

Page 1 of60

TEST REPORT

Product Name	:	Wireless Earphones
Brand Mark	:	HAYLOU
Model No.	:	Haylou X1 Pro
FCC ID	:	2AMQ6-X1PRO
Report Number	:	BLA-EMC-202110-A7703
Date of Sample Receipt	:	2021/10/28
Date of Test	:	2021/10/28 to 2021/12/16
Date of Issue	:	2021/12/16
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Dongguan Liesheng Electronic Co., Ltd. Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China.

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:	hasan	Review by: Success
Approved by:	Save Thong	Date: 2021/12/16

REPORT REVISE RECORD

Version No.	Date	Description
00	2021/12/16	Original

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GEI	NERAL INFORMATION	6
3	GEI	NERAL DESCRIPTION OF E.U.T	6
4	TES	ST ENVIRONMENT	7
_			
5			
6	ME	ASUREMENT UNCERTAINTY	7
7		SCRIPTION OF SUPPORT UNIT	
8	LAE		8
9	TES	ST INSTRUMENTS LIST	9
10	COI	NDUCTED BAND EDGES MEASUREMENT	12
	10.1	LIMITS	
-	10.1	BLOCK DIAGRAM OF TEST SETUP	
-	10.3	TEST DATA	
11	PO	WER SPECTRUM DENSITY	
,	11.1	LIMITS	
-	11.1	BLOCK DIAGRAM OF TEST SETUP	
	11.3	TEST DATA	
12	col	NDUCTED PEAK OUTPUT POWER	15
-	12.1		
-	12.2	BLOCK DIAGRAM OF TEST SETUP	
	12.3	ТЕЅТ DATA	
13	MIN	IIMUM 6DB BANDWIDTH	17
-	13.1	LIMITS	17
-	13.2	BLOCK DIAGRAM OF TEST SETUP	
-	13.3	TEST DATA	17
14	COI	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	18
ź	14.1	LIMITS	18
-	14.2	BLOCK DIAGRAM OF TEST SETUP	18
-	14.3	PROCEDURE	18
-	14.4	TEST DATA	20

15	ANT	ENNA REQUIREMENT	22
1	5.1	Conclusion	22
16	RAD	NATED SPURIOUS EMISSIONS	23
1	6.1	LIMITS	23
1	6.2	BLOCK DIAGRAM OF TEST SETUP	24
1	.6.3	PROCEDURE	24
1	6.4	TEST DATA	26
17	RAD	NATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	34
1	7.1	LIMITS	
1	7.2	BLOCK DIAGRAM OF TEST SETUP	35
1	7.3	PROCEDURE	35
1	7.4	TEST Data	37
18	CON	IDUCTED SPURIOUS EMISSIONS	41
1	8.1	LIMITS	41
1	.8.2	BLOCK DIAGRAM OF TEST SETUP	41
1	8.3	TEST DATA	
19	APP	ENDIX	
1	9.1	MAXIMUM CONDUCTED OUTPUT POWER	43
1	9.2	-6DB BANDWIDTH	45
1	9.3	Occupied Channel Bandwidth	47
1	.9.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	49
1	.9.5	BAND EDGE	51
1	.9.6	CONDUCTED RF SPURIOUS EMISSION	54
API	PENDI	X A: PHOTOGRAPHS OF TEST SETUP	58
API	PENDI	X B: PHOTOGRAPHS OF EUT	60

1 TEST SUMMARY

8

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(1) & 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Liesheng Electronic Co., Ltd.	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China.	
Manufacturer	Dongguan Liesheng Electronic Co., Ltd.	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China.	
Factory	Dongguan Zhengrong Electronic Co., Ltd.	
Address	No.4, Shugang Avenue, Hongmei Town, Dongguan City, Guangdong	
Product Name	Wireless Earphones	
Test Model No.	Haylou X1 Pro	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	NA
Software Version	NA
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	internal Antenna
Antenna Gain:	-0.63 dBi(provided by applicant)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.7V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
ТХ	Keep the EUT in transmitting mode	
Demonstry Only the date of the work mode would be recorded in this remark		

Remark: Only the data of the worst mode would be recorded in this report.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter (UGREEN)	UGREEN	CD112	N/A	N/A
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Band Edges Measurement								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Power Spectrum Density								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Conducted Peak Output Power								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Minimum 6dB Bandwidth						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	

Report No.: BLA-EMC-202110-A7703 Page 10 of60

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
	1				

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Shield room	SKET	833	N/A	25/11/2020	24/11/2023				
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022				
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022				
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022				
EMI software	EZ	EZ-EMC	N/A	N/A	N/A				

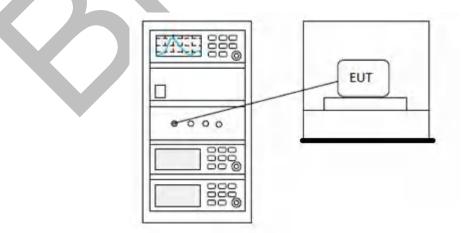
Test Equipment Of Antenna Requirement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	

Test Equipment Of Radiated Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	10/11/2020	9/11/2023			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022			

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	10/11/2020	9/11/2023		
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022		
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022		
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022		
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022		
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022		
EMI software	EZ	EZ-EMC	N/A	N/A	N/A		
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022		
				1			

Test Equipment Of Conducted Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			


10 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Sven						
Temperature	25°C						
Humidity	52%						

10.1 LIMITS

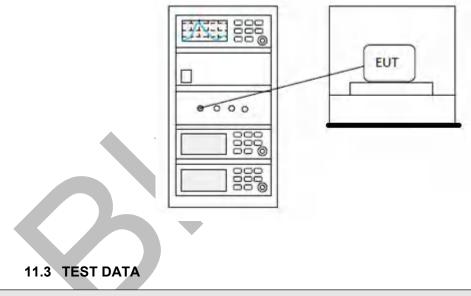
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

10.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202110-A7703 Page 13 of60

10.3 TEST DATA

Pass: Please Refer To Appendix: For Details


11 POWER SPECTRUM DENSITY

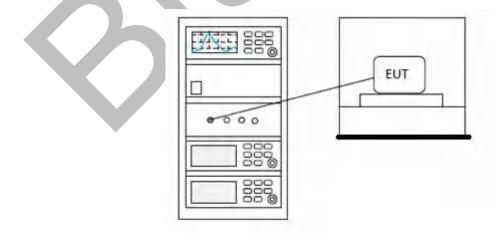
Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 11.10.2						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Sven						
Temperature	25°C						
Humidity	52%						

11.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

11.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: For Details


12 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Sven						
Temperature	25°C						
Humidity	52%						

12.1 LIMITS

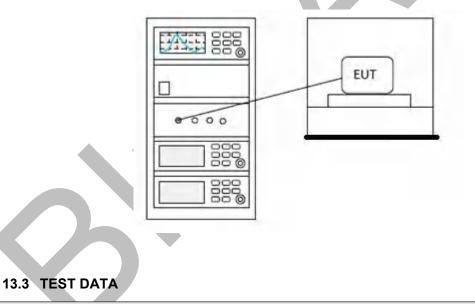
Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for \geq 50 hopping channels		
902-928	0.25 for $25 \le$ hopping channels $<$ 50		
	1 for digital modulation		
	1 for \geq 75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5705 5050	1 for frequency hopping systems and digital		
5725-5850	modulation		

12.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202110-A7703 Page 16 of60

12.3 TEST DATA

Pass: Please Refer To Appendix: For Details


13 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247							
Test Method	ANSI C63.10 (2013) Section 11.8.1							
Test Mode (Pre-Scan)	ТХ							
Test Mode (Final Test)	ТХ							
Tester	Sven							
Temperature	25°C							
Humidity	52%							

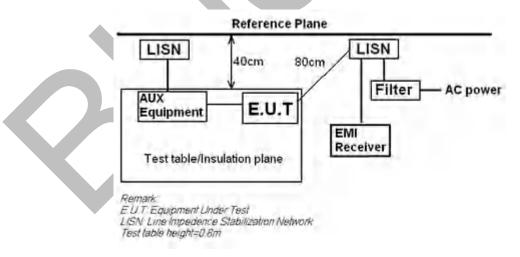
13.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

13.2 BLOCK DIAGRAM OF TEST SETUP

Pass: Please Refer To Appendix: For Details

14 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247							
Test Method	ANSI C63.10 (2013) Section 6.2							
Test Mode (Pre-Scan)	ТХ							
Test Mode (Final Test)	ТХ							
Tester	Sven							
Temperature	25°C							
Humidity	52%							

14.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
·		•				

*Decreases with the logarithm of the frequency.

14.2 BLOCK DIAGRAM OF TEST SETUP

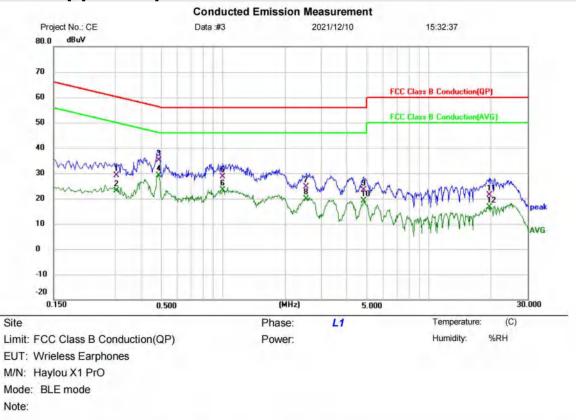
14.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

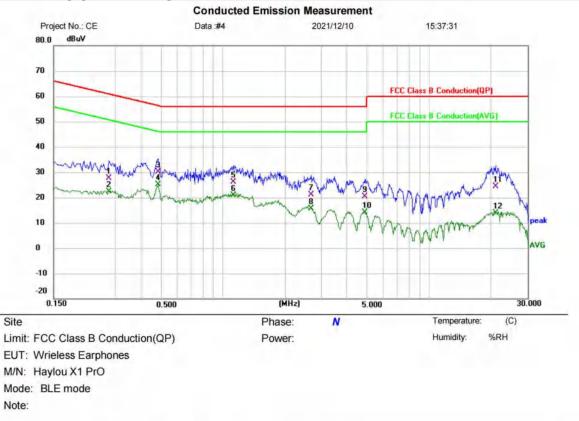
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

14.4 TEST DATA

[TestMode: TX]; [Line: Line]


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3020	19.31	9.85	29.16	60.19	-31.03	QP	
2		0.3020	13.33	9.85	23.18	50.19	-27.01	AVG	
3	_	0.4860	25.24	9.87	35.11	56.24	-21.13	QP	
4	*	0.4860	19.37	9.87	29.24	46.24	-17.00	AVG	
5		0.9980	18.61	9.92	28.53	56.00	-27.47	QP	
6		0.9980	13.49	9.92	23.41	46.00	-22.59	AVG	
7	_	2.5380	14.55	9.96	24.51	56.00	-31.49	QP	
8		2.5380	10.04	9.96	20.00	46.00	-26.00	AVG	
9		4.8060	13.51	9.99	23.50	56.00	-32.50	QP	
10		4.8060	9.03	9.99	19.02	46.00	-26.98	AVG	
11		19.5700	10.99	10.43	21.42	60.00	-38.58	QP	
12		19.5700	6.23	10.43	16.66	50.00	-33.34	AVG	
						_			

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX]; [Line: Nutral]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2779	17.89	9.77	27.66	60.88	-33.22	QP	
2		0.2779	12.53	9.77	22.30	50.88	-28.58	AVG	
3		0.4820	20.30	9.79	30.09	56.30	-26.21	QP	
4	*	0.4820	15.37	9.79	25.16	46.30	-21.14	AVG	
5		1.1220	16.36	9.84	26.20	56.00	-29.80	QP	
6		1.1220	10.94	9.84	20.78	46.00	-25.22	AVG	
7		2.6780	11.28	9.89	21.17	56.00	-34.83	QP	
8		2.6780	5.85	9.89	15.74	46.00	-30.26	AVG	
9		4.8500	10.45	9.95	20.40	56.00	-35.60	QP	
10		4.8500	4.14	9.95	14.09	46.00	-31.91	AVG	
11		20.9580	13.88	10.41	24.29	60.00	-35.71	QP	
12		20.9580	3.58	10.41	13.99	50.00	-36.01	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

15.1 CONCLUSION

Standard Requirement:

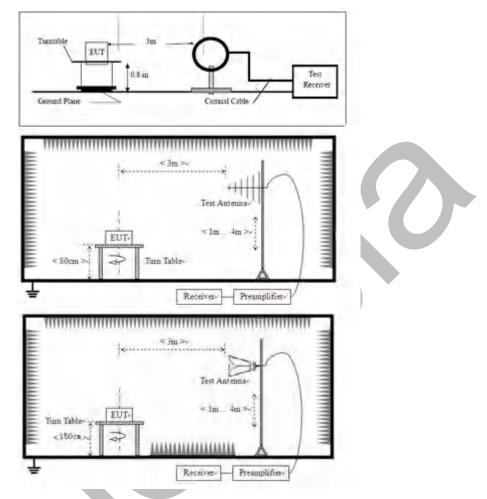
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.63dBi.

16 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	York						
Temperature	25℃						
Humidity	52%						


16.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

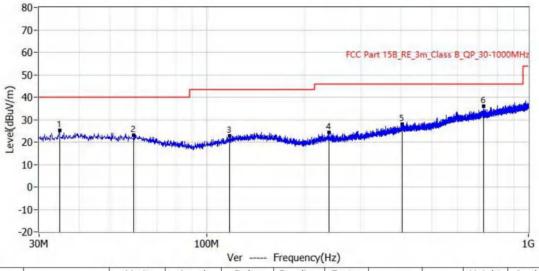
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

16.4 TEST DATA

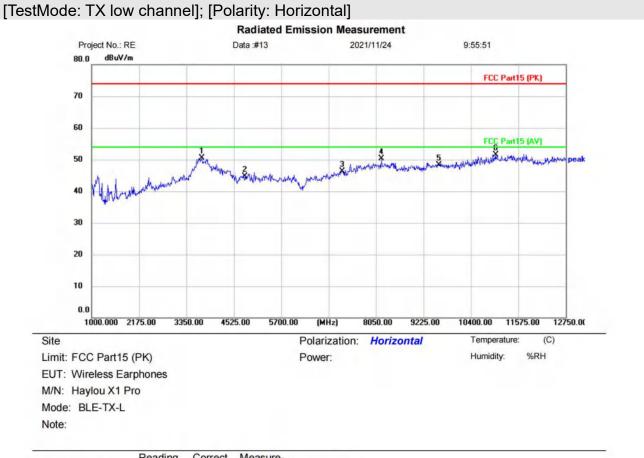
[TestMode: TX]; [Polarity: Horizontal]

1 LL. 100 / 33 23033701

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202110-A77	
EUT: Wireless Earphones	Test Engineer: York	
M/N: Haylou X1 Pro	Temperature:	
S/N:	Humidity:	
Test Mode: BLE mode	Test Voltage:	
Note:	Test Data: 2021-12-10 11:38:12	

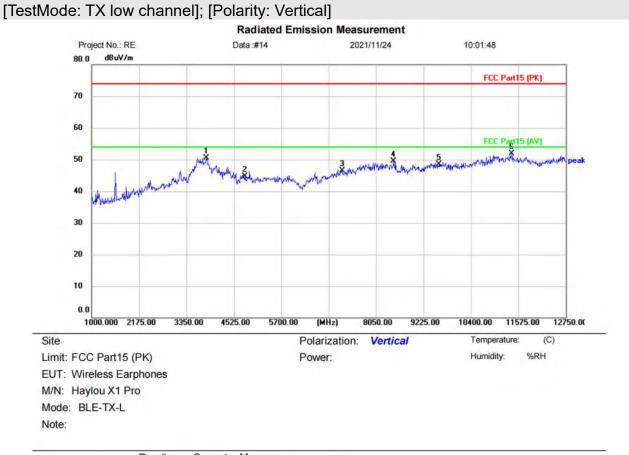

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	47.581MHz	40.0	23.9	-16.1	0.0	23.9	QP	Hor	100.0	288.0
2*	102.750MHz	43.5	22.3	-21.2	1.4	20.9	QP	Hor	100.0	20.0
3*	159.495MHz	43.5	25.3	-18.2	2.0	23.3	QP	Hor	100.0	74.0
4*	292.264MHz	46.0	24.6	-21.4	0.7	23.9	QP	Hor	100.0	294.0
5*	512.333MHz	46.0	29.7	-16.3	0.9	28.8	QP	Hor	100.0	0.0
6*	957.926MHz	46.0	37.1	-8.9	1.4	35.7	QP	Hor	100.0	27.0

[TestMode: TX]; [Polarity: Vertical]


122.00 / JJ 23033401

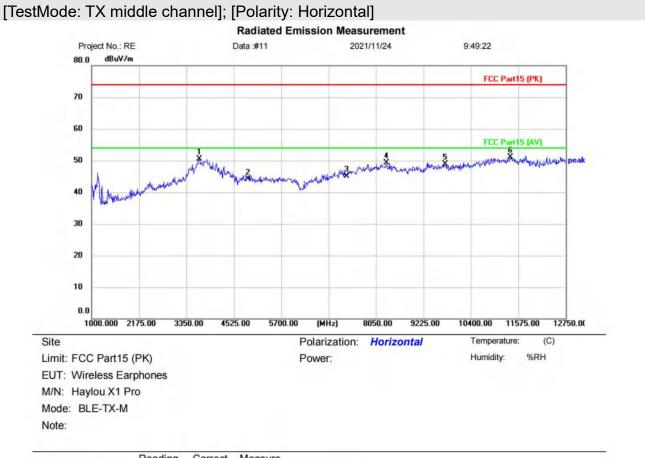
Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202110-A77	
EUT: Wireless Earphones	Test Engineer: York	
M/N: Haylou X1 Pro	Temperature:	
S/N:	Humidity:	
Test Mode: BLE mode	Test Voltage:	
Note:	Test Data: 2021-12-10 11:40:16	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	34.729MHz	40.0	25.1	-14.9	1.6	23.5	QP	Ver	100.0	117.0
2*	59.100MHz	40.0	23.2	-16.8	-0.3	23.5	QP	Ver	100.0	42.0
3*	117.543MHz	43.5	22.8	-20.7	0.3	22.5	QP	Ver	100.0	92.0
4*	239.520MHz	46.0	24.3	-21.7	1.5	22.8	QP	Ver	100.0	178.0
5*	405.026MHz	46.0	27.9	-18.1	0.6	27.3	QP	Ver	100.0	0.0
6*	723.550MHz	46.0	36.0	-10.0	3.5	32.5	QP	Ver	100.0	101.0



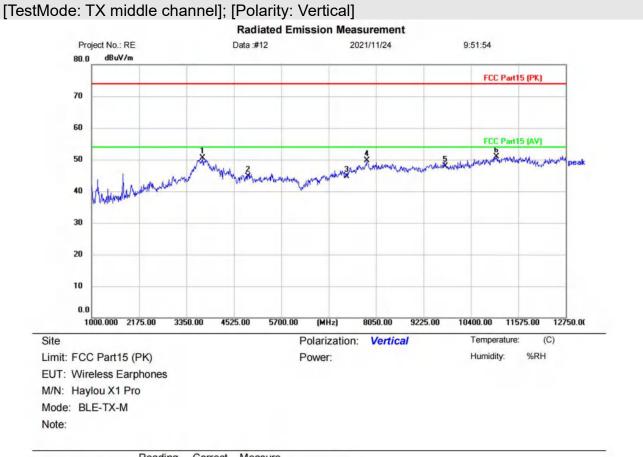
No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3726.000	42.85	7.70	50.55	74.00	-23.45	peak		_
2		4804.000	41.04	3.71	44.75	74.00	-29.25	peak		
3		7206.000	40.41	5.96	46.37	74.00	-27.63	peak		
4		8179.250	42.08	8.18	50.26	74.00	-23.74	peak		
5		9608.000	39.11	9.29	48.40	74.00	-25.60	peak		
6	*	11011.000	39.48	11.99	51.47	74.00	-22.53	peak		

(Reference Only



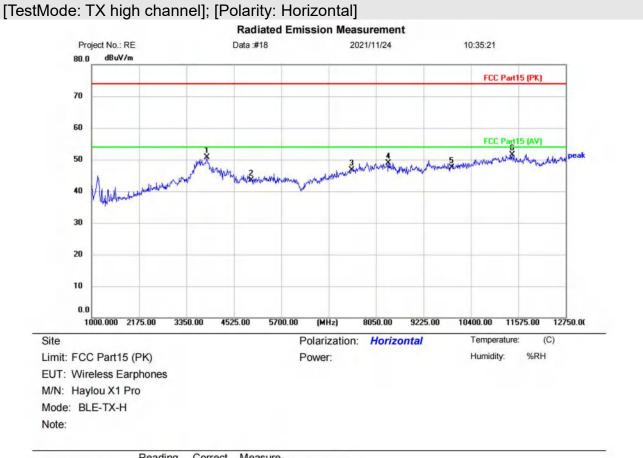
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3843.500	43.42	7.12	50.54	74.00	-23.46	peak		
2		4804.000	40.93	3.71	44.64	74.00	-29.36	peak		
3		7206.000	40.59	5.96	46.55	74.00	-27.45	peak		
4		8484.750	41.44	8.16	49.60	74.00	-24.40	peak		
5		9608.000	39.17	9.29	48.46	74.00	-25.54	peak		
6	*	11410.500	40.03	11.78	51.81	74.00	-22.19	peak		

(Reference Only



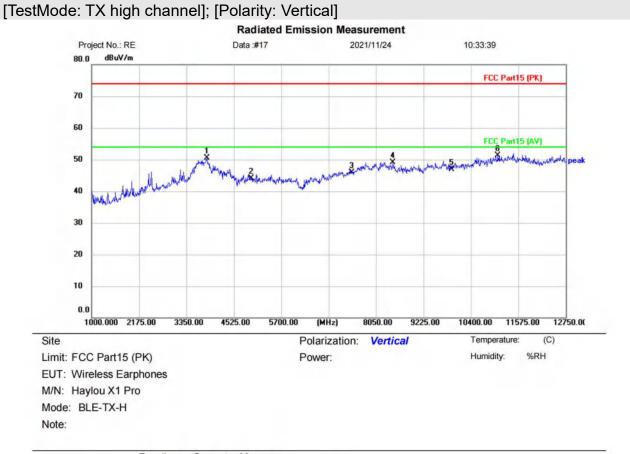
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3667.250	42.82	7.75	50.57	74.00	-23.43	peak		
2		4884.000	40.79	3.34	44.13	74.00	-29.87	peak		
3		7326.000	38.65	6.44	45.09	74.00	-28.91	peak		
4		8308.500	40.99	8.25	49.24	74.00	-24.76	peak		
5		9768.000	39.29	9.63	48.92	74.00	-25.08	peak		
6	*	11375.250	39.24	11.79	51.03	74.00	-22.97	peak		

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3749.500	42.82	7.69	50.51	74.00	-23.49	peak		
2		4884.000	41.45	3.34	44.79	74.00	-29.21	peak		
3		7326.000	38.27	6.44	44.71	74.00	-29.29	peak		
4		7815.000	41.95	7.72	49.67	74.00	-24.33	peak		
5		9768.000	38.18	9.63	47.81	74.00	-26.19	peak		
6	*	11034.500	38.84	12.00	50.84	74.00	-23.16	peak		

(Reference Only



No.	Mk	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3855.250	43.82	6.97	50.79	74.00	-23.21	peak		
2		4960.000	39.74	3.75	43.49	74.00	-30.51	peak		
3		7440.000	39.83	6.86	46.69	74.00	-27.31	peak		
4		8355.500	40.63	8.27	48.90	74.00	-25.10	peak		
5		9920.000	37.43	10.16	47.59	74.00	-26.41	peak		
6	*	11422.250	39.71	11.80	51.51	74.00	-22.49	peak		

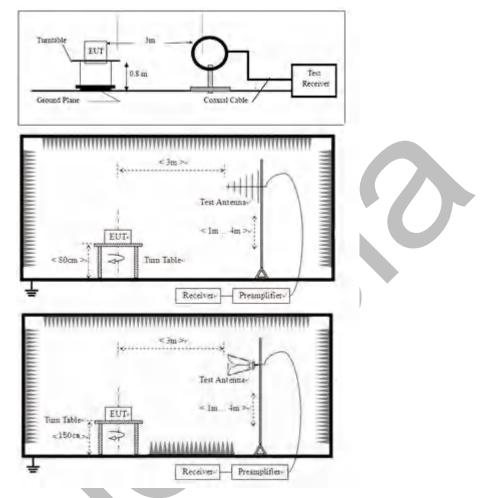
(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3855.250	43.57	6.97	50.54	74.00	-23.46	peak		
2		4960.000	40.29	3.75	44.04	74.00	-29.96	peak		
3		7440.000	39.05	6.86	45.91	74.00	-28.09	peak		
4		8461.250	40.98	8.19	49.17	74.00	-24.83	peak		
5		9920.000	36.77	10.16	46.93	74.00	-27.07	peak		
6	*	11069.750	39.39	12.00	51.39	74.00	-22.61	peak		

(Reference Only

17 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	тх
Test Mode (Final Test)	ТХ
Tester	York
Temperature	25°C
Humidity	52%


17.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

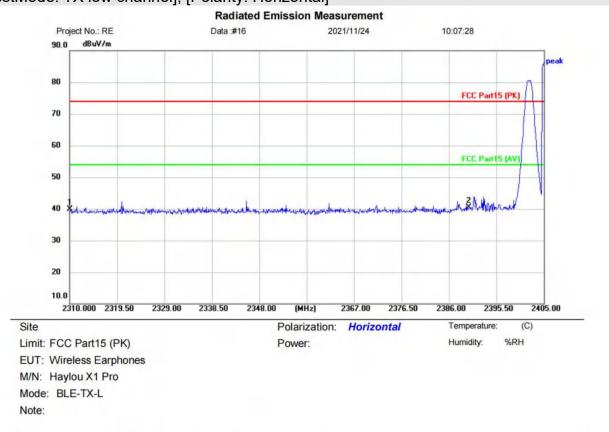
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

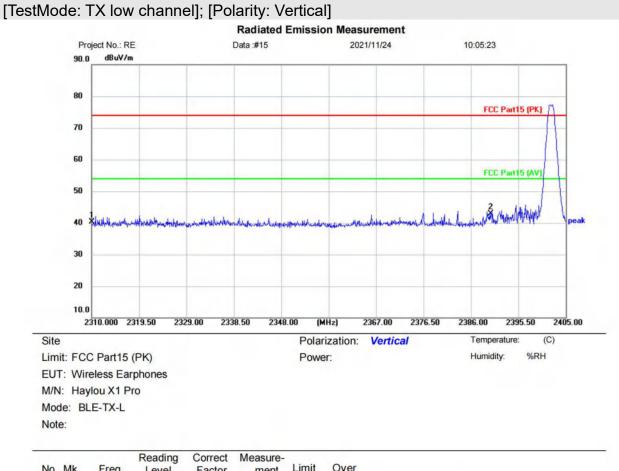
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

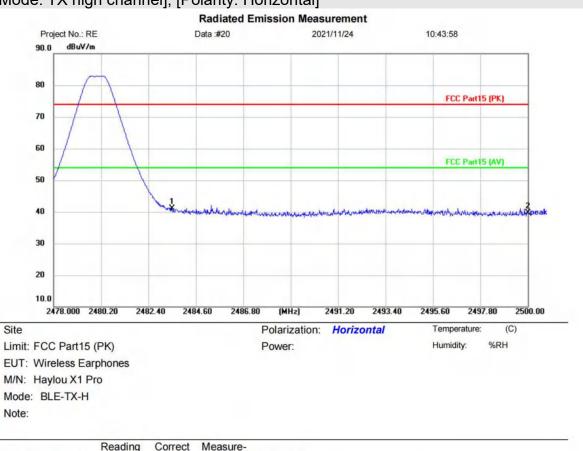
17.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.78	-3.93	39.85	74.00	-34.15	peak		
2	*	2390.000	44.07	-3.58	40.49	74.00	-33.51	peak		

*:Maximum data x:Over limit !:over margin

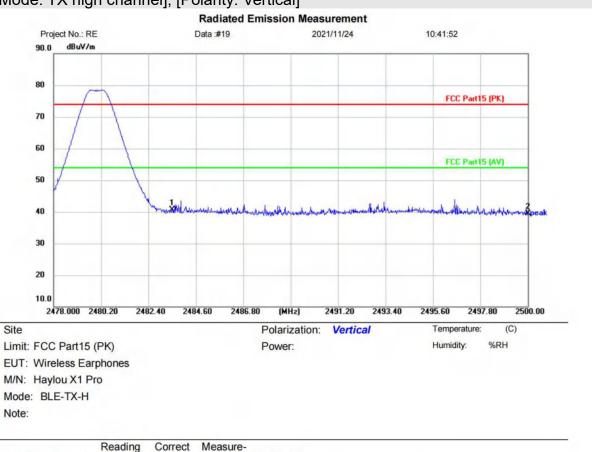
(Reference Only



Freq.	Level	Factor	ment	Limit	Over			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
2310.000	44.29	-3.93	40.36	74.00	-33.64	peak		
2390.000	46.46	-3.58	42.88	74.00	-31.12	peak		
	MHz 2310.000		MHz dBuV dB/m 2310.000 44.29 -3.93	MHz dBuV dB/m dBuV/m 2310.000 44.29 -3.93 40.36	MHz dBuV dB/m dBuV/m dBuV/m 2310.000 44.29 -3.93 40.36 74.00	MHz dBuV dB/m dBuV/m dBuV/m dB 2310.000 44.29 -3.93 40.36 74.00 -33.64	MHz dBuV dB/m dBuV/m dBuV/m dB Detector 2310.000 44.29 -3.93 40.36 74.00 -33.64 peak	MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment 2310.000 44.29 -3.93 40.36 74.00 -33.64 peak

*:Maximum data x:Over limit !:over margin

(Reference Only



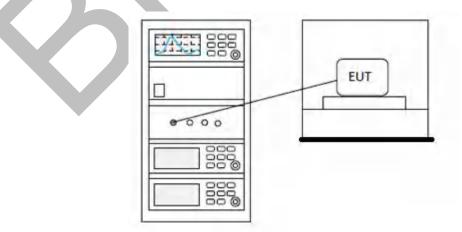
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	44.19	-3.14	41.05	74.00	-32.95	peak		
2		2500.000	42.72	-3.08	39.64	74.00	-34.36	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
*	2483.500	43.83	-3.14	40.69	74.00	-33.31	peak		
	2500.000	42.49	-3.08	39.41	74.00	-34.59	peak		
		MHz * 2483.500	MHz dBuV * 2483.500 43.83	MHz dBuV dB/m * 2483.500 43.83 -3.14	MHz dBuV dB/m dBuV/m * 2483.500 43.83 -3.14 40.69	MHz dBuV dB/m dBuV/m dBuV/m * 2483.500 43.83 -3.14 40.69 74.00	MHz dBuV dB/m dBuV/m dBuV/m dB * 2483.500 43.83 -3.14 40.69 74.00 -33.31	MHz dBuV dB/m dBuV/m dBuV/m dB Detector * 2483.500 43.83 -3.14 40.69 74.00 -33.31 peak	MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment * 2483.500 43.83 -3.14 40.69 74.00 -33.31 peak

*:Maximum data x:Over limit !:over margin (Reference Only


18 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Sven
Temperature	25°C
Humidity	52%

18.1 LIMITS

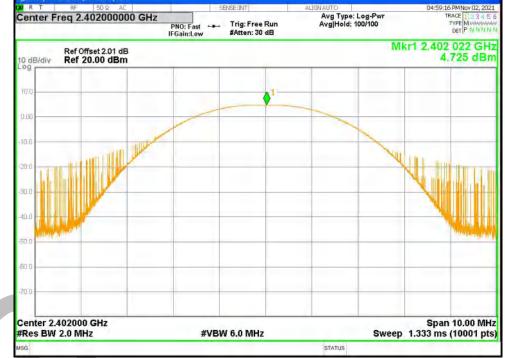
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

18.2 BLOCK DIAGRAM OF TEST SETUP

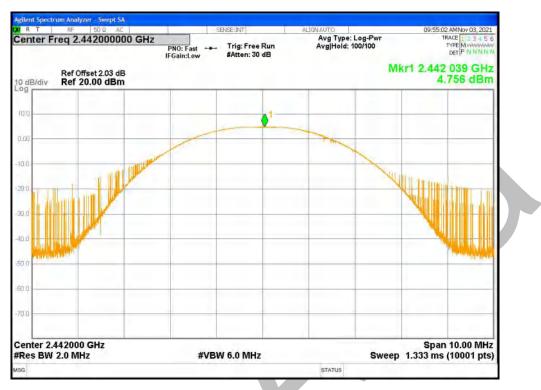
Report No.: BLA-EMC-202110-A7703 Page 42 of60

18.3 TEST DATA

Pass: Please Refer To Appendix: For Details

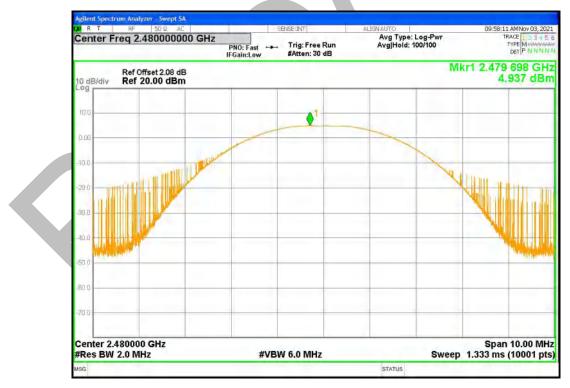

19 APPENDIX

19.1 MAXIMUM CONDUCTED OUTPUT POWER


Condition	Mode	Frequency	Antenna	Conducted Power	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	4.725	4.725	30	Pass
	1M						
NVNT	BLE	2442	Ant1	4.756	4.756	30	Pass
	1M						
NVNT	BLE	2480	Ant1	4.937	4.937	30	Pass
	1M						

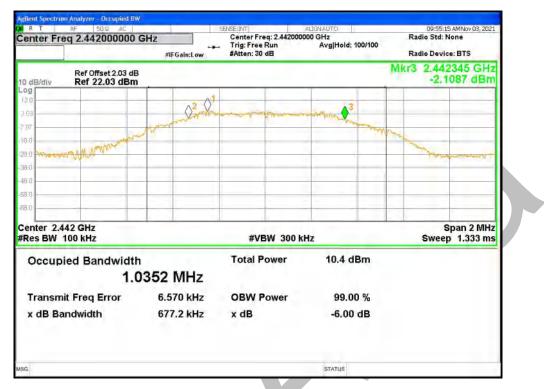
Pent Spectrum Analyzer - Swept SA R T RF SD2 AC SENSE::NT ALISNAUTO Drafer Frag 2 402000000 GHz Avg Type: Log-Pwr

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1


19.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	BLE	2402	Ant1	0.663	0.5	Pass
	1M					
NVNT	BLE	2442	Ant1	0.677	0.5	Pass
	1M					
NVNT	BLE	2480	Ant1	0.691	0.5	Pass
	1M					

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

19.3 OCCUPIED CHANNEL BANDWIDTH

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

1.0255 MHz

12.057 kHz

1.284 MHz

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.02546418
NVNT	BLE 1M	2442	Ant1	1.02481163
NVNT	BLE 1M	2480	Ant1	1.026118171

Aglent Spectrum Analyzer - Occupied EW A R T RF 502 AC SENSENT ALGNAUTO 04:59:22 PMNov02, 2021 Center Freq 2,402000000 GHz Radio Std: None Radio Std: None Radio Device: BTS Ref Offset 2.01 dB 10 dB/d/v Ref 22.01 dB 10 dB/dv Ref

Total Power

OBW Power

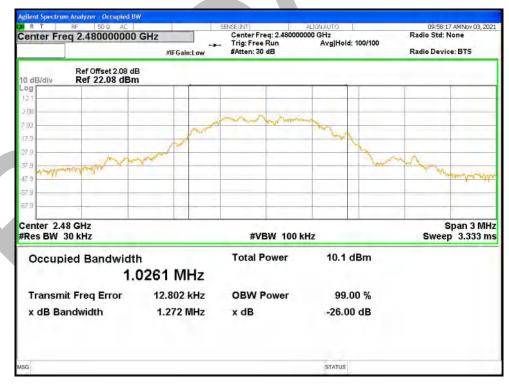
x dB

9.93 dBm

99.00 %

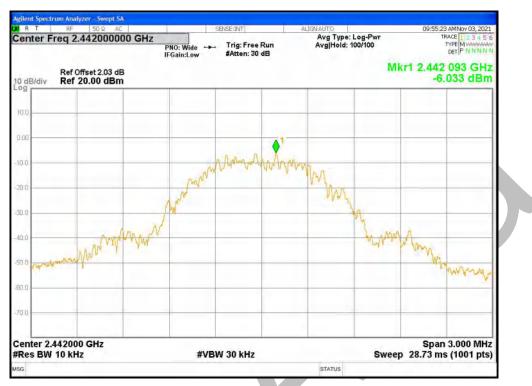
-26.00 dB

STATUS


OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1


19.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.135	8	Pass
NVNT	BLE 1M	2442	Ant1	-6.033	8	Pass
NVNT	BLE 1M	2480	Ant1	-5.721	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

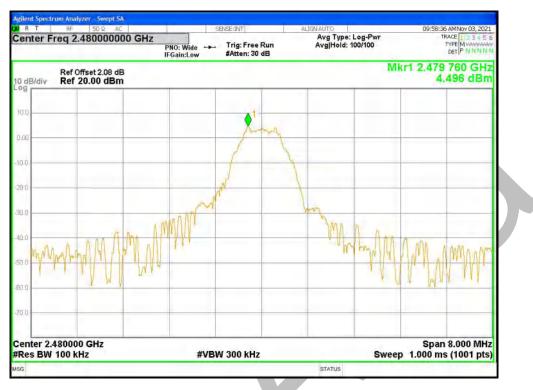
PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

19.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-57.55	-30	Pass
NVNT	BLE 1M	2480	Ant1	-48.17	-30	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



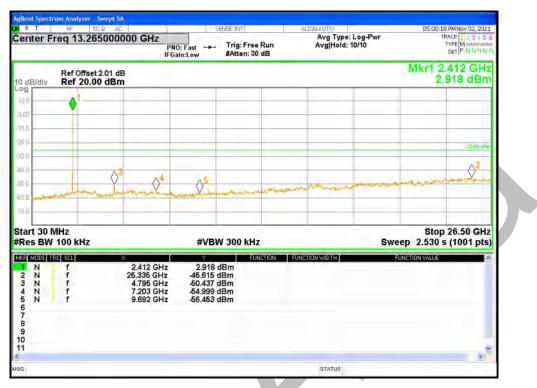
T RF 50.0 AC	SENSE:INT ALIGNAT		04:59:44 PM Nov 02, 2021
nter Freq 2.356000000 GH	PNO: Fast ++- Trig:	Avg Type: Lo Free Run Avg Hold: 100 n: 30 dB	
Ref Offset 2.01 dB B/div Ref 20.00 dBm			Mkr1 2.402 3 GHz 4.008 dBm
3			1
0			
3			
			A ² A
3			An and the
provide de la main de maine	Laster March and an and and and and and and and and	ومعدود وسيعدد المراجع والمحد ومحرال	month Martin
2			
rt 2.30600 GHz es BW 100 kHz	#VBW 300	kHz	Stop 2.40600 GHz Sweep 9.600 ms (1001 pts
MODE TRC SCL		FUNCTION FUNCTION WIDTH	FUNCTION VALUE
N f 2.400 N f 2.390	2.3 GHz 4.008 dBm 0 GHz 44.723 dBm 0 GHz 57.788 dBm 6 GHz 54.322 dBm		
N 1 f 2.389			
			81
		STATUŚ	18

S,

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission


19.6 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.76	-30	Pass
NVNT	BLE 1M	2442	Ant1	-49.58	-30	Pass
NVNT	BLE 1M	2480	Ant1	-49.81	-30	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

R T RF 50.0 AC	SENSE	T	ALIGN AUTO			AMNov 03, 2021
enter Freq 13.265000000 G	PNO: Fast +++ Ing	g: Free Run ten: 30 dB	Avg Type: Avg Hold: 1	Log-Pwr 0/10		TYPE MINING
Ref Offset 2.03 dB dB/div Ref 20.00 dBm						439 GHz 240 dBm
107		_				
0.0				1		
20.0				1.000		
0.0		_	_	_		-25.78 alim
40.0	n4					<u>∂</u> 2
au u	V 15	-			man	and from the
50.0 months when and the	- Andrew - Vinner	and the second				
10.0		_	_			
tart 30 MHz Res BW 100 kHz	#VBW 30	0 kHz		Swe	Stop ep 2.530 s	26.50 GHz (1001 pts)
2 N f 25.22 3 N f 4.87 4 N f 7.33	9 GHz 4.240 dBm 9 GHz 45.366 dBm 74 GHz 49.505 dBm 16 GHz 49.452 dBm 80 GHz 56.845 dBm	FUNCTION	FUNCTION WIDTH	F	JNCTION VALUE	~
5 N f 9.93 6 7 8 9 10						*
G			STATUŚ			

0

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

(Reference to the test report No. BLA-EMC-202110-A7701)

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.