

Supplen	nental "Transmit Simultaneously" Test Report
Report No.:	RF181109E05-2
FCC ID:	2AMRICR48NA
Test Model:	CR48NA
Series Model:	CXD2800
Received Date:	Nov. 13, 2018
Test Date:	Dec. 11 to 12, 2018
Issued Date:	Feb. 20, 2019
	Connected IO 8304 Esters Boulevard, Suite 850, Irving, Texas United States 75063
	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Test Location:	Taiwan R.O.C. E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific when into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Re	Release Control Record 3						
1	Certificate of Conformity4						
2	Summary of Test Results						
	2.1 2.2	Measurement Uncertainty Modification Record					
3	G	General Information	6				
	3.1 3.1.1 3.2 3.2.1	5	8 . 10 11				
4	Т	est Types and Results	12				
2	1.1.2	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures	12 14				
2	4.1.5 4.1.6	Deviation from Test Standard Test Setup EUT Operating Conditions	16 17				
2 2	4.2 4.2.1	Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement	22 22				
Z	4.2.3 4.2.4	Test Instruments Test Procedures Deviation from Test Standard	23 23				
Z	1.2.6	Test Setup EUT Operating Conditions Test Results Conducted Out of Band Emission Measurement	23 24				
2	4.3.1 4.3.2	Limits of Conducted Out of Band Emission Measurement Test Setup Test Instruments	26 26				
	4.3.4 4.3.5 4.3.6	Test Procedures Deviation from Test Standard EUT Operating Conditions	26 26 26				
		Test Results					
5		-					
Ар	pend	lix – Information on the Testing Laboratories	29				

Release Control Record Description Issue No. Date Issued RF181109E05-2 Original release. Feb. 20, 2019

Certificate of Conformity 1

Product:	Router
Brand:	Connected IO, Netsurion
Test Model:	CR48NA
Series Model:	CXD2800
Sample Status:	ENGINEERING SAMPLE
Applicant:	Connected IO
Test Date:	Dec. 11 to 12, 2018
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	47 CFR FCC Part 15, Subpart E (Section 15.407)
	FCC Part 22, Subpart H
	ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Approved by :

Date: Feb. 20, 2019

,

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407) FCC Part 22 & Part 2						
FCC Clause	Test Item Result Remarks					
15.207 15.407(b)(6)			Meet the requirement of limit. Minimum passing margin is -8.6dB at 0.36875MHz.			
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -4.8dB at 11490.00MHz.			
2.1053 22.917	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -24.37dB at 6611.2MHz.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Router		
Brand	Connected IO, Netsurion		
Test Model	CR48NA		
Series Model	CXD2800		
Status of EUT	ENGINEERING SAMPLE		
Power Supply Rating	DC 12V from power adapter		
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz band		
Modulation Technology DSSS,OFDM			
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz		
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device Adapter x1			
Data Cable Supplied	RJ 45 cable x 1 (Unshielded, 1.5m)		

Note:

1. There are WLAN, WWAN and LTE technology used for the EUT.

2. The EUT contains certified 3G/LTE modular which FCC ID: RI7LE910NAV2.

3. The EUT has below model names, which are identical to each other in all aspects except for the following:

Brand	Model No.	Difference
Connected IO	CR48NA	Different Housing colors
Netsurion	CXD2800	Different Housing colors

From the above models, model: **CR48NA** was selected as representative model for the test and its data was recorded in this report.

4. Simultaneously transmission condition.

Condition	Technology				
1	WLAN 2.4GHz	WLAN 5GHz	WWAN (3G/LTE)		

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

5. The EUT must be supplied with a power adapter and following two different model names could be chosen:

No.	Brand	Model No.	Spec.	
1	UMEC	UP0251M-12PA	Input: 100-240Vac, 0.6A, 50/60Hz Output: 12Vdc, 2A DC output cable (Unshielded, 1.5m)	
2	AMIGO	AMS115-1202000FU	Input: 100-240Vac, 0.8A, 50/60Hz Output: 12Vdc, 2.0A DC output cable (Unshielded, 1.5m)	
Note: From the above models, the worst radiated emission and AC power conducted emission test was found				

in **Adapter 1**. Therefore only the test data of the modes were recorded in this report.

6. The antennas provided to the EUT, please refer to the following table:							
	WLAN						
Ant Set.	Chain No.	Brand	Model	Antenna Gain (dBi)	Frequency Range (GHz)	Antenna Type	Connector Type
		Chain 0 JOYMAX TWX-1513RSXX-711		5	2.4~2.4835		
	Chain 0		5	5.15~5.85	Collinear	R-SMA	
1	Chain 1	JOYMAX	TWX-1513RSXX-711	5	2.4~2.4835	Collinear	R-SMA
	Chain I	JUTIMAX	1007-10138387-711	5	5.15~5.85	Collineal	K-SIVIA
	Chain 0	JOYMAX	TWX-6141RSXX-711	3	2.4~2.4835	Microstrip	R-SMA
2	Chain 0	JUTIMAX	1007-01418322-711	5	5.15~5.85	Microsurp	R-SIVIA
2	Chain 1	JOYMAX	TWX-6141RSXX-711	3	2.4~2.4835	Microstrip	R-SMA
Chain 1 JOYMAX TWX-614		1007-01418388-711	5	5.15~5.85	Microsurp	K-SIVIA	
WWAN – 3G / LTE							
Ant Set	Transmitter Circuit	Brand	Model	Antenna Gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type
	Main		YWX-6252SAXX-711		698~960		
		JOYMAX		3	1710~2710	Microstrip	SMA
					2300~2700		
1				698~960			
	Aux	JOYMAX	YWX-6252SAXX-711	3	1710~2710	Microstrip	SMA
					2300~2700		
Note:							
1. For WLAN: Ant set 1 was selected for the final test.							
7. The EUT incorporates a MIMO function:							
2.4GHz Band							

6. The antennas provided to the EUT, please refer to the following table:

2.4GHz Band				
MODULATION MODE	TX & RX CONFIGURATION			
802.11b	2TX	2RX		
802.11g	2TX	2RX		
802.11n (HT20)	2TX	2RX		
802.11n (HT40)	2TX	2RX		
VHT20	2TX	2RX		
VHT40	2TX	2RX		
	5GHz Band			
MODULATION MODE	TX & RX CON	FIGURATION		
802.11a	2TX	2RX		
802.11n (HT20)	2TX	2RX		
802.11n (HT40)	2TX	2RX		
802.11ac (VHT20)	2TX	2RX		
802.11ac (VHT40)	2TX	2RX		
802.11ac (VHT80)	2TX	2RX		

Note:

1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

3. The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report.

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT Configure	Applicable to			Description	
Mode	RE≥1G	RE<1G	PLC	ОВ	Description
-	\checkmark	\checkmark	\checkmark	\checkmark	-
Where R	E≥1G: Radiated Emission above 1GHz RE<1G: F			RE<1G: F	Radiated Emission below 1GHz
Р	PLC: Power Line Conducted Emission OB:			OB: Cond	lucted Out-Band Emission Measurement

NOTE:

1. The EUT had been pre-tested on the positioned of each 2 axis. The worst case was found when positioned on X-plane.

Radiated Emission Test (Above 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
VHT20	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	149	OFDM	BPSK
+ UMTS Band V	4132 to 4233	4132	BPSK	-

Radiated Emission Test (Below 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
VHT20	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	149	OFDM	BPSK
+ UMTS Band V	4132 to 4233	4132	BPSK	-

Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
VHT20	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	149	OFDM	BPSK
+ UMTS Band V	4132 to 4233	4132	BPSK	-

<u>Conducted Out-Band Emission Measurement:</u> Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
VHT20	1 to 11	6	OFDM	BPSK
+ 802.11a	149 to 165	149	OFDM	BPSK

Test Condition:

Applicable To Environmental Conditions		Input Power	Tested By	
RE≥1G	22deg. C, 64%RH	120Vac, 60Hz	Steven Chiang	
RE<1G	21deg. C, 67%RH	120Vac, 60Hz	Steven Chiang	
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho	
OB	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen	

3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Model No. Serial No.		Remarks
Α.	iPod	Apple	MD778TA/A	CC4JMFL0F4T1	NA	Provided by Lab
В.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
C.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
D.	SIM Card	R&S	CRT-Z3	NA	NA	Provided by Lab
Ε.	LTE Simulator	Keysight	E7515A	MY55340229	NA	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.5	No	0	Supplied by client
2.	USB Cable	1	0.1	Yes	0	Provided by Lab
3.	RJ-45 Cable	1	10	No	0	Provided by Lab
4.	RJ-45 Cable	1	10	No	0	Provided by Lab
5.	Console Cable	1	1.5	No	0	Provided by Lab

Configuration of System under Test 3.2.1 (D) SIM Card SIM2 SIM1 (1) EUT Adapter DC JACK CONSOLE (5) USB 2.0 LAN1 LAN2~8 WAN (2) (3) (4) (A) iPod **Remote Site** (B)Laptop (C)Laptop WWAN (E) Simulator

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For 47 CFR FCC Part 15:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	cable	То	Limit			
789033 D02 Genera	al UN	I Test Procedure	Field Strength at 3m			
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)		
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz		15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)		
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}		
		15.407(b)(4)(ii)	Emission limits in			
 ^{*1} beyond 75 MHz or ^{*3} below the band ed of 15.6 dBm/MHz a 	ge in	creasing linearly to				
Note:			the band edge.			

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3}$ µV/m, where

 $\mu\text{V/m},$ where P is the eirp (Watts).

For FCC Part 22:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.

4.1.2 Test Instruments

4.1.2 Test Instruments DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 05, 2018	July 04, 2019
Pre-Amplifier EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001	Jan. 15, 2018	Jan. 14, 2019
RF Cable	NA	LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Oct. 30, 2018	Oct. 29, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-4-1	Mar. 21, 2018	Mar. 20, 2019
RF Cable	8D	966-4-2	Mar. 21, 2018	Mar. 20, 2019
RF Cable	8D	966-4-3	Mar. 21, 2018	Mar. 20, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Nov. 25, 2018	Nov. 24, 2019
Pre-Amplifier Mini-Circuits	ZVA-183-S+	AMP-ZVA-03	May 10, 2018	May 09, 2019
RF Cable	EMC104-SM-SM-1200	160923	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-2000	150318	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-5000	150321	Jan. 29, 2018	Jan. 28, 2019
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 29, 2018	Jan. 28, 2019
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Nov. 25, 2018	Nov. 24, 2019
RF Cable	EMC102-KM-KM-1200	160925	Jan. 29, 2018	Jan. 28, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Dec. 11 to 12, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

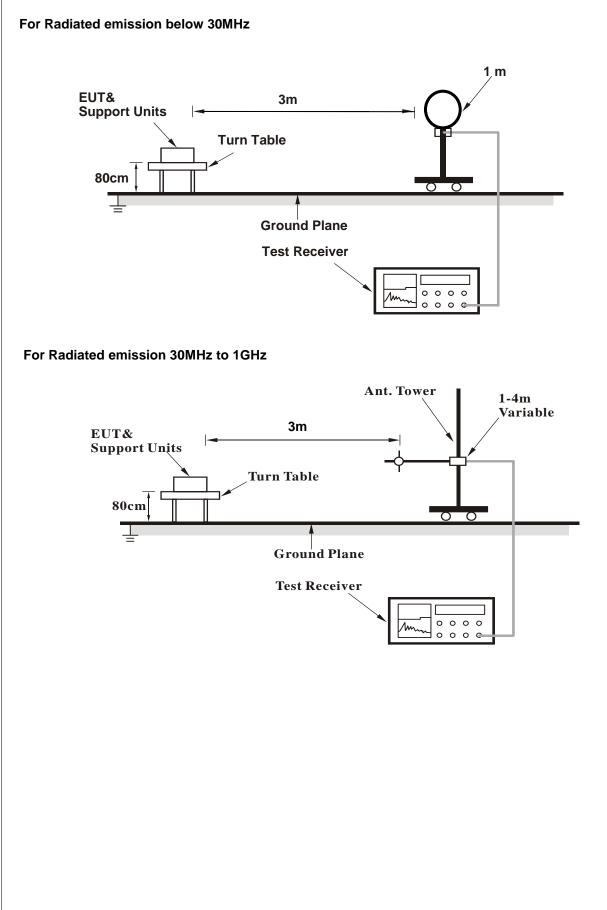
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

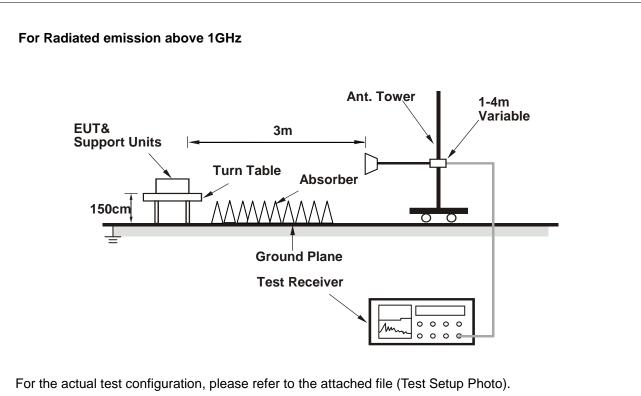
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop is placed on remote site.
- b. Controlling software (WLAN: QDART_1.0.44, WWAN: Simulator) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data

FREQUENCY RANGE 1G			1Gł	Hz ~ 40GHz	Hz DETECTOR FUNCTION			Peak (PK) Average (AV)				
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSIC LEVEI (dBuV/r	L	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	4874.00	44.9 P	K	74.0	-29.1	1.18 H	110	42.9	2.0			
2	4874.00	32.5 A	V	54.0	-21.5	1.18 H	110	30.5	2.0			
3	7311.00	50.1 Pl	K	74.0	-23.9	1.08 H	92	41.6	8.5			
4	7311.00	37.5 A	V	54.0	-16.5	1.08 H	92	29.0	8.5			
5	11490.00	56.3 P	K	74.0	-17.7	1.07 H	168	42.5	13.8			
6	11490.00	44.9 A	V	54.0	-9.1	1.07 H	168	31.1	13.8			
7	#17235.00	50.8 PI	K	68.2	-17.4	1.26 H	166	33.7	17.1			
		ANTE	NNA	POLARITY	& TEST D	ISTANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSIC LEVEI (dBuV/r	L	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	4874.00	49.6 P	K	74.0	-24.4	1.26 V	315	47.6	2.0			
2	4874.00	36.9 A	V	54.0	-17.1	1.26 V	315	34.9	2.0			
3	7311.00	57.6 PI	K	74.0	-16.4	1.10 V	216	49.1	8.5			
4	7311.00	43.9 AV	V	54.0	-10.1	1.10 V	216	35.4	8.5			
5	11490.00	61.5 P	K	74.0	-12.5	1.53 V	286	47.7	13.8			
6	11490.00	49.2 A	V	54.0	-4.8	1.53 V	286	35.4	13.8			
7	#17235.00	51.1 Pl	K	68.2	-17.1	1.62 V	241	34.0	17.1			
	#17235.00	51.1 Pl	K	68.2	-17.1	1.62 V	241	34.0	17.1			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " # ": The radiated frequency is out of the restricted band.

Mod	е	TX cha	annel 4132	Frequ	ency Range	Above 1GHz					
Antenna Polarity & Test Distance: Horizontal at 3 M											
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Emission Value (dBm)	Limit (dBm)	Margin (dB)				
1	1652.8	34.3	-71.22	9.05	-62.17	-13	-49.17				
2	2479.2	36.8	-70.15	9.23	-60.92	-13	-47.92				
3	3305.6	46.7	-59.50	8.11	-51.39	-13	-38.39				
4	4132	49.85	-52.99	5.17	-47.82	-13	-34.82				
5	4958.4	49.19	-43.46	-5.36	-48.82	-13	-35.82				
6	5784.8	46.16	-53.26	2.88	-50.38	-13	-37.38				
7	6611.2	49.32	-35.69	-8.64	-44.33	-13	-31.33				
8	7437.6	50.75	-46.60	3.70	-42.90	-13	-29.90				
9	8264	47.46	-49.89	3.70	-46.19	-13	-33.19				
		Antenn	a Polarity & T	est Distance:	Vertical at 3 I	N					
No.	Freq. (MHz)	Reading (dBm)	S.G Power Value (dBm)	Correction Factor (dB)	Emission Value (dBm)	Limit (dBm)	Margin (dB)				
1	1652.8	38.12	-66.03	7.68	-58.35	-13	-45.35				
2	2479.2	42.44	-62.30	7.02	-55.28	-13	-42.28				
3	3305.6	48.66	-53.96	4.53	-49.43	-13	-36.43				
4	4132	49.39	-52.48	4.21	-48.28	-13	-35.28				
5	4958.4	52.28	-49.21	3.48	-45.73	-13	-32.73				
6	5784.8	52.42	-48.19	4.06	-44.12	-13	-31.12				
7	6611.2	56.28	-41.07	3.70	-37.37	-13	-24.37				
8	7437.6	53.76	-43.59	3.70	-39.89	-13	-26.89				
9	8264	55.24	-42.11	3.70	-38.41	-13	-25.41				

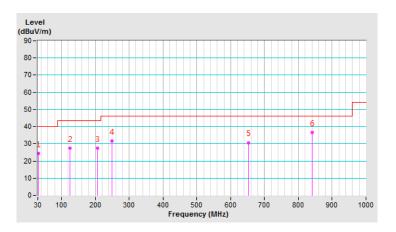
Remarks:

Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
 Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

Below 1GHz Data:

|--|

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	31.70	24.3 QP	40.0	-15.7	1.50 H	58	33.9	-9.6		
2	125.01	27.6 QP	43.5	-15.9	1.50 H	81	37.0	-9.4		
3	207.49	27.5 QP	43.5	-16.0	1.50 H	72	37.9	-10.4		
4	250.00	31.6 QP	46.0	-14.4	1.00 H	337	40.3	-8.7		
5	653.06	30.7 QP	46.0	-15.3	1.00 H	286	29.4	1.3		
6	841.82	36.6 QP	46.0	-9.4	1.00 H	238	31.9	4.7		


REMARKS:

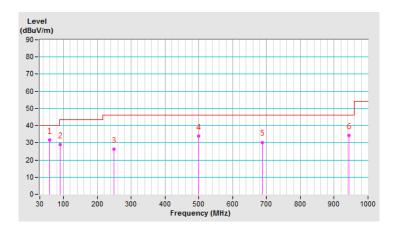
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

FREQUENCY RANGE 19kHz ~ 1GHz					Quasi-Peak (QP)			
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSIO LEVEL (dBuV/m	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	58.13	31.5 QF	40.0	-8.5	1.00 V	311	40.1	-8.6
2	90.36	29.0 QF	43.5	-14.5	2.00 V	50	42.2	-13.2
3	250.00	26.4 QF	46.0	-19.6	2.00 V	360	35.1	-8.7
4	499.99	33.9 QF	46.0	-12.1	1.00 V	162	35.8	-1.9
5	687.47	30.3 QF	46.0	-15.7	1.50 V	360	28.6	1.7
6	944.25	34.1 QF	46.0	-11.9	1.50 V	210	27.8	6.3


REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

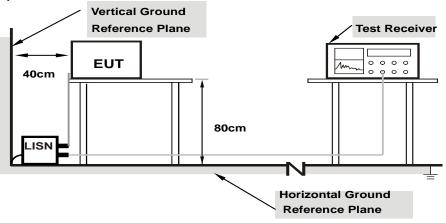
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 04, 2018	June 03, 2019
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 16, 2018	Mar. 15, 2019
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 2. The test was performed in Conduction 1.
- 3 Tested Date: Dec. 12, 2018

^{1.} The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

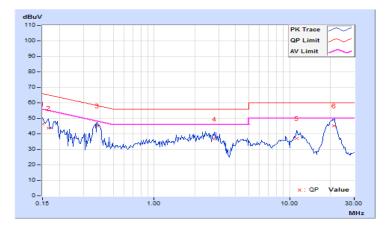
Same as 4.1.6.

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)			
Phase Of Power : Line (L)						

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		0		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.03	36.27	21.19	46.30	31.22	66.00	56.00	-19.70	-24.78	
2	0.16562	10.04	33.55	20.40	43.59	30.44	65.18	55.18	-21.59	-24.74	
3	0.38047	10.08	35.05	25.94	45.13	36.02	58.27	48.27	-13.14	-12.25	
4	2.77734	10.24	26.59	18.21	36.83	28.45	56.00	46.00	-19.17	-17.55	
5	11.21484	10.78	26.38	19.44	37.16	30.22	60.00	50.00	-22.84	-19.78	
6	21.17188	11.39	33.63	26.80	45.02	38.19	60.00	50.00	-14.98	-11.81	

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

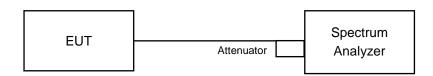
4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phas	е	Neutral (N)			Neutral (N) Detector Function				tion	Quasi-Pe Average	eak (QP) / (AV)	,
	Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor	J J			Emission Level (dBuV)		mit BuV)	Margin (dB)			
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.		
1	0.15000	9.94	37.14	20.15	47.08	30.09	66.00	56.00	-18.92	-25.91		
2	0.18906	9.95	34.18	21.26	44.13	31.21	64.08	54.08	-19.95	-22.87		
3	0.36875	9.98	38.63	29.95	48.61	39.93	58.53	48.53	-9.92	-8.60		
4	0.97031	10.00	23.23	15.87	33.23	25.87	56.00	46.00	-22.77	-20.13		
5	2.79297	10.11	28.79	16.09	38.90	26.20	56.00	46.00	-17.10	-19.80		
6	21.00000	11.16	33.39	25.95	44.55	37.11	60.00	50.00	-15.45	-12.89		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

2.4GHz_VHT20 CH6 + 5GHz_802.11a CH149

Ch	ain 0		Chain 1
31.5 <u>-</u> 20- 10- 0-	Ref 31.5 dBm Att 20 dB Other Offset 21.5 dB SWT 4 s 2 4 0110.062 dBm SWT 4 s	Marker 1 [T1] -35.28 dBm 1.0926 GHz Marker 2 [T1] 10.62 dBm 2.43319 GHz Marker 3 [T1] -27.29 dBm 3.2478 GHz Marker 4 [T1] 9.05 dBm 5.74071 GHz Marker 5 [T1] -32.76 dBm 3.8.5766 GHz	BBW 100 M/s. VBW 300 M/s. 31 5 [T1] MP VEW VBW 300 M/s. 076at 215 dB Marker 1 [T1] -36, 12 173368 31 5 Ref315 dBm AB 20 dB SW74 s 30 1 Offset 215 dB Marker 1 [T1] -32, 22 243919 20 2 Marker 2 [T1] -22, 243919 20 2 Marker 3 [T1] -22, 243919 20 2 Marker 3 [T1] -22, 23919 20 -2 Marker 3 [T1] -22, 23919 210 -2 Marker 3 [T1] -22, 23919 20 -2 -2 21 -2 -2 22 -20,90 dBm -3
-20 - -30 - -40 -			-20 - 3 -30 - 1 -4 - 5 -40
-50 - -60 - 68.5 -	Start 30 MHz 3.597 GHz/ Stop 40 GHz	BU REAU VERITAS	-50 -60 -68.5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----