FCC 7	FEST	REPORT
FCC I	D:2AMF	RM-PS2080

Report Number	.: ZKT-221207L9142
Date of Test	.: Nov. 16, 2022 Dec. 13, 2022
Date of issue	.: Dec. 13, 2022
Total number of pages	: 43
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial [·] Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: Shenzhen ThreeNH Technology Co., Ltd
Address	A2-513, Building A, Kexing Science Park, No.15 Keyuan Road, Co : mmunity Science Park, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province
Manufacturer's name	: Shenzhen ThreeNH Technology Co., Ltd
Address	A2-513, Building A, Kexing Science Park, No.15 Keyuan Road, Co : mmunity Science Park, Yuehai Street, Nanshan District, Shenzhen City, Guangdong Province
Test specification:	
Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	: ANSI C63.10:2013
Non-standard test method	.: N/A
Test Report Form No	: TRF-EL-110_V0
Test Report Form(s) Originator	: ZKT Testing
Master TRF	: Dated: 2020-01-06
test (EUT) is in compliance with the identified in the report. This report shall not be reproduced of	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may nal only, and shall be noted in the revision of the document.
Product name	: Portable Spectrophotometer
Trademark	.: 3nh
Model/Type reference	: PS2080, PS2070PS2060, PS2050, PS2040, PS2030, PS2020, PS2010, PS2000, PS2028, PS2068, PS2088, PS2090,CR230, CR260, CR350, CR360, PS2600, PS3600, PS4600
Ratings	: DC 5V/2.5A from adapter;Battery:DC3.7V

Testing procedure and testing location:	
Testing Laboratory: Address:	Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Alen He Aum. Me
Reviewer (name + signature):	Joe Liu
Approved (name + signature):	Lake Xie
Approved (name + signature):	Lake Xie

Table of Contents

Pa	age
1. VERSION	. 5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	. 8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9
3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	10
4. EMC EMISSION TEST	11
4.1 CONDUCTED EMISSION MEASUREMENT	11
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULT	13
4.1.6 TEST RESULT	13
4.2 RADIATED EMISSION MEASUREMENT	15
4.2.1 RADIATED EMISSION LIMITS	-
4.2.2 TEST PROCEDURE	-
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	-
4.2.4 TEST SETUP	
4.2.6 TEST RESULTS	
5.RADIATED BAND EMISSIONMEASUREMENT	22
5.1 TEST REQUIREMENT:	22
5.2 TEST PROCEDURE	22
5.3 DEVIATION FROM TEST STANDARD	22
5.4 TEST SETUP	23
5.5 EUT OPERATING CONDITIONS	23
5.6 TEST RESULT	.24
6.POWER SPECTRAL DENSITY TEST	25
6.1 APPLIED PROCEDURES / LIMIT	25
6.2 TEST PROCEDURE	25
6.3 DEVIATION FROM STANDARD	25
6.4 TEST SETUP	25

EUT OPERATION CONDITIONS	25
TEST RESULT	.26
ANNEL BANDWIDTH	27
APPLIED PROCEDURES / LIMIT	27
TEST PROCEDURE	27
DEVIATION FROM STANDARD	27
TEST SETUP	.27
EUT OPERATION CONDITIONS	27
TEST RESULT	.28
AK OUTPUT POWER TEST	29
APPLIED PROCEDURES/LIMIT	29
TEST PROCEDURE	29
DEVIATION FROM STANDARD	29
TEST SETUP	.29
EUT OPERATION CONDITIONS	29
TEST RESULT	.29
NDUCTED BAND EDGE AND SPURIOUS EMISSION	30
APPLICABLE STANDARD	.30
TEST PROCEDURE	30
DEVIATION FROM STANDARD	30
TEST SETUP	.30
EUT OPERATION CONDITIONS	30
TEST RESULTS	30
NTENNA REQUIREMENT	31
PENDIX1	32
-6DB BANDWIDTH	32
BANDEDGE	34
PEAK OUTPUT POWER	36
POWER SPECTRAL DENSITY	38
SPURIOUS EMISSION	40
EST SETUP PHOTO	43
JT CONSTRUCTIONAL DETAILS	43
	TEST RESULT

1. VERSION

Report No.	Version	Description	Approved
ZKT-221207L9142	Rev.01	Initial issue of report	Dec. 13, 2022

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Result	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Portable Spectrophotometer	
Model No.:	PS2080	
Serial No.:	PS2070, PS2060, PS2050, PS2040, PS2030, PS2020, PS2010, PS2000, PS2028, PS2068, PS2088, PS2090,CR230, CR260, CR350, CR360, PS2600, PS3600, PS4600	
Model difference:	Their electrical circuit design, layout, components used and internal wiring are identical, Only the Model will be different ,so the name will be differen	
Hardware Version:	V1.0	
Software Version:	V1.0	
Sample(s) Status:	Engineer sample	
Channel numbers:	40	
Channel separation:	2402MHz~2480MHz	
Date rate:	1Mbps	
Modulation technology:	GFSK	
Antenna Type:	monopole antenna	
Antenna gain:	2.71dBi	
Power supply:	DC 5V/2.5A from adapter;Battery:DC3.7V	

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode	
Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.		
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:		
Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.		

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

Radiated Emission

EUT

Conducted Spurious

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	adapter	Shenzhen Perfect Gallant Tec Co.,Ltd	PG122-0502500IU	/	SDOC
2					

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	Oct. 18, 2022	Oct. 17, 2023
2	Spectrum Analyzer (1GHz-40GHz)	R&S	FSQ	100363	Oct. 17, 2022	Oct. 16, 2023
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2022	Oct. 17, 2023
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	Oct. 17, 2022	Oct. 16, 2023
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Oct. 17, 2022	Oct. 16, 2023
6	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2022	Oct. 16, 2023
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 17, 2022	Oct. 16, 2023
8	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 18, 2022	Oct. 17, 2023
9	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Oct. 18, 2022	Oct. 17, 2023
10	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GH z	N/A	Oct. 18, 2022	Oct. 17, 2023
11	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Oct. 18, 2022	Oct. 17, 2023
12	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 18, 2022	Oct. 17, 2023
13	Signal Generator	Agilent	N5182A	N/A	Oct. 22, 2022	Oct. 21, 2023
14	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Oct. 17, 2022	Oct. 16, 2023
15	MWRF Power Meter Test system	MW	MW100-RPC B	N/A	Oct. 22, 2022	Oct. 21, 2023
16	D.C. Power Supply	LongWei	TPR-6405D	N/A	\	\
17	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	\
18	RF Software	MW	MTS8310	V2.0.0.0	\	\
19	Turntable	MF	MF-7802BS	N/A	λ	λ
20	Antenna tower	MF	MF-7802BS	N/A	λ	\

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2022	Oct. 21, 2023
2	LISN	CYBERTEK	EM5040A	E1850400149	Oct. 22, 2022	Oct. 21, 2023
3	Test Cable	N/A	C01	N/A	Oct. 18, 2022	Oct. 17, 2023
4	Test Cable	N/A	C02	N/A	Oct. 18, 2022	Oct. 17, 2023
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2022	Oct. 16, 2023
6	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	١	١

4. EMC EMISSION TEST

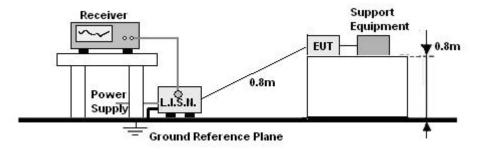
4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:


(1) *Decreases with the logarithm of the frequency.

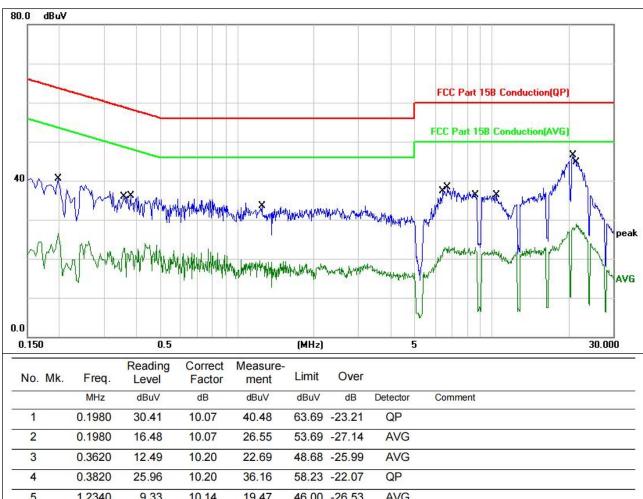
4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

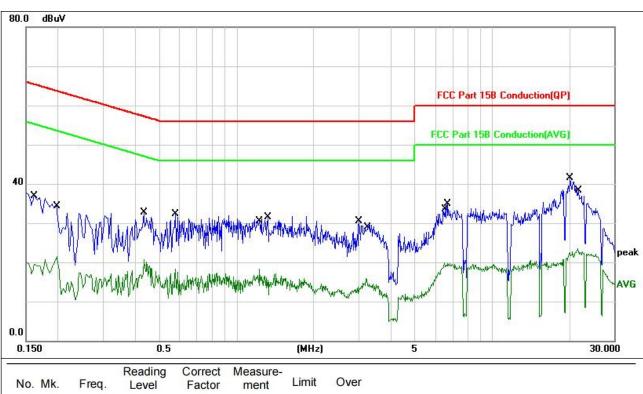
We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

4.1.6 TEST RESULT

4.1.6 Test Result

Temperature :	26℃	Relative Humidity :	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode	GFSK-lowest channel

5	1.2340	9.33	10.14	19.47	46.00 -26.53	AVG
6	1.2500	23.29	10.14	33.43	56.00 -22.57	QP
7	6.4460	27.43	9.90	37.33	60.00 -22.67	QP
8	6.7740	13.23	9.88	23.11	50.00 -26.89	AVG
9	8.6260	12.87	9.94	22.81	50.00 -27.19	AVG
10	10.4379	26.28	10.00	36.28	60.00 -23.72	QP
11 *	20.8740	36.79	9.78	46.57	60.00 -13.43	QP
12	21.5180	19.10	9.77	28.87	50.00 -21.13	AVG


Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-221207L9142 Page 14 of 4

Temperature :	26°C	Relative Humidity :	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode	GFSK-lowest channel

No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1620	26.94	10.06	37.00	65.36	-28.36	QP	
2	0.1980	<mark>11.40</mark>	10.07	21.47	53.69	-32.22	AVG	
3	0.4340	10.41	10.20	20.61	47.18	-26.57	AVG	
4	0.5780	22.18	10.21	32.39	56.00	-23.61	QP	
5	1.2300	8.12	10.14	18.26	46.00	-27.74	AVG	
6	1.3260	21.44	10.13	31.57	56.00	-24.43	QP	
7	3.0180	20.55	9.86	30.41	56.00	-25.59	QP	
8	3.2100	6.02	9.85	15.87	46.00	-30.13	AVG	
9	6.5100	10.01	9.90	<mark>19.91</mark>	50.00	-30.09	AVG	
10	6.7180	25.00	9.89	34.89	60.00	-25.11	QP	
11 *	20.1740	31.63	9.79	41.42	60.00	-18.58	QP	
12	21.7060	13.75	9.77	23.52	50.00	-26.48	AVG	

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Detector RBW VBW Value				Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
		Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

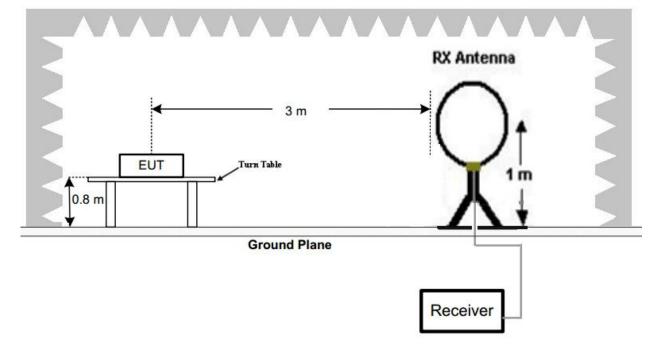
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

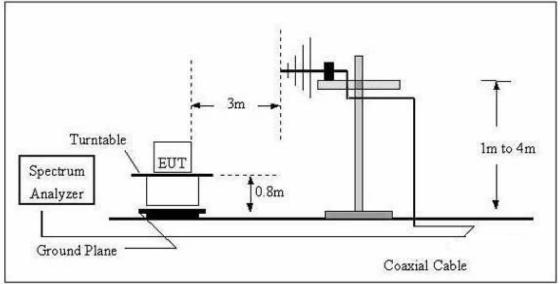
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

Above 1GHz test procedure as below:

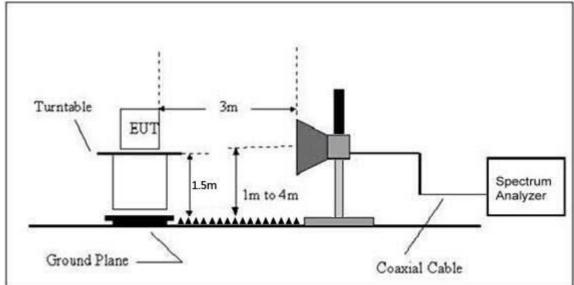
- a. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- b. Test the EUT in the lowest channel ,the middle channel ,the Highest channel


Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

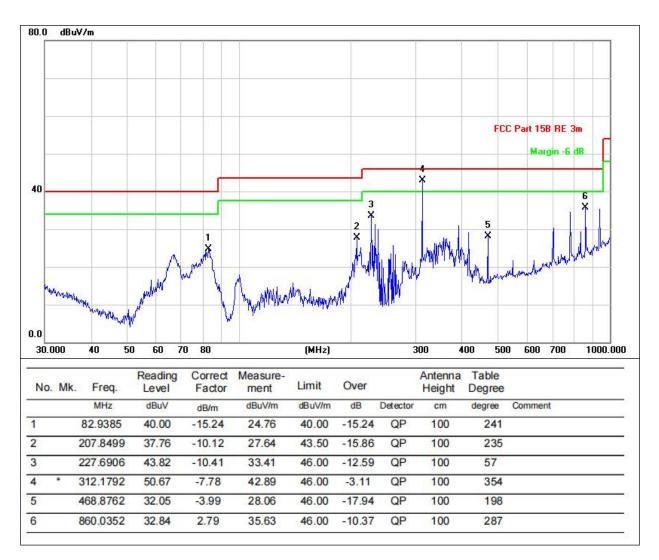

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

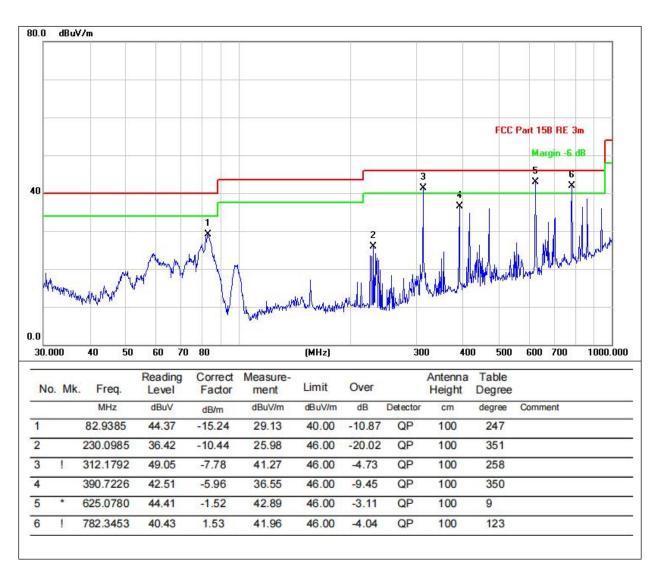
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


4.2.6 TEST RESULTS

Between 9KHz – 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Test Mode	GFSK-lowest channel

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Test Mode	GFSK-lowest channel

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			BLE1	MLow C	hannel:240	2MHz			
V	4804.00	54.62	30.55	5.77	24.66	54.50	74.00	-19.50	PK
V	4804.00	40.92	30.55	5.77	24.66	40.80	54.00	-13.20	AV
V	7206.00	53.04	30.33	6.32	24.55	53.58	74.00	-20.42	PK
V	7206.00	42.06	30.33	6.32	24.55	42.60	54.00	-11.40	AV
V	9608.00	51.45	30.85	7.45	24.69	52.74	74.00	-21.26	PK
V	9608.00	36.98	30.85	7.45	24.69	38.27	54.00	-15.73	AV
Н	4804.00	55.00	30.55	5.77	24.66	54.88	74.00	-19.12	PK
Н	4804.00	40.57	30.55	5.77	24.66	40.45	54.00	-13.55	AV
Н	7206.00	54.02	30.33	6.32	24.55	54.56	74.00	-19.44	PK
Н	7206.00	39.06	30.33	6.32	24.55	39.60	54.00	-14.40	AV
Н	9608.00	50.72	30.85	7.45	24.69	52.01	74.00	-21.99	PK
Н	9608.00	38.56	30.85	7.45	24.69	39.85	54.00	-14.15	AV

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	_		BLE1M	1Middle	Channel:24	40MHz			
V	4880.00	55.55	30.55	5.77	24.66	55.43	74.00	-18.57	PK
V	4880.00	42.21	30.55	5.77	24.66	42.09	54.00	-11.91	AV
V	7320.00	53.10	30.33	6.32	24.55	53.64	74.00	-20.36	PK
V	7320.00	40.49	30.33	6.32	24.55	41.03	54.00	-12.97	AV
V	9760.00	51.32	30.85	7.45	24.69	52.61	74.00	-21.39	PK
V	9760.00	36.89	30.85	7.45	24.69	38.18	54.00	-15.82	AV
Н	4880.00	56.19	30.55	5.77	24.66	56.07	74.00	-17.93	PK
Н	4880.00	42.00	30.55	5.77	24.66	41.88	54.00	-12.12	AV
Н	7320.00	54.31	30.33	6.32	24.55	54.85	74.00	-19.15	PK
Н	7320.00	39.57	30.33	6.32	24.55	40.11	54.00	-13.89	AV
Н	9760.00	49.88	30.85	7.45	24.69	51.17	74.00	-22.83	PK
Н	9760.00	36.41	30.85	7.45	24.69	37.70	54.00	-16.30	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			BLE1	MHigh (Channel:248	0MHz			
V	4960.00	56.16	30.55	5.77	24.66	56.04	74.00	-17.96	PK
V	4960.00	39.74	30.55	5.77	24.66	39.62	54.00	-14.38	AV
V	7440.00	54.43	30.33	6.32	24.55	54.97	74.00	-19.03	PK
V	7440.00	39.24	30.33	6.32	24.55	39.78	54.00	-14.22	AV
V	9920.00	49.78	30.85	7.45	24.69	51.07	74.00	-22.93	PK
V	9920.00	39.02	30.85	7.45	24.69	40.31	54.00	-13.69	AV
Н	4960.00	54.06	30.55	5.77	24.66	53.94	74.00	-20.06	PK
Н	4960.00	41.86	30.55	5.77	24.66	41.74	54.00	-12.26	AV
Н	7440.00	53.22	30.33	6.32	24.55	53.76	74.00	-20.24	PK
Н	7440.00	41.32	30.33	6.32	24.55	41.86	54.00	-12.14	AV
Н	9920.00	50.35	30.85	7.45	24.69	51.64	74.00	-22.36	PK
Н	9920.00	36.79	30.85	7.45	24.69	38.08	54.00	-15.92	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.RADIATED BAND EMISSIONMEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to						
	2500MHz) data	was snowed.					
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

5.1 TEST REQUIREMENT:

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class B (dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

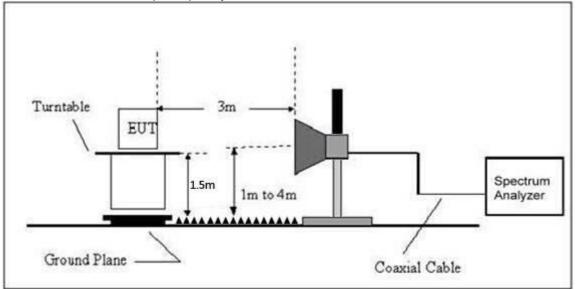
Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:


- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit		Dete	
	(H/V)	у	Reading	amplifier	Loss	Factor	level	(dBuV	Margin	ctor	Result
	(11/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)		Туре	
				Low	Channe	el: 2402MHz	Z				
	Н	2390.00	53.26	30.22	4.85	23.98	51.87	74	-22.13	PK	PASS
	Н	2390.00	38.04	30.22	4.85	23.98	36.65	54	-17.35	AV	PASS
	Н	2400.00	53.21	30.22	4.85	23.98	51.82	74	-22.18	PK	PASS
	Н	2400.00	40.50	30.22	4.85	23.98	39.11	54	-14.89	AV	PASS
	V	2390.00	51.65	30.22	4.85	23.98	50.26	74	-23.74	PK	PASS
	V	2390.00	42.51	30.22	4.85	23.98	41.12	54	-12.88	AV	PASS
	V	2400.00	52.62	30.22	4.85	23.98	51.23	74	-22.77	PK	PASS
GFSK	V	2400.00	39.63	30.22	4.85	23.98	38.24	54	-15.76	AV	PASS
GFSK				High	h Channe	el: 2480MHz	z		-		
	Н	2483.50	49.17	30.22	4.85	23.98	47.78	74	-26.22	PK	PASS
	Н	2485.50	35.56	30.22	4.85	23.98	34.17	54	-19.83	AV	PASS
	Н	2500.00	48.85	30.22	4.85	23.98	47.46	74	-26.54	PK	PASS
	Н	2500.00	38.30	30.22	4.85	23.98	36.91	54	-17.09	AV	PASS
	V	2483.50	55.16	30.22	4.85	23.98	53.77	74	-20.23	PK	PASS
	V	2485.50	42.09	30.22	4.85	23.98	40.70	54	-13.30	AV	PASS
	V	2500.00	60.05	30.22	4.85	23.98	58.66	74	-15.34	PK	PASS
	V	2500.00	37.33	30.22	4.85	23.98	35.94	54	-18.06	AV	PASS
Remark: 1. Emis	sion Lev	el = Meter R	eading + Ar	itenna Fact	or + Cab	le Loss – P	Pre-amplifier, I	Margin= I	Emission I	Level - L	_imit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v 05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Section Test Item Limit Frequency Range (MHz) Result							
15.247	15.247Power Spectral Density8dBm/3kHz2400-2483.5PASS							

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULT

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

	F	CC Part15 (15.247) , Su	bpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULT

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES/LIMIT

	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Limit Frequency Range (MHz)			
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

10. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

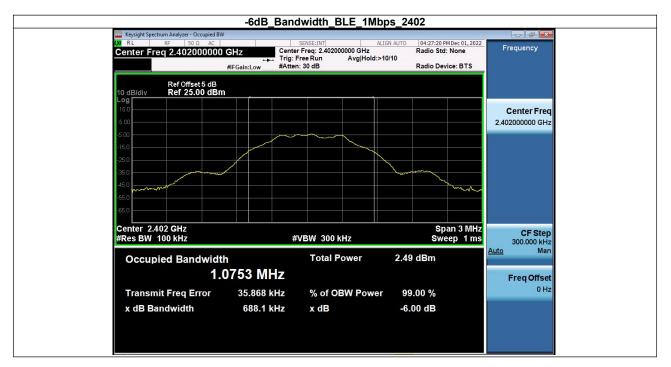
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:


The antenna is monopole antenna, the best case gain of the antennas are 2.71dBi, reference to the below photo for details ANTforBLE.

11.APPENDIX1

11.1. -6DB BANDWIDTH

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402	688.10	500	Pass
NVNT	ANT1	1Mbps	2440.00	676.47	500	Pass
NVNT	ANT1	1Mbps	2480	672.36	500	Pass

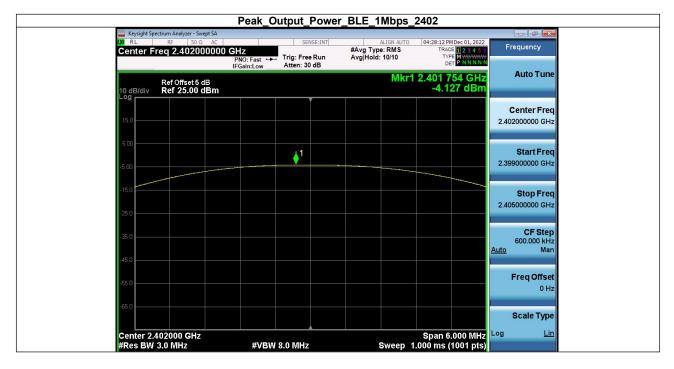

Project No.: ZKT-221207L9142 Page 33 of 4

Keysight Spectrum Analyzer - Occupied B		dwidth_BLE_1M		:32:03 PM Dec 01, 2022	_ 3 _
Center Freq 2.48000000	Trig:	r Freq: 2.48000000 GHz	Rad 10/10	lio Std: None dio Device: BTS	Frequency
Ref Offset 4.65 c 10 dB/div Ref 24.65 dB Log	m				
14.7 4.66 -5.35					Center Freq 2.48000000 GHz
-5.35 -15.4 -25.4					
-35.4 -45.4			www	mmm	
-65.4					
Center 2.48 GHz #Res BW 100 kHz	#	VBW 300 kHz		Span 3 MHz Sweep 1 ms	CF Step 300.000 kHz
Occupied Bandwid	th .0779 MHz	Total Power	0.53 dB	lm	<u>Auto</u> Man
Transmit Freq Error	37.312 kHz	% of OBW Powe	r 99.00	%	Freq Offset 0 Hz
x dB Bandwidth	672.4 kHz	x dB	-6.00 c	iB	

Project No.: ZKT-221207L9142 Page 34 of 4

11.2. BANDEDGE

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402	2399.97	-43.66	-24.43	Pass
NVNT	ANT1	1Mbps	2480	2484.03	-48.30	-26.18	Pass


Project No.: ZKT-221207L9142 Page 35 of 4

Project No.: ZKT-221207L9142 Page 36 of 4

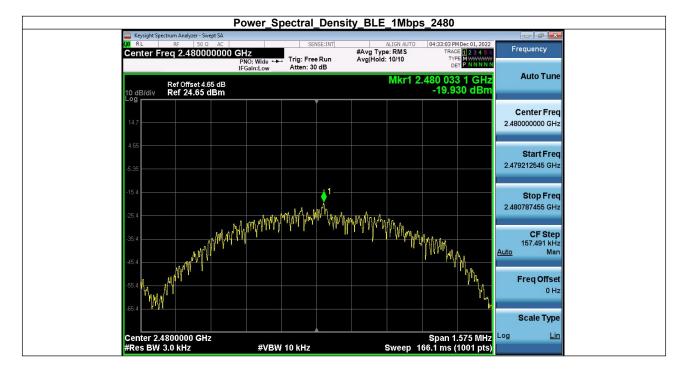
11.3. PEAK OUTPUT POWER

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402	-4.13	0.39	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-5.19	0.30	1000	Pass
NVNT	ANT1	1Mbps	2480	-6.10	0.25	1000	Pass

Project No.: ZKT-221207L9142 Page 37 of 4


	Peak	Output_Power	BLE_1Mbps_	2480		
	pectrum Analyzer - Swept SA	· · · · · · · · · · · · · · · · · · ·				-
Center	RF 50 Ω AC Freq 2.480000000 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:32:54 PM Dec 01, 2022 TRACE 1 2 3 4 5 6	Frequency	
	PNO: Fast IFGain:Low	→ Trig: Free Run Atten: 30 dB	Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE M DET P NNNNN		
10 dB/div Log	Ref Offset 4.65 dB Ref 24.65 dBm		Mkr1	2.479 856 GHz -6.097 dBm	Auto Tune	
					Center Freq	
14.7					2.48000000 GHz	
4.65					Start Freq	
-5.36		∮ ¹			2.477000000 GHz	
-15.4						
-13.4					Stop Freq 2.483000000 GHz	
-25.4						
-35.4					CF Step 600.000 kHz	
-45.4					<u>Auto</u> Man	
-55.4					Freq Offset	
-53.4					0 Hz	
-65.4					Scale Type	
Center 2	.480000 GHz			Span 6.000 MHz	Log <u>Lin</u>	
		3W 8.0 MHz	Sweep 1	1.000 ms (1001 pts)		

Project No.: ZKT-221207L9142 Page 38 of 4


11.4. POWER SPECTRAL DENSITY

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402	-20.44	8	Pass
NVNT	ANT1	1Mbps	2440.00	-20.27	8	Pass
NVNT	ANT1	1Mbps	2480	-19.93	8	Pass

Project No.: ZKT-221207L9142 Page 39 of 4

Project No.: ZKT-221207L9142 Page 40 of 4

11.5. SPURIOUS EMISSION

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402	-40.08	-24.43	Pass
NVNT	ANT1	1Mbps	2440.00	-39.72	-25.59	Pass
NVNT	ANT1	1Mbps	2480	-39.12	-26.18	Pass

Project No.: ZKT-221207L9142 Page 41 of 4

ALIGN AUTO 04:30:38 PM Dec 01, 2022
#Avg Type: RMS TRACE 23 4 5 6 Avg Hold: 20/20 TYPE MWWWW DET PNNNNN
Mkr1 2.440 015 GHz Auto Tun -5.586 dBm
Center Fre 2.44000000 GH
Start Fre
2.437500000 GH
2:442500000 GH
CF Ste 500.000 kH <u>Auto</u> Ma
Freq Offse
Scale Typ
Span 5.000 MHz L ^{og} Li Sweep 1.000 ms (1001 pts)
ion_BLE_1Mbps_2440
ALIGN AUTO 04:31:41 PM Dec 01, 2022
#Avg Type: RMS TRACE 12345 Frequency Avg Hold: 10/10 Type RMS
Mkr2 24.550 5 GHz -39.718 dBm
Center Fre
2559 d5m 20.000000 MH 2
Stop Fre 25.0000000 GH
Stop 25.00 GHz CF Ste
FUNCTION FUNCTION WIDTH FUNCTION VALUE
Auto Ma

Project No.: ZKT-221207L9142 Page 42 of 4

	1_Reference_Leve	el_BLE_1Mbps_3	2480	
Keysight Spectrum Analyzer - Swept SA	SENSE:INT		04:32:28 PM Dec 01, 2022	
Center Freq 2.48000000	PNO: Wide +++ Trig: Free Run	#Avg Type: RMS Avg Hold: 20/20	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
Def Offersk 4 65 dD	IFGain:Low Atten: 30 dB	Mkr	2.480 035 GHz	Auto Tune
Ref Offset 4.65 dB 10 dB/div Ref 24.65 dBm			-6.182 dBm	
				Center Freq
14.7				2.480000000 GHz
4.65				Start Freq
-5.35	↓ 1			2.477500000 GHz
		\mathbf{X}		
-15.4				Stop Freq
-25.4	A		-26.18.dBm	2.482500000 GHz
-35.4				CF Step
- 100.44	mark	1 miles		500.000 kHz <u>Auto</u> Man
-45.4 man hay war			where wat he man	
-55.4 May 100			when when	Freq Offset
				0 Hz
-65.4				Scale Type
Center 2.480000 GHz			Span 5.000 MHz	Log <u>Lin</u>
#Res BW 100 kHz	#VBW 300 kHz		1.000 ms (1001 pts)	
	2_Spurious_Emissi	on_BLE_1Mbps	_2480	- 3 💌
Keysight Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:34:07 PM Dec 01, 2022	Frequency
Center Freq 12.51500000	PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 30 dB	Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	
Ref Offset 4.65 dB		Mki	2 24.548 0 GHz	Auto Tune
Ref Offset 4.65 dB 10 dB/div Ref 24.65 dBm		Mkı	r2 24.548 0 GHz -39.123 dBm	Auto Tune
10 dB/div Ref 24.65 dBm 14.7		Mkı	r2 24.548 0 GHz -39.123 dBm	Center Freq
10 dB/div Ref 24.65 dBm		Mkı	r2 24.548 0 GHz -39.123 dBm	
10 dB/div Ref 24.65 dBm 14.7 4.65		Mki	r2 24.548 0 GHz -39.123 dBm	Center Freq 12.51500000 GHz
10 dB/div Ref 24.65 dBm		Mki	2 24.548 0 GHz -39.123 dBm -2019 dBm -2019 dBm 2	Center Freq
10 dB/div Ref 24.65 dBm			-39.123 dBm	Center Freq 12.51500000 GHz Start Freq
10 dB/div Ref 24.65 dBm		Mki	-39.123 dBm	Center Freq 12.51500000 GHz Start Freq 30.000000 MHz Stop Freq
10 dB/div Ref 24.65 dBm			-39.123 dBm	Center Freq 12.51500000 GHz Start Freq 30.000000 MHz
10 dB/div Ref 24.65 dBm			-39.123 dBm	Center Freq 12.51500000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz CF Step
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 15.4 25.4 35.4 45.4 5.4 5.4 5.4 5.4 5.4 5.4	#VBW 300 kHz	Sweep	-39.123 dBm 	Center Freq 12.51500000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 15.4 25.4 35.4 45.4 55.4	#VBW 300 kHz		-39.123 dBm -28.19.66m -28.19.66m -29.100 -29.100 -29.100 -29.100 -29.100 -29.123 -29.	Center Freq 12.515000000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz CF Step 2.497000000 GHz Auto Man
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 15.4 25.4 35.4 45.4 55.4	#VBW 300 kHz	Sweep	-39.123 dBm 	Center Freq 12.51500000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz CF Step 2.49700000 GHz
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 -15.4 -25.4 -5	#VBW 300 kHz	Sweep	-39.123 dBm 	Center Freq 12.515000000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz 2.497000000 GHz Auto Man Freq Offset
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 15.4	#VBW 300 kHz	Sweep	-39.123 dBm 	Center Freq 12.515000000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz 2.497000000 GHz Auto Man Freq Offset
10 dB/div Ref 24.65 dBm 14.7 4.65 5.35 15.4 25.4 35.4 45.4 55.4	#VBW 300 kHz	Sweep	-39.123 dBm 	Center Freq 12.515000000 GHz Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz 2.497000000 GHz Auto Man Freq Offset 0 Hz

12. TEST SETUP PHOTO

Please refer to Setup Photo file

13. EUT CONSTRUCTIONAL DETAILS

Please refer to external photos file and internal photos file

***** END OF REPORT *****