16.16
2483.500	V	51.44	41.35	0.34	51.78	41.69	74.00	54.00	-22.22	-12.31
2483.500	Н	52.61	43.06	0.34	52.95	43.40	74.00	54.00	-21.05	-10.60
Remark:	Data of m reading of			•						ans the

13.3 Channel Separation test

LIMIT

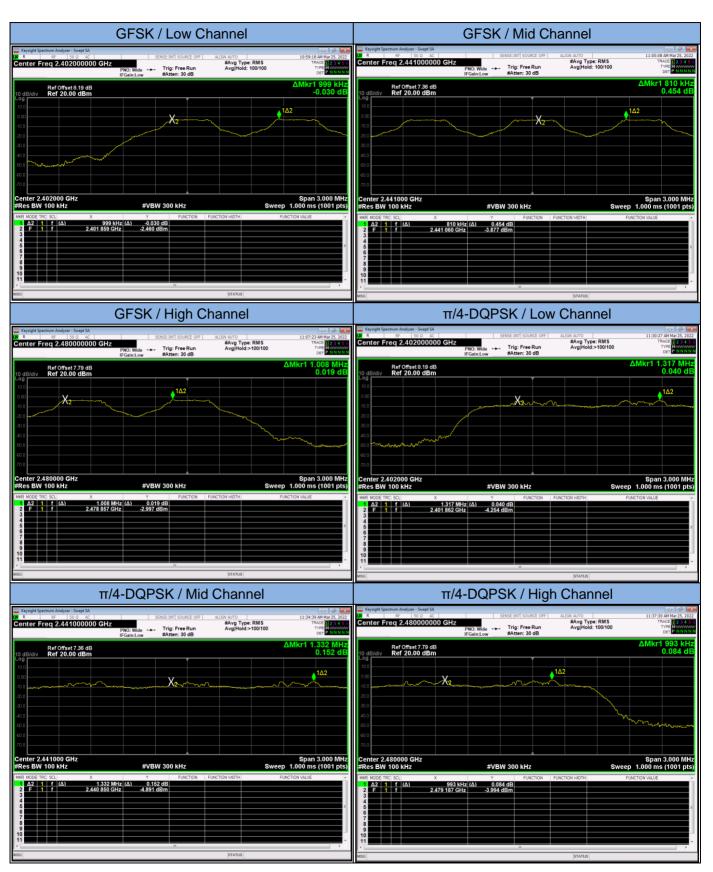
Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

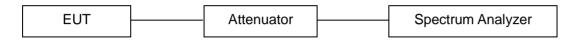
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.2.

TEST RESULTS


PASS

Modulation	Channel	Frequency (MHz)	Hopping Separation Measurement (MHz)	Hopping Separation Limit (MHz)	Test Result
	Low	2402	0.999	>0.637	Pass
GFSK	Mid	2441	0.810	>0.637	Pass
	High	2480	1.008	>0.637	Pass
	Low	2402	1.317	>0.885	Pass
π/4-DQPSK	Mid	2441	1.332	>0.856	Pass
	High	2480	0.993	>0.856	Pass
	Low	2402	1.008	>0.867	Pass
8DPSK	Mid	2441	1.002	>0.866	Pass
	High	2480	1.002	>0.866	Pass

8DPSK / Low Channel	8DPSK / Mid Channel
Keysight Spectrum Analyzer - Swept SA Selection [Source of F] Allow Auf70 12:49:37 PM Mar 25, 2022 Center Freq 2.402000000 GHz FF Allow Auf70 12:49:37 PM Mar 25, 2022 PNO: Wide →→ Trig: Free Run Avg Type: RM S Trice: Free Run Avg[Hold:>100/100 CP PNO: Wide →→ Trig: Free Run Avg[Hold:>100/100 CP Rev Run Rev Run Rev Run Rev Run Rev Run Rev Run	Keyslight Spectrum Analyzer - Swept SA Sector 1 Sector 2
ΔMkr1 1.008 MHz 10 dBldiv Ref 20.00 dBm 0.115 dB 0.00 0	Ref offset 7.38 dB ΔMkr1 1.002 MHz 10 dB/dly Ref 20.00 dBm 0.044 dB 0 000 100 102 000 100 102 000 100 102 000 000 102 000 000 000 000 000 000
Center 2.402000 GHz Span 3.000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.000 ms (1001 pts)	Center 2.441000 GHz Span 3.000 MHz Span 3.000 MHz Res BW 100 kHz Sweep 1.000 ms (1001 pts)
MRR MODE RCR, SCLI X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH 1 1 1 1 1 0.016 /dist -	INFR MODE TRCI SCL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH 2 F 1 f (A) 0.002 MHz (A) 0.004 MHz (A) 0.004 MHz (A) 2 F 1 f (A) 0.044 MHz -3.358 dBm -3.358 dBm -3.358 dBm -3.358 dBm -1.002 MHz (A) -1
8DPSK / High Channel	
Registry Local <thlocal< th=""> Local Local</thlocal<>	Blank



13.4 20dB Bandwidth

LIMIT

N/A

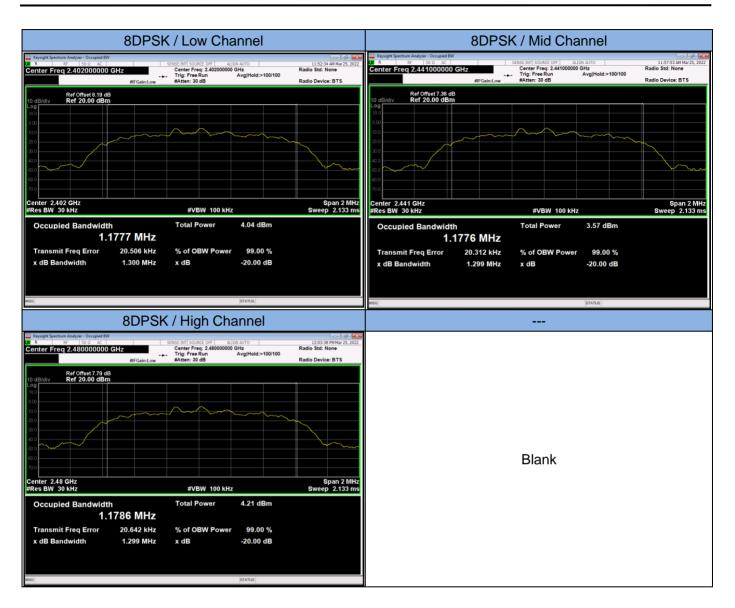
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 6.9.2.

TEST RESULTS

PASS



Modulation	Channel	Frequency (MHz)	20dB Measurement (MHz)	Limit (MHz)	Remark
	Low	2402	0.956		
GFSK	Mid	2441	0.955		
	High	2480	0.956		
	Low	2402	1.283		
π/4-DQPSK	Mid	2441	1.284		Reporting only
	High	2480	1.284		
	Low	2402	1.300		
8DPSK	Mid	2441	1.299		
	High	2480	1.299		

13.5 Hopping Channel Number

LIMIT

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

BLOCK DIAGRAM OF TEST SETUP

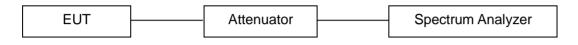
TEST PROCEDURES

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.3.

TEST RESULTS

PASS

Modulation	Number of Hopping Channels Measurement	Limit	Test Result
GFSK	79	≥15	PASS
π/4-DQPSK	79	≥15	PASS
8DPSK	79	≥15	PASS
	The worst case: 8DPSK	1	
20.0 -20.0 -30.0 -40.0 -50.0 -70.0 Start 2.40000 GHz #Res BW 100 kHz	ALIGN AUTO DOD GHZ PNO: Fast IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low IFGain:Low	ΔMkr1 78.657 0 M -4.558	



13.6 Time of Occupancy (Dwell Time)

LIMIT

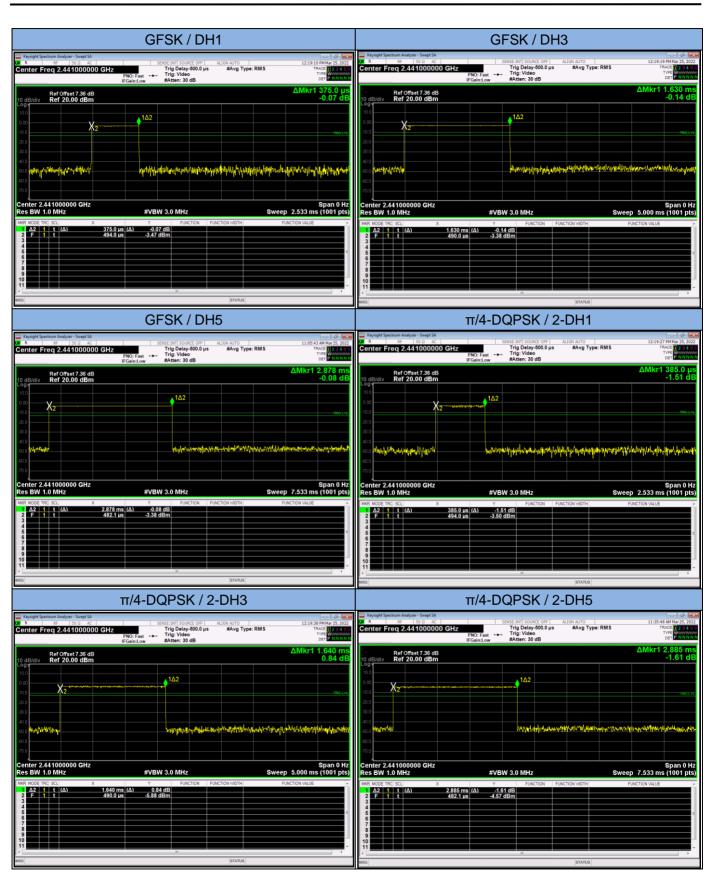
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

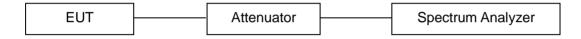
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Enable the EUT hopping function.
- d. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.4.

TEST RESULTS


PASS

Modulation	Packet	Frequency (MHz)	Dwell Time Measurement (msec)			Limit (msec)	Test Result
GFSK	DH1	2441	0.375	(ms)*(1600/(2*79))*31.6=	120.00	400	Pass
	DH3	2441	1.630	(ms)*(1600/(4*79))*31.6=	260.80	400	Pass
	DH5	2441	2.878	(ms)*(1600/(6*79))*31.6=	306.99	400	Pass
π/4-DQPSK	2-DH1	2441	0.385	(ms)*(1600/(2*79))*31.6=	123.20	400	Pass
	2-DH3	2441	1.640	(ms)*(1600/(4*79))*31.6=	262.40	400	Pass
	2-DH5	2441	2.885	(ms)*(1600/(6*79))*31.6=	307.73	400	Pass
8DPSK	3-DH1	2441	0.388	(ms)*(1600/(2*79))*31.6=	124.16	400	Pass
	3-DH3	2441	1.635	(ms)*(1600/(4*79))*31.6=	261.60	400	Pass
	3-DH5	2441	2.885	(ms)*(1600/(6*79))*31.6=	307.73	400	Pass

8DPSK / 3-DH1	8DPSK / 3-DH3			
Keysught Spectrum Analyzer - Swept SA Section 2010	R Sec. S			
Ref Offset 7.36 dB ΔMkr1 388.0 μs 10 dBidly -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.59 -2.58 dB -2.50 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.58 dB -2.50 dB -2.58 dB -2.50 dB -2.58 dB -2.50 dB	Ref Offset 7.36 dB ΔMkr1 1.635 ms 10 dB/du/v -1.26 dB 100			
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 2.533 ms (1001 pts)	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 5.000 ms (1001 pts)			
And R MODE Transmission Transmission Punction water 1 <th>MOR MODE TACL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH 1</th>	MOR MODE TACL X Y FUNCTION FUNCTION WIDTH FUNCTION WIDTH 1			
8DPSK / 3-DH5				
Ref Offset 7.36 db Context Freq 2.441000000 GHz SDGE INT SOURCE OF ALIGN AUTO Context Freq 2.441000000 GHz Ref Offset 7.36 db Freq intext of the freq 2.441000000 GHz Freq intext of the freq 2.4410000000 GHz Freq intext of the freq intext o	Blank			



13.7 Maximum Peak Output Power

LIMIT

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

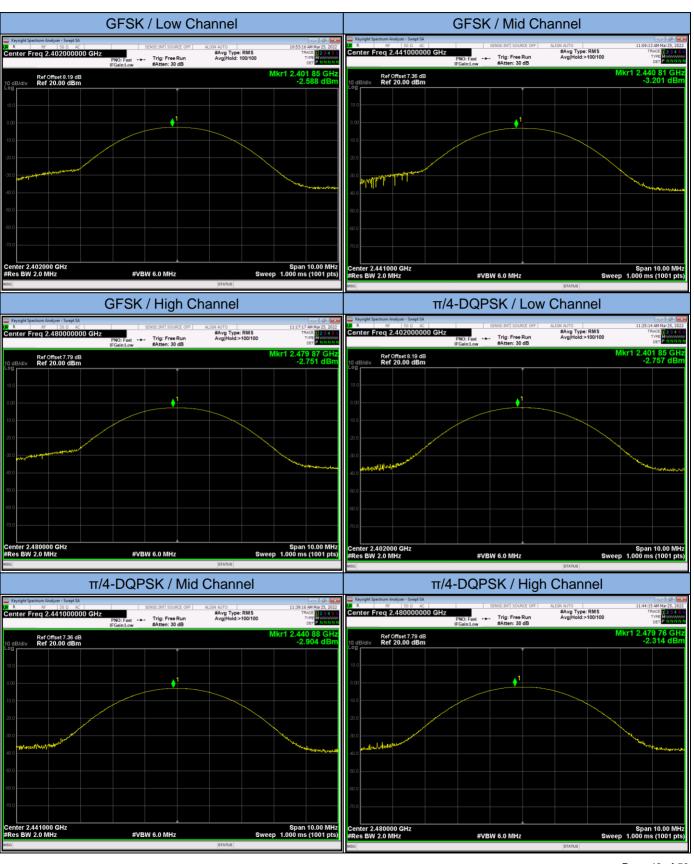
BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

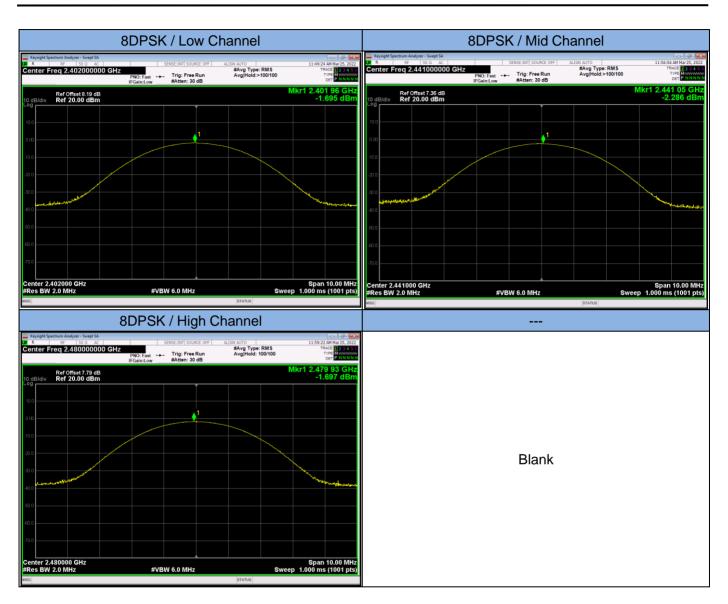
- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.5.

TEST RESULTS

PASS


Please refer to the following table.

Modulation	Frequency (MHz)	Peak Power output Measurement (dBm)	Peak Power output Measurement (mW)	Peak Power Limit (dBm)	Test Result
	2402.00	-2.588	0.55	21	Pass
GFSK	2441.00	-3.201	0.48	21	Pass
	2480.00	-2.751	0.53	21	Pass
π/4-DQPSK	2402.00	-2.757	0.53	21	Pass
	2441.00	-2.904	0.51	21	Pass
	2480.00	-2.314	0.59	21	Pass
8DPSK	2402.00	-1.695	0.68	21	Pass
	2441.00	-2.286	0.59	21	Pass
	2480.00	-1.697	0.68	21	Pass



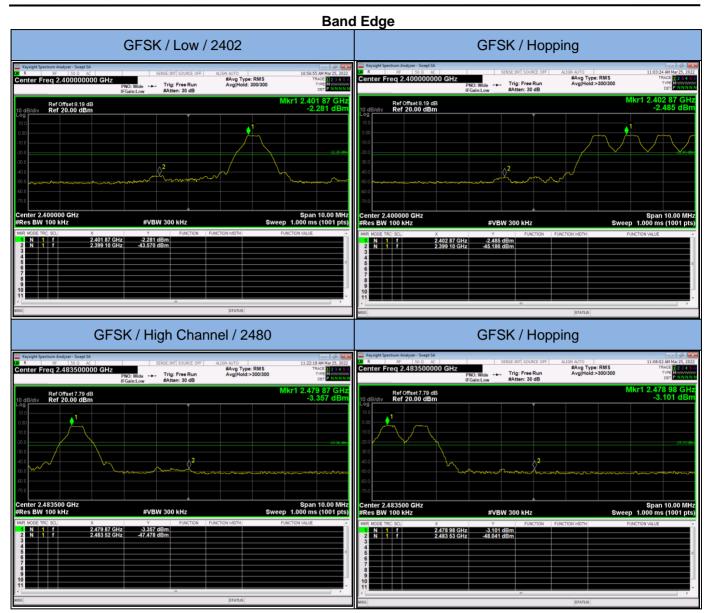
13.8 Band Edge Conducted Spurious Emission Measurement

LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

BLOCK DIAGRAM OF TEST SETUP

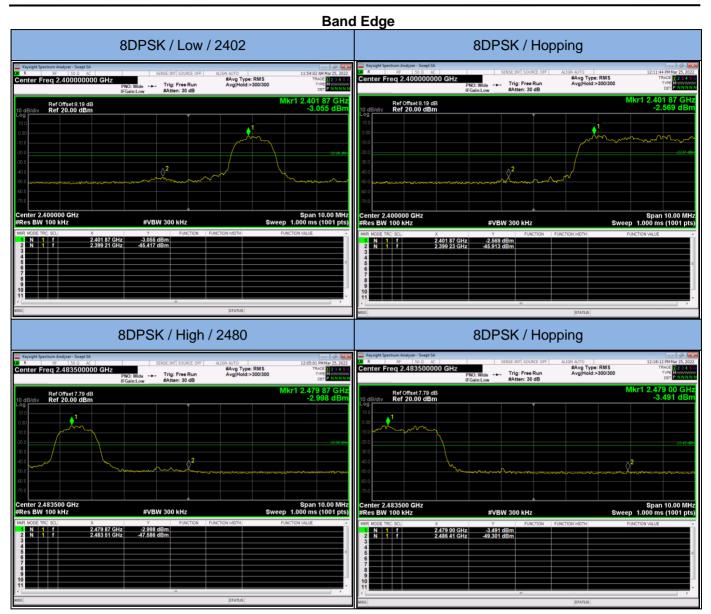
TEST PROCEDURES

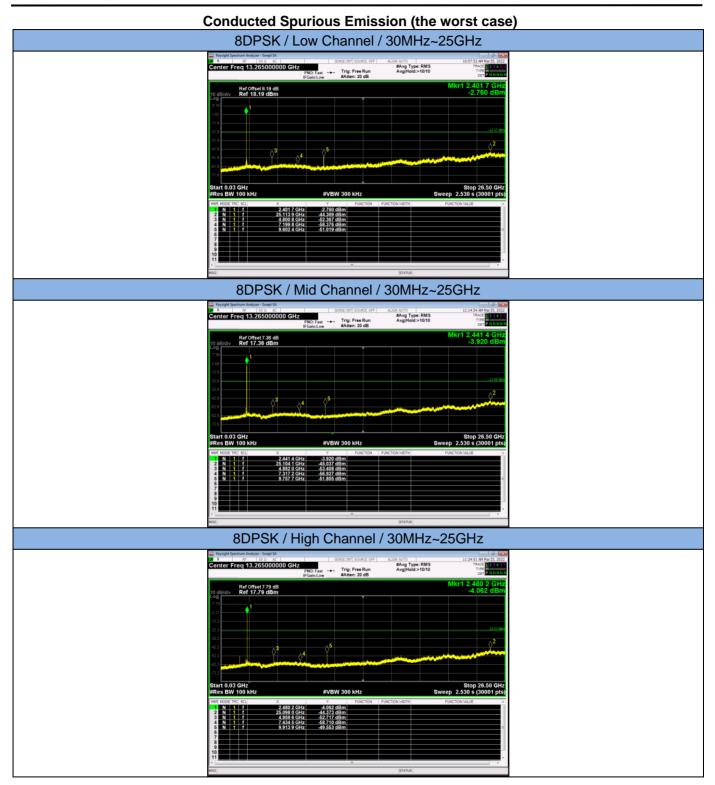

- a. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- b. Set to the maximum power setting and enable the EUT transmit continuously.
- c. Set spectrum analyzer and perform testing according to ANSI C63.10-2013 clause 7.8.6 and 6.10.
- d. Enable hopping function of the EUT and then repeat steps above.

TEST RESULTS

PASS

Please refer to the following test plots.





13.9 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.247:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is -0.68 dBi, Therefore, the antenna is considered to meet the requirement.

14. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2022	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2022	1 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2022	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2022	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2022	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 23, 2022	2 Year
7.	Power Sensor	DARE	RPR3006W	15l00041SNO 64	Mar. 13, 2022	1 Year
8.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2022	1 Year
9.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2022	1 Year
10.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2022	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2022	1 Year
12.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2022	1 Year
13.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2022	1 Year
14.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2022	1 Year
15.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
16.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.