

41039 Boyce Road Fremont, CA. 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification Class II Permissive Change/Reassessment

Innovation, Science and Economic Development Canada RSS-Gen Issue 5 / RSS-247 Issue 2 FCC Part 15 Subpart C

Model: Whitebox Rev. 003

FCC ID:	2AMS3WBOX1
APPLICANT:	Sanmina Corporation 13000 S. Memorial Pkwy Huntsville, AL 35807
TEST SITE(S):	National Technical Systems 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-7
PROJECT NUMBER:	PR094191
REPORT DATE:	March 4, 2019
FINAL TEST DATES:	February 12, 13 and 14, 2019
TOTAL NUMBER OF PAGES:	43

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

VALIDATING SIGNATORIES

PROGRAM MGR

Deniz Demirci Senior Wireless / EMC Engineer

TECHNICAL REVIEWER:

Deniz Demirci Senior Wireless / EMC Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

nu

Gary Izard Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	March 4, 2019	First release	

TABLE OF CONTENTS

VALIDATING SIGNATORIES	2
REVISION HISTORY	3
TABLE OF CONTENTS	4
SCOPE	5
OBJECTIVE	5
STATEMENT OF COMPLIANCE	6
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHZ, 50 CHANNELS OR MORE)	7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	10
GENERAL INFORMATION	10
RADIATED EMISSIONS CONSIDERATIONS	10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	11
INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE	11
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	17
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	18
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	43

SCOPE

Class II Permissive Change/Reassessment to add a new integral chip antenna to the device.

An electromagnetic emissions test has been performed on the Sanmina Corporation model Whitebox Rev. 003, pursuant to the following rules:

RSS-Gen Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems test procedures:

ANSI C63.10-2013 FCC Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

National Technical Systems is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Sanmina Corporation model Whitebox Rev. 003 complied with the requirements of the following regulations:

RSS-Gen Issue 5 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Sanmina Corporation model Whitebox Rev. 003 and therefore apply only to the tested sample. The sample was selected and prepared by Matthew Buxton of Sanmina Corporation.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (902 – 928 MHz, 50 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247 (a) (1) (i)	RSS 247 5.1 (1) & (3)	20 dB Bandwidth	Unchanged from original application	≤ 500 kHz	Complies
15.247 (a) (1)	RSS 247 5.1 (2)	Channel Separation	Unchanged from original application	Channel spacing > 20 dB bandwidth (minimum 25 kHz)	Complies
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Number of Channels	Unchanged from original application	50 or more	Complies
15.247 (a) (1) (i)	RSS 247 5.1 (3)	Channel Dwell Time	Unchanged from original application	<0.4 second within a 20 second period	Complies
15.247 (a) (1)	RSS 247 5.1 (1)	Channel Utilization	Unchanged from original application	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 247 5.4 (1)	Output Power	Unchanged from original application 19.8 dBm (0.0962 Watts) EIRP = 0.119 W Note 1	1 Watt, EIRP limited to 4 Watts.	Complies
15.247 (d)	RSS 247 5.5	Antenna Port Spurious Emissions	Unchanged from original application	< -20dBc	Complies
15.247 (d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 9 kHz – 10 GHz	52.0 dBμV/m @ 9022.9 MHz (-2.0 dB)	Refer to the limits section (p18) for restricted bands, all others < -20 dBc	Complies
15.247 (a) (1)	RSS 247 5.1(2)	Receiver bandwidth	Unchanged from original application	Shall match the channel bandwidth	Complies
Note 1: EIRP calculated using antenna gain of 0.92 dBi for the highest EIRP system.					

OLNENAL NEW		LICABLE TO ALL BANDS			
FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Integral antenna	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 4	AC Conducted Emissions	Not applicable as t	the EUT is 3 V Battery pow	vered
15.109	RSS GEN Table 3	Receiver spurious emissions	Unchanged from original application (sDoC)	N/A	N/A
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Unchanged from original application Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS-Gen 6.8	User Manual	Unchanged from original application	Statement for products with detachable antenna	Complies
-	RSS-Gen 8.4	User Manual	Unchanged from original application	Statement for all products	Complies
-	RSP-100 RSS-Gen 6.7	Occupied Bandwidth	Unchanged from original application	Information only	N/A

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.5 dB
Redicted emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated emission (field strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Sanmina Corporation model Whitebox Rev. 003 is a sensor that is designed to transmit temperature and humidity information. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The EUT is 3 V battery operated

The sample was received on February 12, 2019 and tested on February 12, 13 and 14, 2019. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Sanmina	Whitebox	Transmitter	-	2AMS3WBOX1

OTHER EUT DETAILS

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes. In some cases, the highest internal source determines the frequency range of test for radiated emissions. The highest internal source of the EUT was declared as: 914.9 MHz

ANTENNA SYSTEM

Integral chip antenna (0.92 dBi)

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 8 cm wide by 4 cm deep by 3 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

No support equipment was used during testing.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
FOIL		Description	Shielded or Unshielded	Length(m)	
None	-	-	-	-	

EUT OPERATION

During emissions testing the EUT was transmitting continuously in required frequencies.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers		Location	
Sile	FCC	Canada	Location	
Chamber 7	US0027	2845B-7	41039 Boyce Road Fremont, CA 94538-2435	

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Results from testing performed in this chamber have been correlated with results from an open area test site. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20 Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000 MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1 m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 cm for testing below 1 GHz and 1.5 m for testing above 1 GHz. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

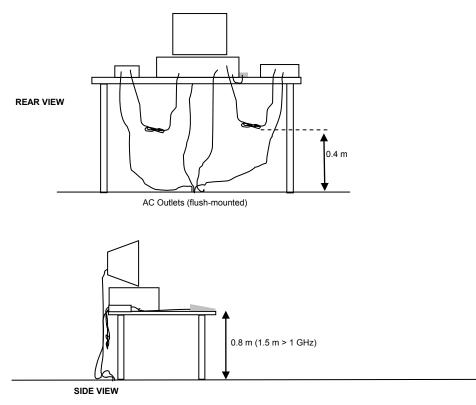
INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

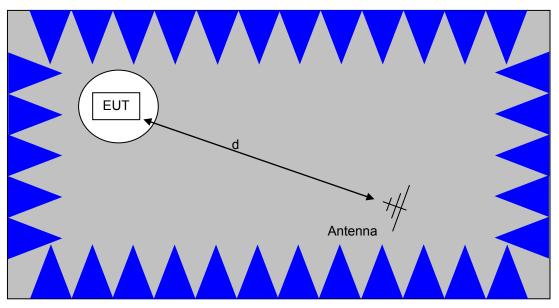
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

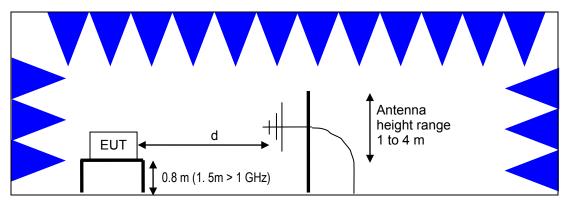

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

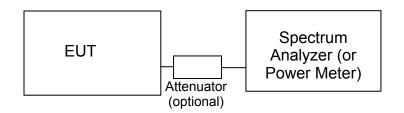

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 m from the EUT and the antenna height is restricted to a maximum of 2.5 m.


Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dB μ V). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dB μ V/m). The results are then converted to the linear forms of μ V and μ V/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (µV/m)	Limit (dBµV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300 m	67.6-20*log ₁₀ (F _{KHz}) @ 300 m
0.490-1.705	24000/F _{KHz} @ 30 m	87.6-20*log ₁₀ (F _{KHz}) @ 30 m
1.705 to 30	30 @ 30 m	29.5 @ 30 m
30 to 88	100 @ 3 m	40 @ 3 m
88 to 216	150 @ 3 m	43.5 @ 3 m
216 to 960	200 @ 3 m	46.0 @ 3 m
Above 960	500 @ 3 m	54.0 @ 3 m

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 7

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3 kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3 kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3 kHz

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20 dB below the level of the highest in-band signal level (30 dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_{d} = 20*LOG_{10} (D_{m}/D_{s})$ where: $F_{d} = Distance Factor in dB$ $D_{m} = Measurement Distance in meters$ $D_{s} = Specification Distance in meters$

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_{c} = R_{r} + F_{d}$$
and
$$M = R_{c} - L_{s}$$
where:
$$R_{r} = \text{Receiver Reading in } dB\mu V/m$$

$$F_{d} = \text{Distance Factor in } dB$$

$$R_{c} = \text{Corrected Reading in } dB\mu V/m$$

$$L_{s} = \text{Specification Limit in } dB\mu V/m$$

M = Margin in dB Relative to Spec

Appendix A Test Equipment Calibration Data

Manufacturer	Description	<u>Model</u>	<u>Asset #</u>	<u>Calibrated</u>	<u>Cal Due</u>
National Technical Systems	, 30 - 1,000 MHz, 12-Feb-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-40 GHz	JB3 ESI 40	2237 2493	7/3/2018 3/22/2018	7/3/2020 3/22/2019
Radiated Emissions National Technical Systems	, 1,000 - 10,000 MHz, 12-Feb-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	3115 8564E (84125C)	1242 1393	4/11/2017 12/8/2018	4/19/2019 12/8/2019
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	8/30/2018	8/30/2019
Hewlett Packard	High Pass filter, 1.5 GHz (Purple System)	P/N 84300- 80037	1769	8/18/2018	8/18/2019
Radiated Emissions National Technical Systems	, 1,000 - 10,000 MHz, 13-Feb-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz Spectrum Analyzer (SA40) Blue 9 kHz - 40 GHz	3115 8564E (84125C)	1242 1393	4/11/2017 12/8/2018	4/19/2019 12/8/2019
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	(041230) 8449B	1780	8/30/2018	8/30/2019
Hewlett Packard	High Pass filter, 1.5 GHz (Purple System)	P/N 84300- 80037	1769	8/18/2018	8/18/2019
Radiated Emissions National Technical Systems	, 30 - 1,000 MHz, 13-Feb-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
Sunol Sciences Rohde & Schwarz	Biconilog, 30-3000 MHz EMI Test Receiver, 20 Hz-40 GHz	JB3 ESI 40	2237 2493	7/3/2018 3/22/2018	7/3/2020 3/22/2019
Radiated Emissions National Technical Systems	, 9 kHz - 30 MHz, 13-Feb-19 NTS EMI Software (rev 2.10)	N/A	0		N/A
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESI 40	2493	3/22/2018	3/22/2019
Rhode & Schwarz	Magnetic Loop Antenna, 9 kHz-30 MHz	HFH2-Z2	WC062 457	1/5/2018	1/5/2020
RF Power, 14-Feb-19 Rohde & Schwarz Rohde & Schwarz	Power Meter, Dual Channel Peak Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRVD NRV-Z32	1071 1536	4/4/2018 6/21/2018	4/4/2019 6/21/2019

Appendix B Test Data

TL094191 Pages 23 - 42

EMC Test Data

Client:	Sanmina Corporation	PR Number:	PR094191
Product	Whitebox Sensor	T-Log Number:	TL094191
System Configuration:		Project Manager:	Christine Krebill
Contact:	Matthew Buxton	Project Engineer:	Deniz Demirci
Emissions Standard(s):	FCC 15.247, RSS 247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Sanmina Corporation

Product

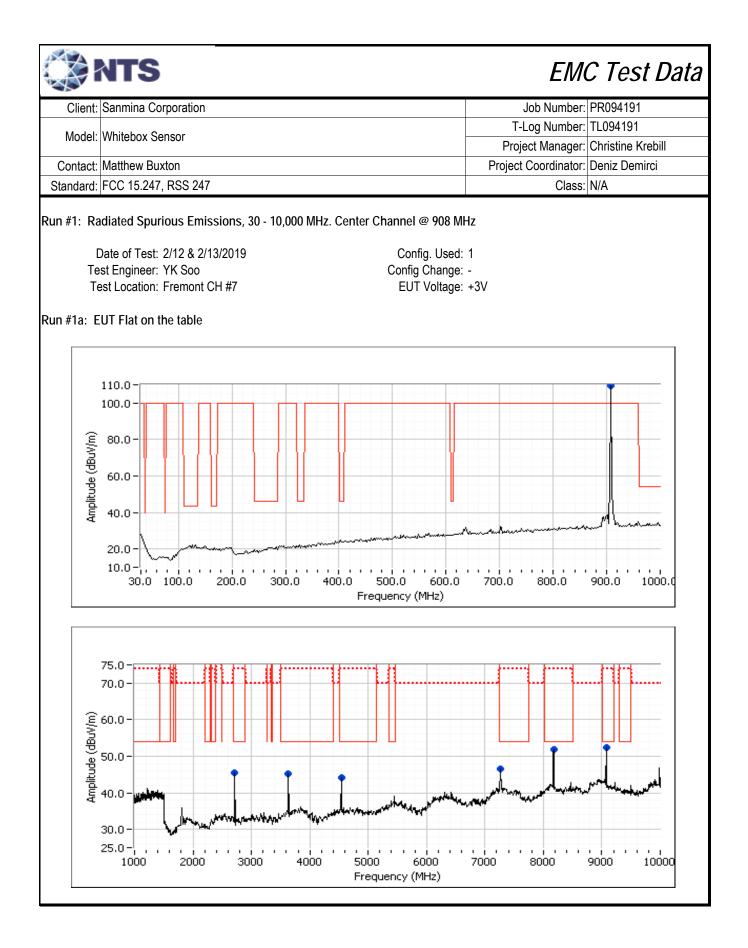
Whitebox Sensor

Date of Last Test: 2/14/2019

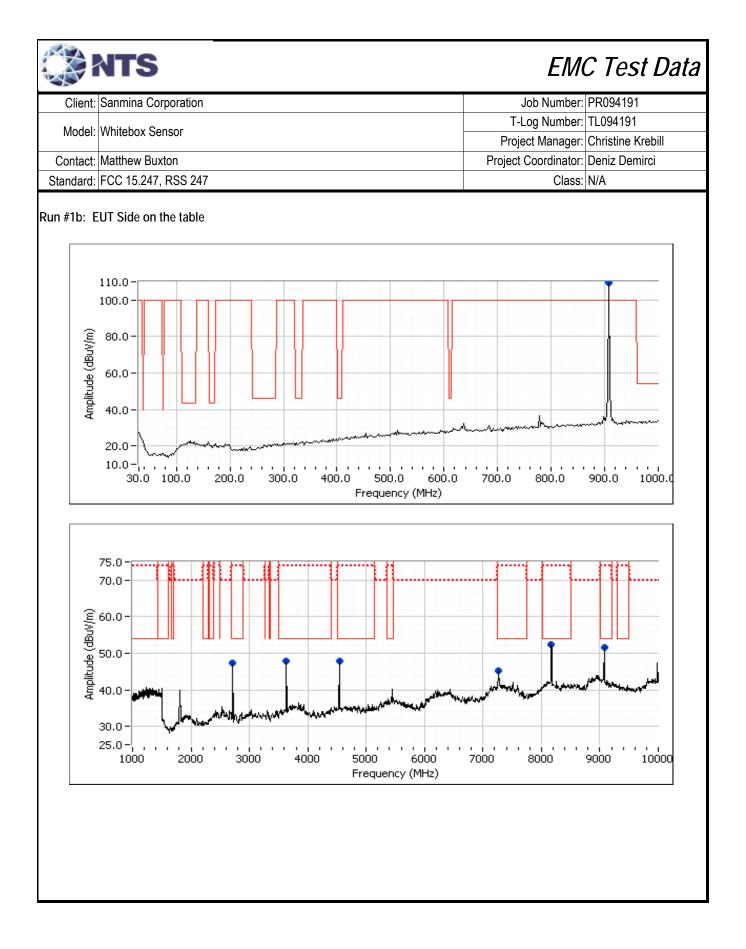
NTS EMC Test Data Client: Sanmina Corporation Job Number: PR094191 T-Log Number: TL094191 Model: Whitebox Sensor Project Manager: Christine Krebill Project Coordinator: Deniz Demirci Contact: Matthew Buxton Standard: FCC 15.247, RSS 247 Class: N/A RSS-247 and FCC 15.247 Radiated Spurious Emissions Test Specific Details The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted. Ambient Conditions: 23 °C Temperature: Rel. Humidity: 48 % Summary of Results - Device Operating in the 900 MHz Band Power Measured Test Performed Limit Result / Margin Run # Mode Channel Setting Power Scans on center channel in all three orientations to determine the worst case mode. FCC Part 15.209 / 50.8 dBµV/m @ 9079.9 Radiated Emissions, 1a Center LoRa Default MHz (-3.2 dB) 908 MHz 30 MHz - 10 GHz 15.247(c) Flat 49.1 dBµV/m @ 8172.0 FCC Part 15.209 / Radiated Emissions, 1b Center LoRa Default _ 30 MHz - 10 GHz 15.247(c) MHz (-4.9 dB) Side 908 MHz Radiated Emissions, FCC Part 15.209 / 50.0 dBµV/m @ 8171.9 1c Center LoRa Default 30 MHz - 10 GHz MHz (-4.0 dB) 908 MHz 15.247(c) Upright Measurements on low and high channels in worst-case orientation. FCC Part 15.209 / 52.0 dBµV/m @ 9022.9 2 Low Radiated Emissions. LoRa Default Flat 902.3 MHz 30 MHz - 10 GHz 15.247(c) MHz (-2.0 dB) 38.2 dBµV/m @ 960.50 Restricted Band at 960 FCC Part 15.209 / Default 3 High MHz (-15.8 dB) MHz 15.247(c) LoRa Radiated Emissions, 51.2 dBµV/m @ 9148.9 914.9 MHz FCC Part 15.209 / Flat Default 30 MHz - 10 GHz 15.247(c) MHz (-2.8 dB)

Modifications Made During Testing

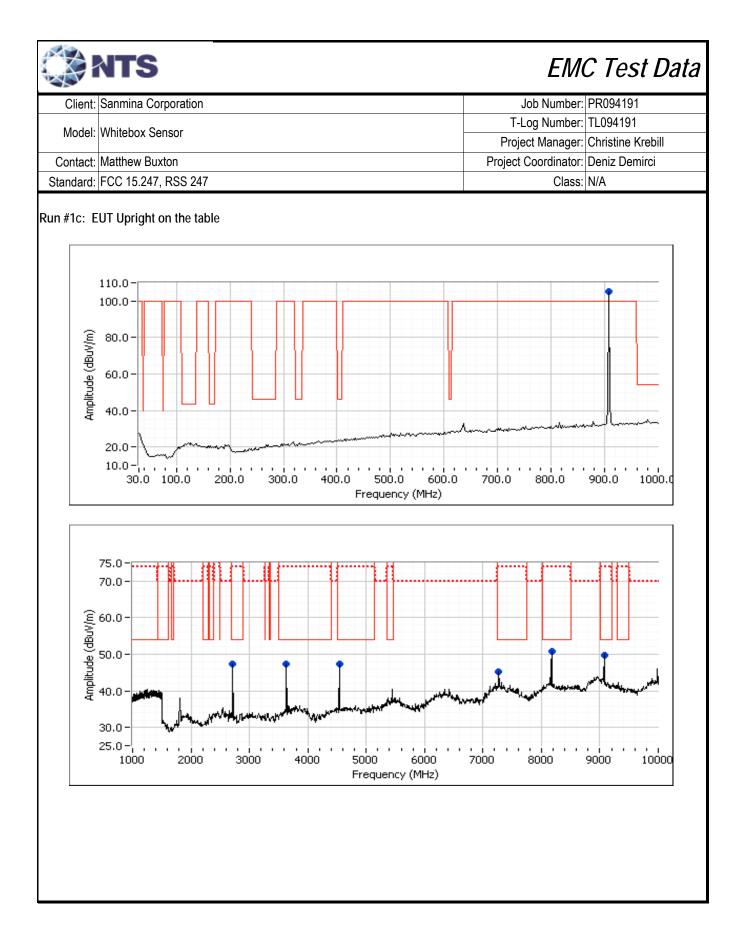
No modifications were made to the EUT during testing

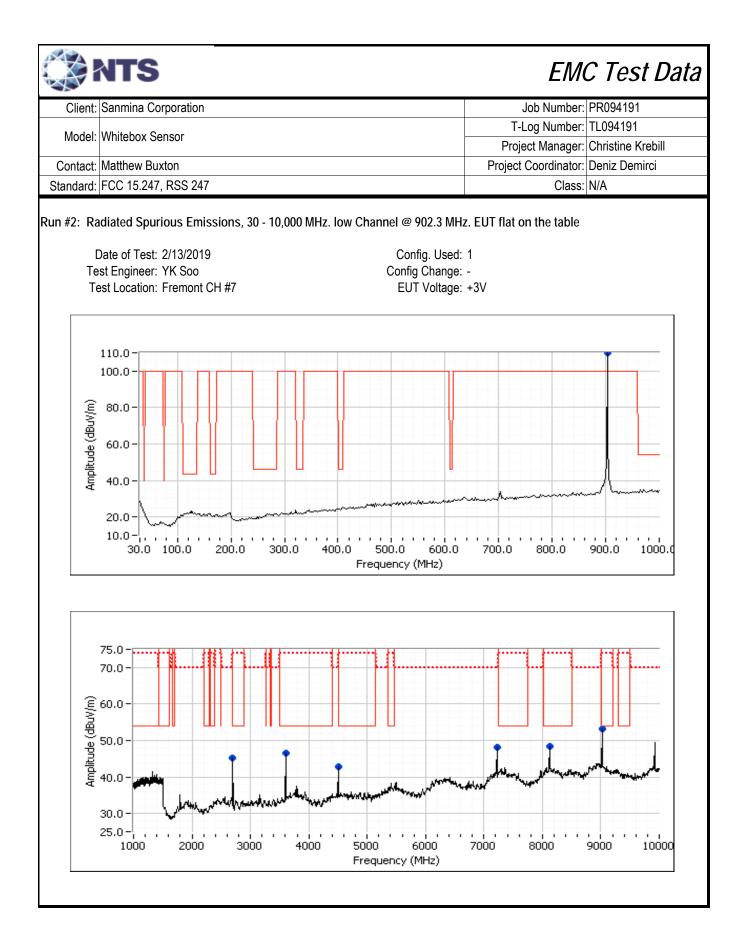

Deviations From The Standard

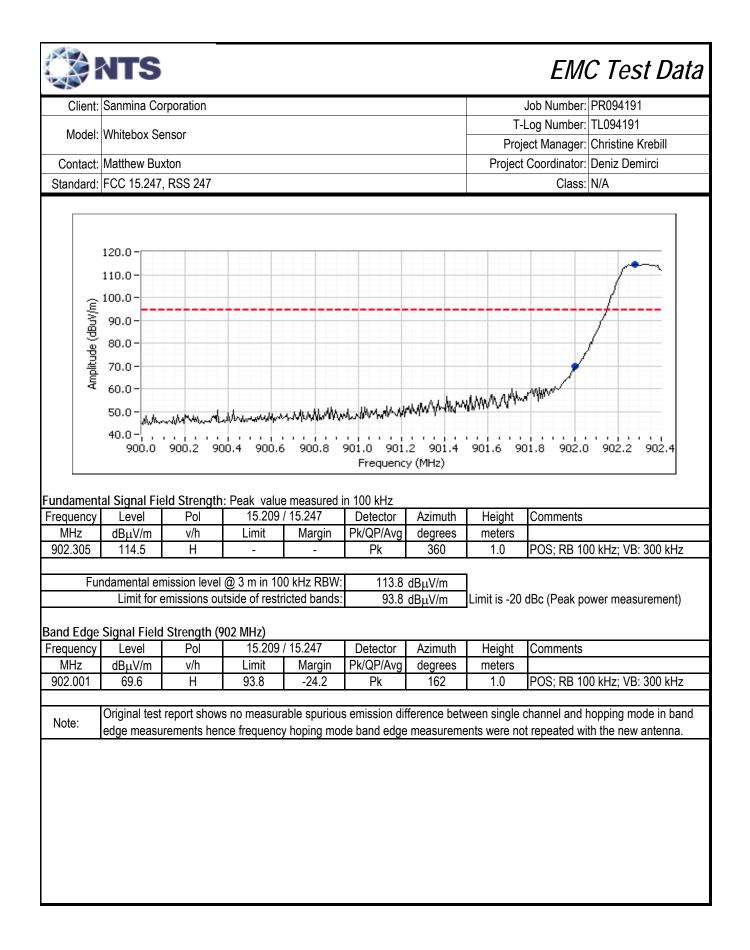
No deviations were made from the requirements of the standard.

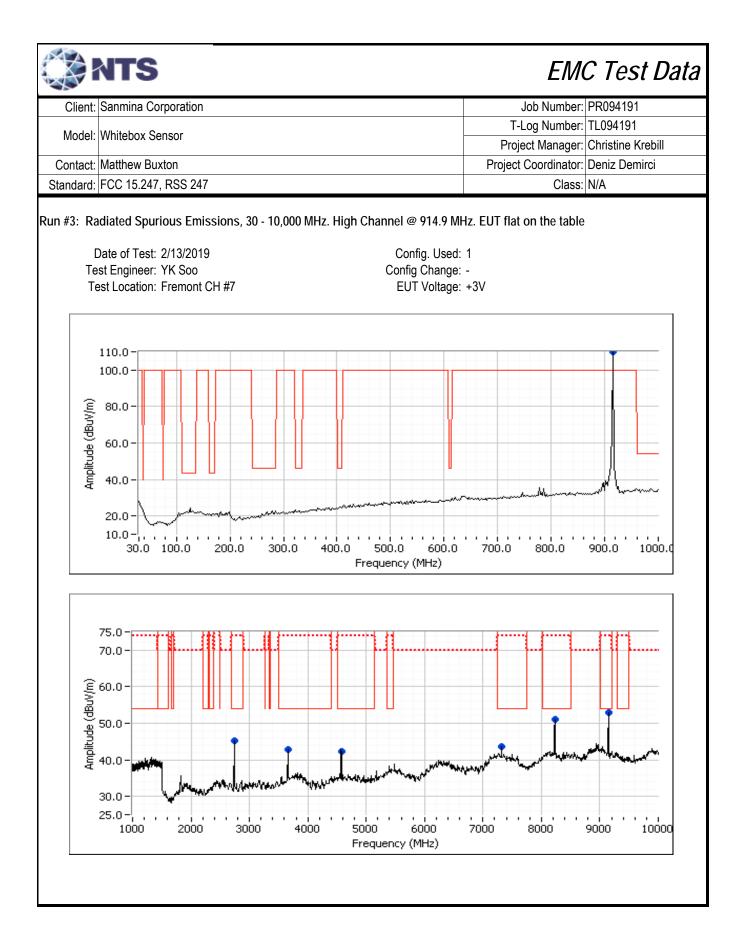

🎲 NTS

EMC Test Data

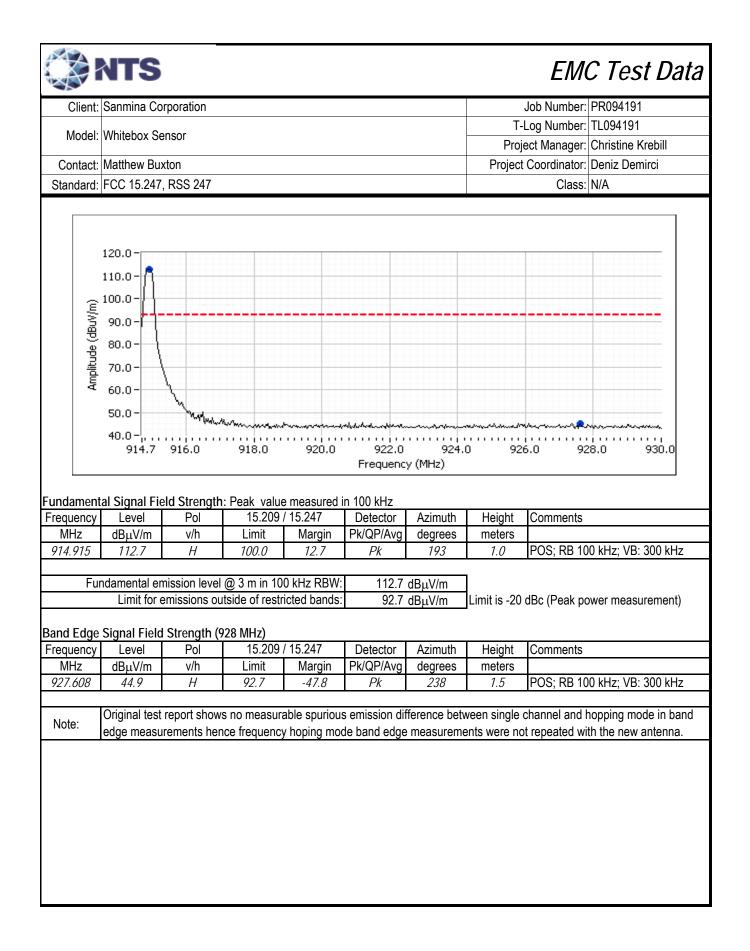

Client: Sammina Corporation Jub Number: PR094191 Model: Whitebox Sensor T.Log Number: TL094191 Project Manager: Christine Krebill Contact: Matthew Buxton Project Coordinato: Deniz Demiroi Standard: FCC 15.247, RSS 247 Class: N/A Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle 298% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector average mode, auto sweep time, max hold. In Volt Min VBW Mode Data Rate Duty Cycle Constant T (ms) Factor** for FS (Hz) LoRa - 1.00 Yes 0 0 10 Sample Notes Sample Notes Material Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used. Note 2: Emission in non-restricted band, but limit was set 20 dB below the level of the fundamental and measured in 100 kHz										
Model: Whitebox Sensor Project Manager: Christine Krebill Contact: Matthew Buxton Project Coordinator: Deniz Demirci Standard: FCC 15.247, RSS 247 Class: N/A Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector average mode, auto sweep time, max hold. Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW for FS (Hz) LoRa - 1.00 Yes - 0 0 10 Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.	Client:	Sanmina Co	orporation							
Contact: Matthew Buxton Project Manager: Christine Krebill Standard: FCC 15.247, RSS 247 Class: N/A Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW Iora - 1.00 Yes - 0 0 10 Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.	Model:	Whitebox Se	ensor						-	
Standard: FCC 15.247, RSS 247 Class: N/A Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector average mode, auto sweep time, max hold. Image: the maximum detector is a state based of th								-	-	
Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector average mode, auto sweep time, max hold. Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW LoRa - 1.00 Yes - 0 0 10 Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.								Project		
Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1 MHz, VBW=3 MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1 MHz, VBW=10 Hz, peak detector average mode, auto sweep time, max hold. Mode Data Rate Duty Cycle Constant T (ms) Pwr Cor Lin Volt Min VBW LoRa - 1.00 Yes - 0 0 10 Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.	Standard:	FCC 15.247	, RSS 247						Class:	N/A
Mode Data Rate Duty Cycle Constant DC? T (ms) Pwr Cor Factor* Cor Factor** Min VBW for FS (Hz) LoRa - 1.00 Yes - 0 0 10 Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Pwr Cor (x) Pwr Cor Factor* Cor Factor* Min VBW for FS (Hz) Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used. Distant Distant Distant	Measureme Peak measu Unless othe	nts performe irements per rwise stated/	d in accorda formed with: noted, emiss	RBW=1 MH: ion has duty	z, VBW=3 M	Hz, peak det		g RBW=1 M⊦		Hz, peak detector, linea
Sample Notes Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.		Mode	Data Rate			T (ms)		Cor		
Sample S/N: 1 Driver: None Antenna: Chip antenna 915 Measurement Specific Notes: Note 1: Emission in non-restricted band, but limit of 15.209 used.		LoRa	-	1.00	Yes	-	0	0	10	
					mit of 15.209	9 used.				
							the level of t	ha fundamar	tal and mea	sured in 100 kHz

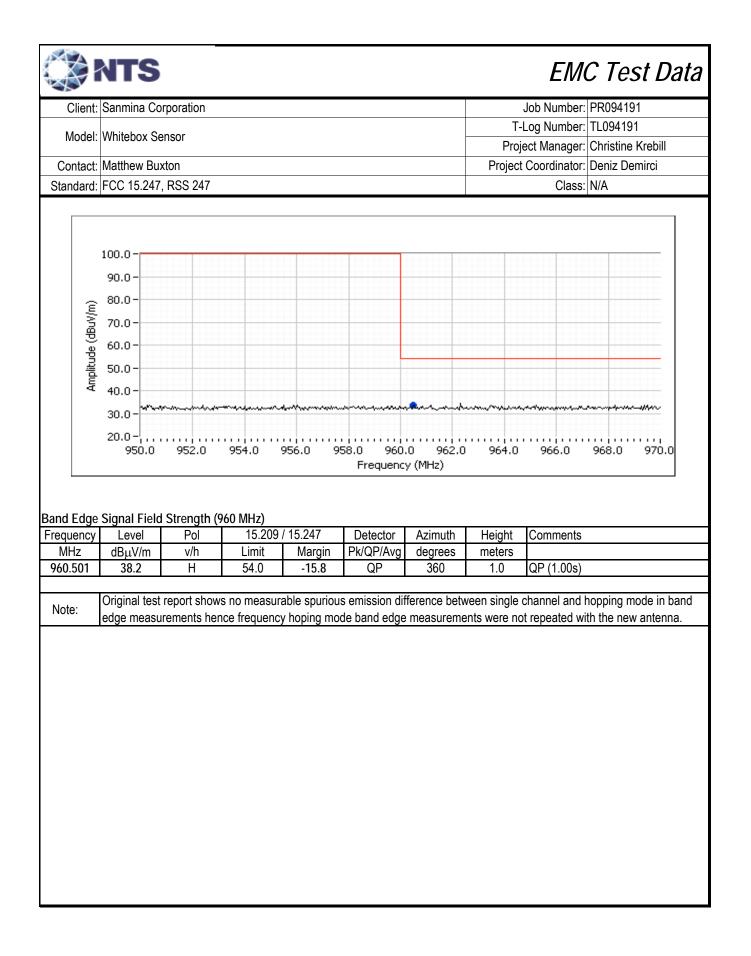

Client: Sanmina Corporation Job Number: PR094191 Model: Whitebox Sensor T-Log Number: TL094191 Contact: Matthew Buxton Project Manager: Christine Krebill Standard: FCC 15.247, RSS 247 Class: N/A Fundamental Signal Field Strength: Peak value measured in 100 kHz Erequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 908.014 I14.6 H - - PK/P/kvg degrees meters 900 kHz; VB: 300 kHz; VB: 300 kHz Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit for emissions outside of restricted bands: 94.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vih Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86<	Cliont:								Job Number:	C Test Dat
Model: Whitebox Sensor Project Manager: Christine Krebill Contact: Matthew Buxton Project Coordinator: Deniz Demirci Standard: FCC 15.247, RSS 247 Class: N/A Fundamental Signal Field Strength: Peak value measured in 100 kHz Erequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit for emissions outside of restricted bands: 94.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m Vh Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 <t< td=""><td>Cilent.</td><td></td><td>прогаціон</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Cilent.		прогаціон							
Contact: Matthew Buxton Project Coordinator: Deniz Demirci Standard: FCC 15.247, RSS 247 Class: N/A undamental Signal Field Strength: Peak value measured in 100 kHz Erequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz; Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit for emissions outside of restricted bands: 94.6 dBµV/m Limit is -20 dBc (Peak power measurement)	Model:	Whitebox Se	ensor						-	
Standard: FCC 15.247, RSS 247 Class: N/A undamental Signal Field Strength: Peak value measured in 100 kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit for emissions outside of restricted bands: 94.6 dBµU/m Limit is -20 dBc (Peak power measurement) purious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.00 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 2723.990	<u> </u>		1					-	2	
Sundamental Signal Field Strength: Peak value measured in 100 kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz; VB: 300 kHz;								Project		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz; Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Emissions 94.6 dBµV/m Limit is -20 dBc (Peak power measurement) MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 723.990 46.0 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 6331.960 43.3 V 54.0 <td>Standard:</td> <td>FCC 15.247</td> <td>, RSS 247</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Class:</td> <td>N/A</td>	Standard:	FCC 15.247	, RSS 247						Class:	N/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz; Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 6		al Cianal Fi	ald Ctuan ath			- 100 kl -				
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 263.1960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 8371.960 43.1<		ě.					∆zimuth	Height	Comments	
908.014 114.6 H - - Pk 178 1.7 POS; RB 100 kHz; VB: 300 kHz Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 46.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 302 1.1 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170								- v	Commenta	
Fundamental emission level @ 3 m in 100 kHz RBW: 114.6 dBµV/m Limit for emissions outside of restricted bands: 94.6 dBµV/m Limit is -20 dBc (Peak power measurement) Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/n Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 263.960 45.4 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.9 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74				-	-	<u> </u>	-		POS; RB 10	0 kHz; VB: 300 kHz
Limit for emissions outside of restricted bands: 94.6 dBµV/m Limit is -20 dBc (Peak power measurement) ipurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 2723.900 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.7 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak						11	-			- ,
Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.9 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86	Fur					114.6	dBµV/m			
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak		Limit for	emissions ou	tside of restri	icted bands:	94.6	dBµV/m	Limit is -20	dBc (Peak po	wer measurement)
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak										
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak										
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -5.1 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 2723.990 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.9 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB				15 000	15 047	Deterter	۸ <u>ــــــــــــــــــــــــــــــــــــ</u>	110:	Comments	
9079.900 50.8 V 54.0 -3.2 AVG 86 1.1 RB 1 MHz;VB 10 Hz;Peak 8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.7 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -24.9 PK 332 1.1				1					Comments	
8171.990 48.9 V 54.0 -5.1 AVG 84 1.0 RB 1 MHz;VB 10 Hz;Peak 2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.7 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -26.9 PK 332 1.1				-		<u> </u>	<u> </u>		RB 1 MHz·V	R 10 Hz·Peak
2723.990 46.0 V 54.0 -8.0 AVG 332 1.1 RB 1 MHz;VB 10 Hz;Peak 7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.7 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7										
7263.960 45.4 V 54.0 -8.6 AVG 90 1.0 RB 1 MHz;VB 10 Hz;Peak 3631.960 43.3 V 54.0 -10.7 AVG 170 1.9 RB 1 MHz;VB 10 Hz;Peak 4539.940 43.1 V 54.0 -10.9 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9										
4539.940 43.1 V 54.0 -10.9 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak										
9079.680 58.9 V 74.0 -15.1 PK 86 1.1 RB 1 MHz;VB 3 MHz;Peak 8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak			V	54.0	-10.7	AVG	170	1.9		
8171.540 56.4 V 74.0 -17.6 PK 84 1.0 RB 1 MHz;VB 3 MHz;Peak 7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak Note:	4539.940	43.1	-		-10.9	AVG	272	1.7	RB 1 MHz;V	B 10 Hz;Peak
7264.170 55.0 V 74.0 -19.0 PK 90 1.0 RB 1 MHz;VB 3 MHz;Peak 2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak										
2724.200 49.1 V 74.0 -24.9 PK 332 1.1 RB 1 MHz;VB 3 MHz;Peak 4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak Note:			-							
4539.740 48.4 V 74.0 -25.6 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak Note:										
3631.820 47.8 V 74.0 -26.2 PK 170 1.9 RB 1 MHz;VB 3 MHz;Peak Note: For emissions in restricted band, the limit of 15.209 was used. For all other emissions. The limit was set 20 dB below the										
For emissions in restricted band, the limit of 15.209 was used. For all other emissions. The limit was set 20 dB below the										
NOTO:	3031.020	47.0	V	74.0	-20.2	FN	170	1.9		D 3 MINZ, FEAK
	Note:			d band, the l	imit of 15.20)9 was used. I	For all other	emissions. 7	The limit was :	set 20 dB below the


	NTS							ЕМС	C Test Data
Client:	Sanmina Co	orporation						Job Number: I	PR094191
							T-	Log Number:	TL094191
Model:	Whitebox Se	ensor						-	Christine Krebill
Contact:	Matthew Bu	xton					-	Coordinator: I	
Standard:	FCC 15.247	, RSS 247					-	Class:	
		,							
undament	al Signal Fi	eld Strength	: Peak value	e measured i	n 100 kHz				
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
907.979	112.1	Н	100.0	-	Pk	2	1.7	POS; RB 100) kHz; VB: 300 kHz
							-		
Fu		mission level				dBµV/m			
	Limit for	emissions ou	tside of restr	icted bands:	92.1	dBµV/m	Limit is -20	dBc (Peak pov	ver measurement)
purious E	missions Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Johnnonto	
3171.970	49.1	H	54.0	-4.9	AVG	86	1.2	RB 1 MHz;VE	3 10 Hz·Peak
079.840	47.8	H	54.0	-6.2	AVG	214	1.8	RB 1 MHz;VE	,
631.930	47.8	H	54.0	-6.2	AVG	178	1.3	RB 1 MHz;VE	
723.980	47.4	H	54.0	-6.6	AVG	156	2.3	RB 1 MHz;VE	
539.980	46.3	H	54.0	-7.7	AVG	168	1.5	RB 1 MHz;VE	
263.900	43.7	Н	54.0	-10.3	AVG	84	1.3	RB 1 MHz;VE	
171.460	56.5	Н	74.0	-17.5	PK	86	1.2		3 3 MHz;Peak
079.580	56.2	Н	74.0	-17.8	PK	214	1.8		3 3 MHz;Peak
264.140	53.6	Н	74.0	-20.4	PK	84	1.3	RB 1 MHz;VE	3 MHz;Peak
3631.640	51.2	Н	74.0	-22.8	PK	178	1.3	RB 1 MHz;VE	3 3 MHz;Peak
1539.900	50.1	Н	74.0	-23.9	PK	168	1.5	RB 1 MHz;VE	3 3 MHz;Peak
2723.820	49.9	Н	74.0	-24.1	PK	156	2.3	RB 1 MHz;VE	3 MHz;Peak
Note:		ns in restricte	d band, the l	limit of 15.20	9 was used. F	For all other	emissions.	The limit was s	et 20 dB below the



	NTS							EMC Test Data
Client:	Sanmina Co	orporation						Job Number: PR094191
							T-	Log Number: TL094191
Model:	Whitebox Se	ensor						ect Manager: Christine Krebill
Contact:	Matthew Bu	xton					-	Coordinator: Deniz Demirci
	FCC 15.247							Class: N/A
Otaridara.	100 10.247	,1100 241						
Fundament	al Signal Fie	eld Strength	· Peak value	e measured i	n 100 kHz			
Frequency	Level	Pol	15.209/		Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
907.957	112.2	V	-	-	Pk	280	1.2	POS; RB 100 kHz; VB: 300 kHz
							_	-
Fu		mission level				dBµV/m		
	Limit for e	emissions ou	tside of restri	icted bands:	92.2	dBµV/m	Limit is -20	dBc (Peak power measurement)
Spurious E		Dal	15.209 /	15 017	Detector	A	llaiaht	Commente
Frequency MHz	Level dBµV/m	Pol v/h	1		Detector	Azimuth	Height	Comments
8171.910	50.0	H	Limit 54.0	Margin -4.0	Pk/QP/Avg AVG	degrees 122	meters 1.9	RB 1 MHz;VB 10 Hz;Peak
9079.870	47.3	V	54.0	-4.0	AVG	329	1.9	RB 1 MHz;VB 10 Hz;Peak
2723.990	47.1	V	54.0	-6.9	AVG	155	1.5	RB 1 MHz;VB 10 Hz;Peak
3631.960	46.8	V	54.0	-7.2	AVG	162	1.7	RB 1 MHz;VB 10 Hz;Peak
4539.980	46.6	V	54.0	-7.4	AVG	143	1.8	RB 1 MHz;VB 10 Hz;Peak
7264.000	43.9	Н	54.0	-10.1	AVG	190	1.9	RB 1 MHz;VB 10 Hz;Peak
8171.380	57.4	Н	74.0	-16.6	PK	122	1.9	RB 1 MHz;VB 3 MHz;Peak
9079.450	56.0	V	74.0	-18.0	PK	329	1.0	RB 1 MHz;VB 3 MHz;Peak
7264.230	53.7	Н	74.0	-20.3	PK	190	1.9	RB 1 MHz;VB 3 MHz;Peak
4540.180	50.9	V	74.0	-23.1	PK	143	1.8	RB 1 MHz;VB 3 MHz;Peak
3631.920	50.2	V	74.0	-23.8	PK	162	1.7	RB 1 MHz;VB 3 MHz;Peak
2724.120	49.9	V	74.0	-24.1	PK	155	1.5	RB 1 MHz;VB 3 MHz;Peak
Note:		ns in restricte	d band, the l	imit of 15.20	9 was used. I	For all other	emissions.	The limit was set 20 dB below the




	NTS							EMC Test Data
Client:	Sanmina Co	rporation						Job Number: PR094191
								Log Number: TL094191
Model:	Whitebox Se	nsor						ect Manager: Christine Krebill
Contact	Matthew Bux	rton					-	Coordinator: Deniz Demirci
							riojeci	
Standard:	FCC 15.247,	RSS 247						Class: N/A
Spurious E		Del	15 000	145 047	Detector	A _:	l la la la la	O summarks
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz 9022.910	dBµV/m 52.0	v/h V	Limit 54.0	Margin -2.0	Pk/QP/Avg AVG	degrees 282	meters 1.0	RB 1 MHz;VB 10 Hz;Peak
7218.350	46.6	V	54.0 54.0	-2.0 -7.4	AVG	321	1.0	Note 1: RB 1 MHz;VB 10 Hz;Peak
3609.170	46.4	H	54.0 54.0	-7.4	AVG	193	1.7	RB 1 MHz;VB 10 Hz;Peak
8120.590	46.0	V	54.0	-8.0	AVG	242	1.7	RB 1 MHz;VB 10 Hz;Peak
2706.910	44.2	۰ H	54.0	-9.8	AVG	317	1.0	RB 1 MHz;VB 10 Hz;Peak
4511.490	42.6	V	54.0	-11.4	AVG	52	1.4	RB 1 MHz;VB 10 Hz;Peak
9022.570	58.2	V	74.0	-15.8	PK	282	1.0	RB 1 MHz;VB 3 MHz;Peak
7218.120	55.1	V	74.0	-18.9	PK	321	1.1	Note 1: RB 1 MHz;VB 3 MHz;Peak
8120.490	54.6	V	74.0	-19.4	PK	242	1.0	RB 1 MHz;VB 3 MHz;Peak
3609.090	50.2	Н	74.0	-23.8	PK	193	1.7	RB 1 MHz;VB 3 MHz;Peak
4511.290	48.0	V	74.0	-26.0	PK	52	1.4	RB 1 MHz;VB 3 MHz;Peak
2706.590	47.7	Н	74.0	-26.3	PK	317	1.0	RB 1 MHz;VB 3 MHz;Peak
Note 1:	Emission in	non-restricte	d band, but li	imit of 15.20	9 used.			

	NTS	_						EMO	C Test Data
Client:	Sanmina Co	rporation						Job Number:	PR094191
M							T-	Log Number:	TL094191
Model:	Whitebox Se	ensor					Proj	ect Manager:	Christine Krebill
Contact:	Matthew Bux	kton					Project	Coordinator:	Deniz Demirci
Standard:	FCC 15.247	. RSS 247						Class:	
Spurious E Frequency	missions Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9148.850	51.2	V	54.0	-2.8	AVG	255	1.1	RB 1 MHz;V	B 10 Hz;Peak
8234.030	49.6	V	54.0	-4.4	AVG	255	1.0	RB 1 MHz;V	B 10 Hz;Peak
2744.650	44.9	V	54.0	-9.1	AVG	156	1.6	RB 1 MHz;V	B 10 Hz;Peak
3659.580	42.7	V	54.0	-11.3	AVG	173	1.5	RB 1 MHz;V	B 10 Hz;Peak
7319.330	42.0	V	54.0	-12.0	AVG	246	1.9	RB 1 MHz;V	B 10 Hz;Peak
4574.480	41.2	Н	54.0	-12.8	AVG	289	1.5	RB 1 MHz;V	B 10 Hz;Peak
9148.600	59.3	V	74.0	-14.7	PK	255	1.1	RB 1 MHz;V	B 3 MHz;Peak
8233.770	56.9	V	74.0	-17.1	PK	255	1.0	RB 1 MHz;V	B 3 MHz;Peak
7318.730	52.6	V	74.0	-21.4	PK	246	1.9	RB 1 MHz;V	B 3 MHz;Peak
2744.540	48.1	V	74.0	-25.9	PK	156	1.6	RB 1 MHz;V	B 3 MHz;Peak
4574.670	47.9	Н	74.0	-26.1	PK	289	1.5	RB 1 MHz;V	B 3 MHz;Peak
3659.480	47.8	V	74.0	-26.2	PK	173	1.5	RB 1 MHz·V	B 3 MHz;Peak

	NTS				EMO	C Test Data
Client:	Sanmina Co	rporation			PR Number:	PR094191
Model	Whitebox Se	neor		T·	-Log Number:	TL094191
						Christine Krebill
	Matthew Bux			Proj		Deniz Demirci
Standard:	FCC 15.247,	RSS 247			Class:	В
		Radiat	ed Emissions			
·		The objective of this test session is to specification listed above.		-	of the EUT with	h respect to the
	Date of Test:		Config. Used			
	st Engineer:	YK Soo Fremont CH #7	Config Change EUT Voltage			
	est Config					
•	iminary testin	extrapolation factor (if used) are detail g indicates that the emissions were m	naximized by orientation	on of the EUT		
antenna. interface c	iminary testin Maximized te	g indicates that the emissions were m sting indicated that the emissions we	naximized by orientation	on of the EUT		
antenna. interface c Ambient (Summary	iminary testin Maximized te cables. Conditions	g indicates that the emissions were mesting indicated that the emissions were resting indicated that the emissions were restrict the emissions were restricted that the emissions were restricted to t	naximized by orientation re maximized by orien 23 °C 48 %	on of the EUT ntation of the	EUT and mani	
antenna. interface o Ambient (iminary testin Maximized te cables. Conditions	g indicates that the emissions were metating indicated that the emissions were resting indicated that the emissions were restrict the emissions were restricted that the emissions were restricted to	naximized by orientation re maximized by orien 23 °C 48 % Limit	on of the EUT	EUT and man	ipulation of the EUT's
antenna. interface c Ambient (Summary	iminary testin Maximized te cables. Conditions of Results	g indicates that the emissions were mesting indicated that the emissions were resting indicated that the emissions were restrict the emissions were restricted that the emissions were restricted to t	naximized by orientation re maximized by orien 23 °C 48 %	on of the EUT ntation of the	EUT and man	

NTS EMC Test Data Client: Sanmina Corporation PR Number: PR094191 T-Log Number: TL094191 Model: Whitebox Sensor Project Manager: Christine Krebill Contact: Matthew Buxton Project Engineer: Deniz Demirci Standard: FCC 15.247, RSS 247 Class: B Run #1: Radiated Emissions, 9 kHz - 30 MHz, FCC 15.209, Center Channel @ 908 MHz Frequency Range Test Distance Limit Distance Extrapolation Factor 0.009 - 0.490 MHz 300 -80.0 3 0.490 - 1.705 MHz 3 30 -40.0 1.705 - 30.0 MHz 3 30 -40.0 Note - the extrapolation factor is based on 40log(test distance/limit distance) as permitted by FCC 15.31 EUT Flat on the table Parallel 60.0 40.0 Amplitude (dBuV/m) 20.0 0.0 -20.0 -40.0 When all supering the physics -60.0 -¦ | 1.0000 0.1000 10.0000 30.000 0.0090 Frequency (MHz) Preliminary readings Frequency FCC 15.209 Level Pol Detector Azimuth Height Comments MHz dBµV/m v/h Pk/QP/Avg degrees Limit Margin meters 16.774 -6.5 Н 29.5 -36.0 Pk 342 1.0 2.533 -7.1 Н -36.6 Pk 1.0 29.5 14 0.280 -43.3 Η 18.7 -62.0 Pk 169 1.0 0.012 -25.5 Н 46.1 -71.6 Pk 1.0 0

Note 1:The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector exceptfor the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are
based on measurements employing an average detector, with a peak limit 20 dB above the average limit.

	NTS				EMO	C Test Data
Client:	Sanmina Co	orporation			Job Number:	PR094191
Model:	Whitebox Se	ensor			T-Log Number:	
						Christine Krebill
	Matthew Bu FCC 15.247			Proje	ct Coordinator: Class:	
Standard.	FUU 15.247	, KOO 241			Class.	N/A
	F		and FCC 15.247 (DTS) An Power, PSD, Bandwidth and S			5
Test Spe	cific Detai	ls				
	Objective:	The objective	e of this test session is to perform fina listed above.	l qualification testing of	f the EUT with r	espect to the
	Date of Test:			onfig. Used: 1		
	est Engineer: est Location:			nfig Change: -		
	est Location:		U Lau #4A E	UT Voltage: +3V		
chain. All measure		been correcte S:	um analyzer or power meter via a suit of to allow for the external attenuators emperature: 22 °C el. Humidity: 45 %		easurements we	ere made on a single
Summary	y of Result	S				
Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1	Default	-	Output Power	15.247(b)	Pass	19.8 dBm
No modifica Deviatior	ns From Th	ade to the El	JT during testing			

NTS

EMC Test Data

Client:	Sanmina Corporation	Job Number:	PR094191
Madal	Whitebox Sensor	T-Log Number:	TL094191
wouer.		Project Manager:	Christine Krebill
Contact:	Matthew Buxton	Project Coordinator:	Deniz Demirci
Standard:	FCC 15.247, RSS 247	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
LoRa	-	1.00	Yes	-	0	0	10

Sample Notes

Sample S/N: 1

Driver: None

Run #1: Output Power

Mode: LoRa

Power	Frequency (MHz)	Output Power		Antenna	Result	Ell	RP	Output	Power
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
Default	902.3	19.83	96.2	0.92	Pass	20.8	0.119		
Default	908.0	19.80	95.5	0.92	Pass	20.7	0.118		
Default	914.9	19.80	95.5	0.92	Pass	20.7	0.118		

Note 1: Output power measured using a peak power meter, spurious limit is -20 dBc.

End of Report

This page is intentionally blank and marks the last page of this test report.