

TEST REPORT

Product Name : Haylou Solar

Brand Mark : N/A

Model No. : Haylou-LS05, Haylou-LS05-1

FCC ID : 2AMQ6-LS05

Report Number : BLA-EMC-202004-A2001

Date of Sample Receipt : 2020/4/13

Date of Test : 2020/4/13 to 2020/4/23

Date of Issue : 2020/4/23

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Liesheng Electronic Co., Ltd.
13/F, Project Phrase 2 of GaoshengTechTower, No.5, Longxi Road,
Nancheng, Dongguan, Guangdong, China

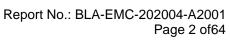
Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

TEL: +86-755-28682673 FAX: +86-755-28682673


Compiled by:

Approved by:

Review by:

Date: 2020/4

Sweet. Linng

REPORT REVISE RECORD

Version No.	Version No. Date Description	
00	2020/4/23	Original

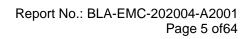


TABLE OF CONTENTS

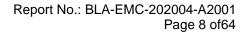
1	TEST SUMMARY	6
2	GENERAL INFORMATION	7
3	GENERAL DESCRIPTION OF E.U.T.	
4	TEST ENVIRONMENT	
5	TEST MODE	
6	MEASUREMENT UNCERTAINTY	8
7		9
8	LABORATORY LOCATION	g
9	TEST INSTRUMENTS LIST	10
CC	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	13
	LIMITS	
	BLOCK DIAGRAM OF TEST SETUP	
	PROCEDURE	13
	TEST DATA	
CC	ONDUCTED BAND EDGES MEASUREMENT	17
	LIMITS	17
	BLOCK DIAGRAM OF TEST SETUP	
	TEST DATA	18
R/	ADIATED SPURIOUS EMISSIONS	19
	LIMITS	19
	BLOCK DIAGRAM OF TEST SETUP	20
	PROCEDURE	20
	TEST DATA	22
R/	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	26
	LIMITS	26
	BLOCK DIAGRAM OF TEST SETUP	27
	PROCEDURE	27
	TEST DATA	29
CC	ONDUCTED SPURIOUS EMISSIONS	30
	LIMITS	30

BLOCK DIAGRAM OF TEST SETUP	30
TEST DATA	31
POWER SPECTRUM DENSITY	
LIMITS	32
BLOCK DIAGRAM OF TEST SETUP	32
TEST DATA	32
CONDUCTED PEAK OUTPUT POWER	
LIMITS	
BLOCK DIAGRAM OF TEST SETUP	33
TEST DATA	34
MINIMUM 6DB BANDWIDTH	
LIMITS	35
BLOCK DIAGRAM OF TEST SETUP	35
TEST DATA	35
ANTENNA REQUIREMENT	
Conclusion	36
10 APPENDIX	
10.1 APPENDIX: DTS BANDWIDTH	
Test Result	37
Test Graphs	38
10.2 APPENDIX: OCCUPIED CHANNEL BANDWIDTH	40
Test Result	40
Test Graphs	41
10.3 APPENDIX: MAXIMUM CONDUCTED OUTPUT P	DWER
Test Result	43
Test Graphs	44
10.4 APPENDIX: MAXIMUM POWER SPECTRAL DENS	тү46
Test Result	46
Test Graphs	47
10.5 APPENDIX: BAND EDGE MEASUREMENTS	49
Test Result	49
Test Graphs	50
10.6 APPENDIX: CONDUCTED SPURIOUSEMISSION	51
Test Result	51

	Test Graphs	52
APPI	ENDIX A: PHOTOGRAPHS OF TEST SETUP	56
4 DDI	ENDLY B. BHOTOCD A BHS OF FUT	E 0

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.4:2014	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass



2 GENERAL INFORMATION

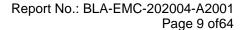
Applicant	Dongguan Liesheng Electronic Co., Ltd.			
	13/F, Project Phrase 2 of GaoshengTechTower,No.5, Longxi Road, Nancheng, Dongguan, Guangdong, China			
Manufacturer	Dongguan Liesheng Electronic Co., Ltd.			
	13/F, Project Phrase 2 of GaoshengTechTower,No.5, Longxi Road, Nancheng, Dongguan, Guangdong, China			
Product Name	Haylou Solar			
Test Model No.	Haylou-LS05			

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Internal Antenna
Antenna Gain:	0.58dBi

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.7V


5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.
Remark: Full ba	ttery is used during all test except ac conducted emission

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission	±4.34dB	
Radiated Emission	±4.24dB	
Radiated Emission	±4.68dB	
AC Power Line Conducted Emission	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

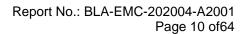
7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A
AC Adapter	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

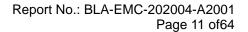
BlueAsia of Technical Services(Shenzhen) Co., Ltd.


IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

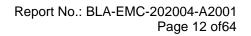


9 TEST INSTRUMENTS LIST

Test Equipment Of	est Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Shield room	SKET	833	N/A	6/10/2018	6/9/2021			
Receiver	R&S	ESPI3	101082	5/7/2019	5/7/2020			
LISN	R&S	ENV216	3560.6550.15	7/4/2019	7/3/2020			
LISN	AT	AT166-2	AKK1806000003	12/18/2019	12/17/2020			
EMI software	EZ	EZ-EMC	N/A	N/A	N/A			

Test Equipment Of 0	Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020		
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020		
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020		
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020		

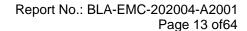
Test Equipment Of	est Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	5/8/2018	5/7/2021		
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020		
Receiver	R&S	ESR7	101199	5/7/2019	5/6/2020		
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2018	7/13/2020		
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2018	7/13/2020		



Amplifier SKET LNPA-0118-45 N/A 7/4/2019 7/3/2020 ΕZ EMI software EZ-EMC N/A N/A N/A 00102 2/14/2019 2/13/2020 Loop antenna SCHNARZBECK FMZB1519B SKET N/A N/A Controller N/A N/A BLA-XC-02 N/A Coaxial Cable BlueAsia N/A N/A Coaxial Cable BlueAsia BLA-XC-03 N/A N/A N/A Coaxial Cable BlueAsia BLA-XC-01 N/A N/A N/A

Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	5/8/2018	5/7/2021		
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020		
Receiver	R&S	ESR7	101199	5/7/2019	5/6/2020		
broadband Antenna	Schwarzbeck	VULB9168 00836 P:00227		7/14/2018	7/13/2020		
Horn Antenna	Schwarzbeck	9120D 01892 P:00331		7/14/2018	7/13/2020		
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2019	7/3/2020		
EMI software	EZ	EZ-EMC	N/A	N/A	N/A		
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2020		
Controller	SKET	N/A	N/A	N/A	N/A		
Coaxial Cable	Coaxial Cable BlueAsia		N/A	N/A	N/A		
Coaxial Cable	BlueAsia	BLA-XC-03 N/A		N/A	N/A		
Coaxial Cable	BlueAsia	BLA-XC-01 N/A		N/A	N/A		

Test Equipment Of	Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020	

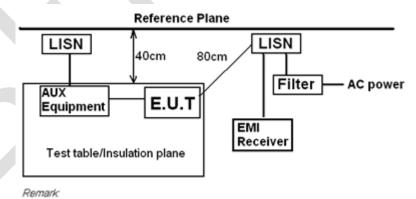


Agilent N9020A MY49100060 Spectrum 12/18/2019 12/17/2020 Signal Generator Agilent N5182A MY49060650 12/18/2019 12/17/2020 Signal Generator Agilent E8257D MY44320250 5/7/2019 5/6/2020

Test Equipment Of	Test Equipment Of Power Spectrum Density							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020			
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020			
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020			
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020			

Test Equipment Of Conducted Peak Output Power							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020		
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020		
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020		
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020		

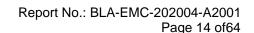
Test Equipment Of Minimum 6dB Bandwidth							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2020		
Spectrum	Agilent	N9020A	MY49100060	12/18/2019	12/17/2020		
Signal Generator	Agilent	N5182A	MY49060650	12/18/2019	12/17/2020		
Signal Generator	Agilent	E8257D	MY44320250	5/7/2019	5/6/2020		


CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of	of the frequency.					


BLOCK DIAGRAM OF TEST SETUP

E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m

PROCEDURE

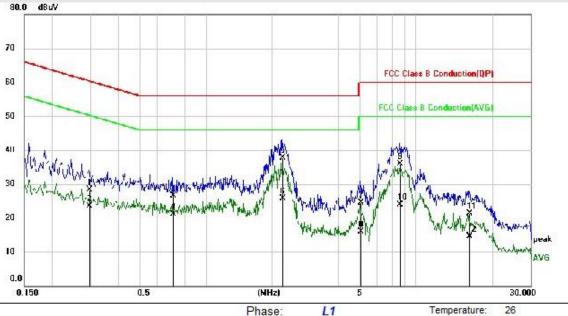
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as

the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Humidity:


60 %

TEST DATA

[TestMode: TX]; [Line: Line]

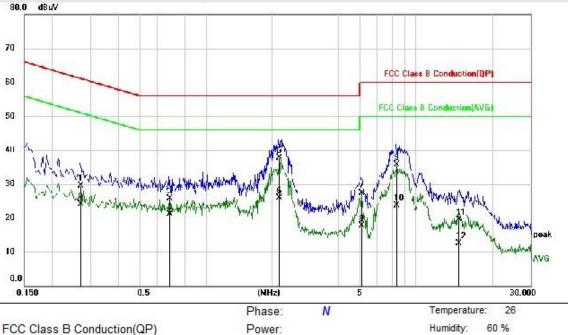
Power:AC120V/60Hz

Limit: FCC Class B Conduction(QP)

EUT: Haylou Solar M/N: Haylou-LS05 Mode: BT mode

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2940	18.51	9.79	28.30	60.41	-32.11	QP	
2	0.2940	13.67	9.79	23.46	50.41	-26.95	AVG	
3	0.7100	16.86	9.68	26.54	56.00	-29.46	QP	
4	0.7100	11.43	9.68	21.11	46.00	-24.89	AVG	
5 *	2.2300	27.95	9.82	37.77	56.00	-18.23	QP	
6	2.2300	15.98	9.82	25.80	46.00	-20.20	AVG	
7	5.0420	14.54	9.88	24.42	60.00	-35.58	QP	
8	5.0420	5.93	9.88	15.81	50.00	-34.19	AVG	
9	7.6180	26.06	9.86	35.92	60.00	-24.08	QP	
10	7.6180	14.06	9.86	23.92	50.00	-26.08	AVG	
11	15.7180	11.41	9.96	21.37	60.00	-38.63	QP	
12	15.7180	4.58	9.96	14.54	50.00	-35.46	AVG	


Power:

Test Result: Pass

[TestMode: TX]; [Line: Nutral]

Power:AC120V/60Hz

Limit: FCC Class B Conduction(QP)

EUT: Haylou Solar M/N: Haylou-LS05 Mode: BT mode

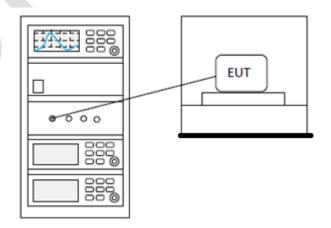
Note:

Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2700	19.61	9.82	29.43	61.12	-31.69	QP	
2	0.2700	14.20	9.82	24.02	51.12	-27.10	AVG	
3	0.6860	16.03	9.74	25.77	56.00	-30.23	QP	
4	0.6860	11.33	9.74	21.07	46.00	-24.93	AVG	
5 *	2.1540	27.79	9.86	37.65	56.00	-18.35	QP	
6	2.1540	16.00	9.86	25.86	46.00	-20.14	AVG	
7	5.0860	17.43	9.91	27.34	60.00	-32.66	QP	
8	5.0860	7.79	9.91	17.70	50.00	-32.30	AVG	
9	7.3580	25.81	9.85	35.66	60.00	-24.34	QP	
10	7.3580	13.85	9.85	23.70	50.00	-26.30	AVG	
11	14.0660	9.52	10.00	19.52	60.00	-40.48	QP	
12	14.0660	2.46	10.00	12.46	50.00	-37.54	AVG	

Test Result: Pass

CONDUCTED BAND EDGES MEASUREMENT

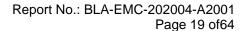

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	24℃					
Humidity	56%					

LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

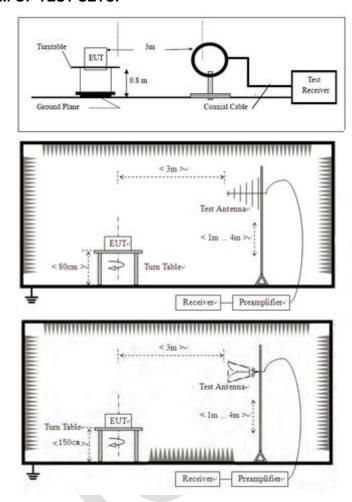


TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	24℃					
Humidity	55%					


LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

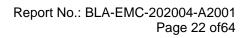
PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: BLA-EMC-202004-A2001

Page 21 of 64

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

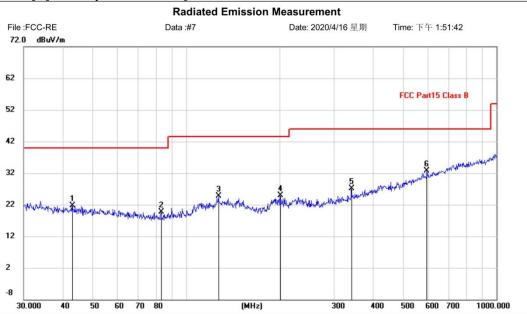
- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA

[TestMode: TX]						
_		Tes	st channel:low	est		
			Peak value:			
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4804.00	43.4	2.38	45.78	74	-28.22	Vertical
7206.00	45.69	2.17	47.86	74	-26.14	Vertical
9608.00	46.03	2.06	48.09	74	-25.91	Vertical
12010.00	*			74		Vertical
14412.00	*			74		Vertical
4804.00	44.46	2.38	46.84	74	-27.16	Horizontal
7206.00	46.31	2.17	48.48	74	-25.52	Horizontal
9608.00	45.07	2.06	47.13	74	-26.87	Horizontal
12010.00	*			74		Horizontal
14412.00	*			74		Horizontal
		Tes	st channel:Mic	ldle		
			Peak value:			
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4882.00	42.23	0.17	42.4	74	-31.6	Vertical
7323.00	45.58	1.43	47.01	74	-26.99	Vertical
9764.00	48.02	1.26	49.28	74	-24.72	Vertical
12205.00	*			74		Vertical
14646.00	*			74		Vertical
4882.00	45.00	0.17	45.17	74	-28.83	Horizontal
7323.00	47.74	1.43	49.17	74	-24.83	Horizontal
9764.00	46.69	1.26	47.95	74	-26.05	Horizontal
12205.00	*			74		Horizontal
14646.00	*			74		Horizontal
		Tes	t channel:Higl	nest		
			Peak value:			
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n
4960.00	42.17	1.04	43.21	74	-30.79	Vertical

Report No.: BLA-EMC-202004-A2001 Page 23 of64

7440.00	46.62	2.59	49.21	74	-24.79	Vertical	
9920.00	45.48	2.74	48.22	74	-25.78	Vertical	
12400.00	*			74		Vertical	
14880.00	*			74		Vertical	
4960.00	44.58	1.04	45.62	74	-28.38	Horizontal	
7440.00	46.36	2.59	48.95	74	-25.05	Horizontal	
9920.00	47.18	2.74	49.92	74	-24.08	Horizontal	
12400.00	*			74		Horizontal	
14880.00	*			74		Horizontal	
Test Result	Test Result: Pass						


Temperature:

%

Humidity:

Polarization: Horizontal

DC3.7V

Limit: FCC Part15 Class B

EUT: Haylou Solar M/N: Haylou-LS05 Mode: BT mode

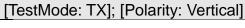
Note:

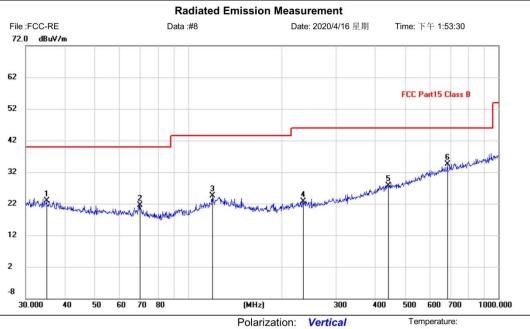
Site

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	42.8998	-2.65	24.35	21.70	40.00	-18.30	QP			
2	82.9385	0.43	19.23	19.66	40.00	-20.34	QP			
3	127.2176	1.72	22.91	24.63	43.50	-18.87	QP			
4	200.6881	4.87	20.06	24.93	43.50	-18.57	QP			
5	340.7817	1.89	25.12	27.01	46.00	-18.99	QP			
6 *	597.2234	1.47	31.15	32.62	46.00	-13.38	QP			

Power:

Distance: 3m


*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Test Result: Pass

Humidity:

%

Site Limit: FCC Part15 Class B

EUT: Haylou Solar M/N: Haylou-LS05 Mode: BT mode

Note:

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	35.0048	-0.30	23.19	22.89	40.00	-17.11	QP			
2	69.8450	0.23	21.21	21.44	40.00	-18.56	QP			
3	119.8556	1.78	22.68	24.46	43.50	-19.04	QP			
4	234.1684	0.01	22.60	22.61	46.00	-23.39	QP			
5	440.1963	-0.18	27.86	27.68	46.00	-18.32	QP			
6 *	684.7454	1.99	32.46	34.45	46.00	-11.55	QP			

Power:

Distance: 3m

DC3.7V

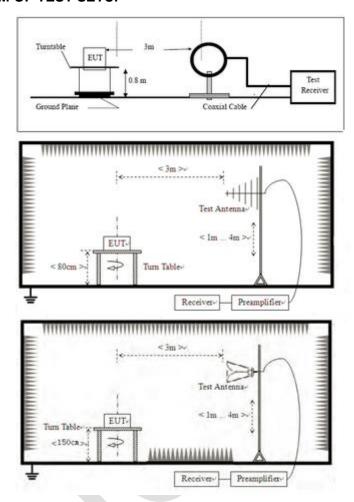
*:Maximum data x:Over limit !:over margin \(\text{Reference Only} \)

Test Result: Pass

Page 26 of64

RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	24 °C					
Humidity	55%					


LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

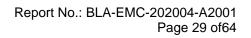
PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: BLA-EMC-202004-A2001

Page 28 of64

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

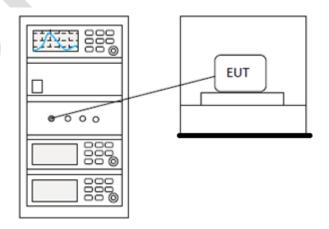
Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA

[TestMode: TX]							
Test channel:lowest							
Peak value:							
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio	
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n	
2310	44.97	-4.2	40.77	74	-33.23	Horizontal	
2390	45.95	-3.88	42.07	74	-31.93	Horizontal	
2310	45.12	-4.49	40.63	74	-33.37	Vertical	
2390	48.78	-4.21	44.57	74	-29.43	Vertical	
		F	Average value	:			
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB/ m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
2310	31.69	-4.2	27.49	54	-26.51	Horizontal	
2390	31.97	-3.88	28.09	54	-25.91	Horizontal	
2310	32.19	-4.49	27.7	54	-26.3	Vertical	
2390	33.41	-4.21	29.2	54	-24.8	Vertical	
		Tes	t channel:High	nest			
			Peak value:				
Frequency	Read Level	Correct	Level	Limit Line	Over Limit	Polarizatio	
(MHz)	(dBuV)	factor	(dBuV/m)	(dBuV/m)	(dB)	n	
2483.5	50.18	-3.38	46.8	74	-27.2	Horizontal	
2500	44.74	-3.3	41.44	74	-32.56	Horizontal	
2483.5	46.14	-3.77	42.37	74	-31.63	Vertical	
2500	50.37	-3.7	46.67	74	-27.33	Vertical	
		ŀ	Average value	:			
Frequency (MHz)	Read Level (dBuV)	Correct factor(dB/ m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
2483.5	33.17	-3.38	29.79	54	-24.21	Horizontal	
2500	33.25	-3.3	29.95	54	-24.05	Horizontal	
2483.5	32.55	-3.77	28.78	54	-25.22	Vertical	
2500	32.65	-3.7	28.95	54	-25.05	Vertical	
Test Result:	: Pass						

CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	57%					

LIMITS

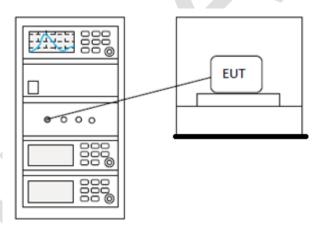
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 11.10.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	57%					

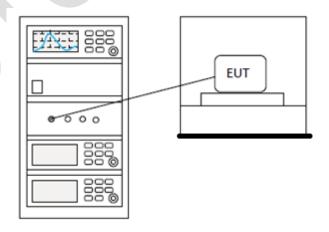
LIMITS

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous transmission

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 7.8.5		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	57%		

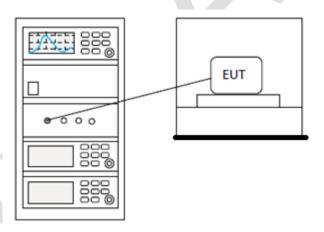
LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725 5050	1 for frequency hopping systems and digital
5725-5850	modulation

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.4:2014		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	57%		

LIMITS

T imit.	≥500 kHz	
Limit:	≥300 KHZ	

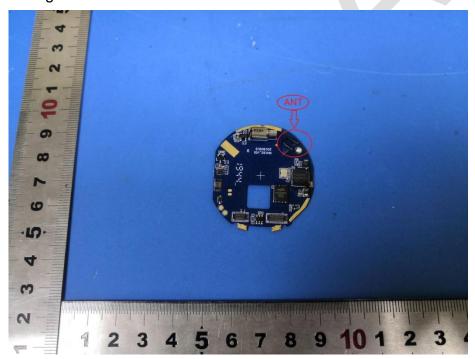
BLOCK DIAGRAM OF TEST SETUP

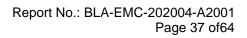
TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


CONCLUSION


Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.58dBi.

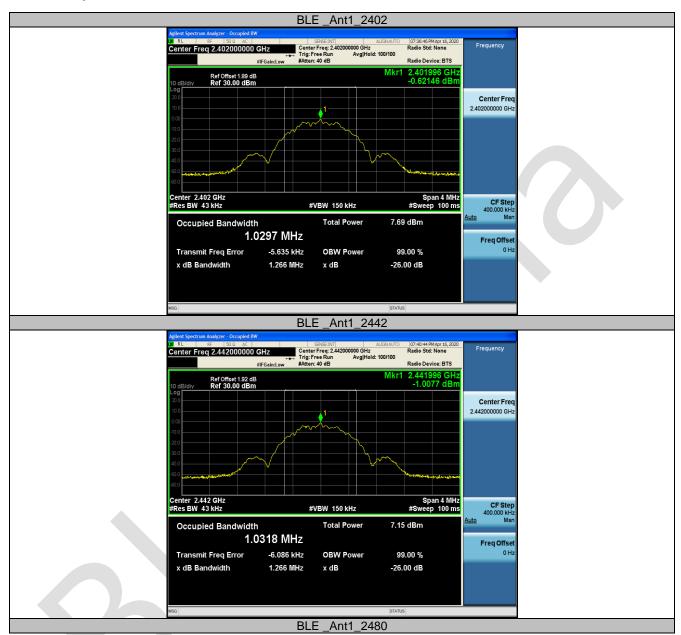
10 APPENDIX

Appendix1

10.1 APPENDIX: DTS BANDWIDTH

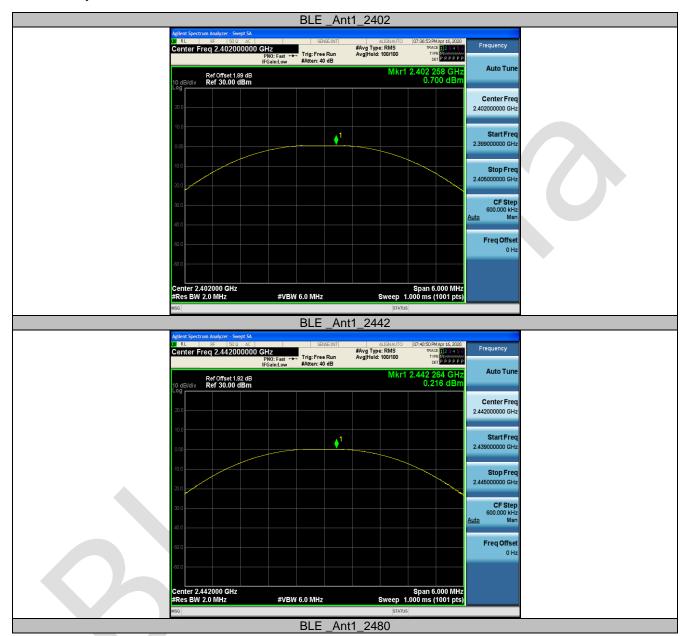
TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE	Ant1	2402	0.664	2401.656	2402.320	>=0.5	PASS
		2442	0.664	2441.656	2442.320	>=0.5	PASS
		2480	0.680	2479.652	2480.332	>=0.5	PASS

| April | Spectrum Analyzer | Sweet | Sh. | State | St



10.2 APPENDIX: OCCUPIED CHANNEL BANDWIDTH


TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE	Ant1	2402	1.0297	2401.480	2402.509		PASS
		2442	1.0318	2441.478	2442.510		PASS
		2480	1.0374	2479.474	2480.511		PASS



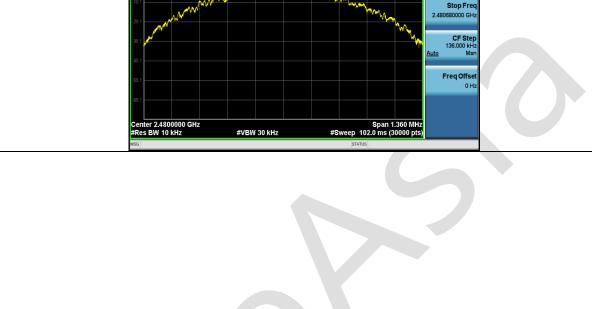
10.3 APPENDIX: MAXIMUM CONDUCTED OUTPUT POWER

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
BLE	Ant1	2402	0.7	<=30	PASS
		2442	0.22	<=30	PASS
		2480	-0.4	<=30	PASS

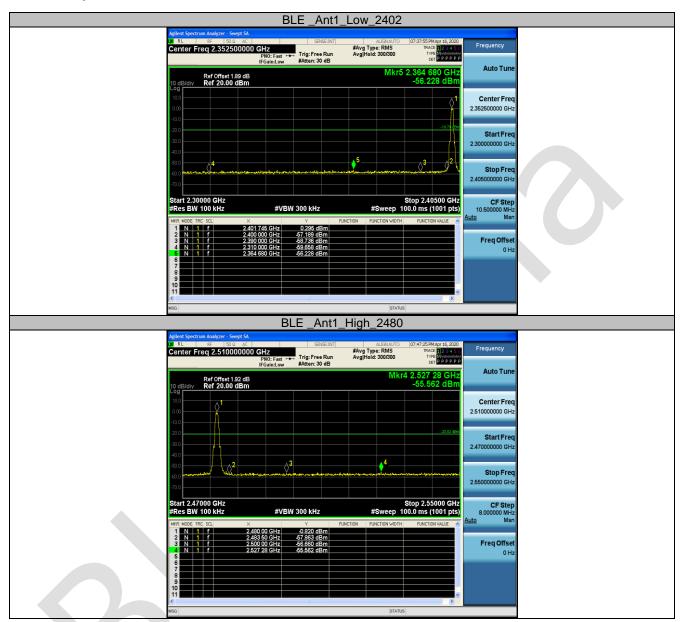
#Avg Type: RMS Avg|Hold: 100/100 Auto Tun Ref Offset 1.92 dB Ref 30.00 dBm Center Fred 2.480000000 GH: Start Fred 2.477000000 GH: Stop Freq 2.483000000 GHz Freq Offset Center 2.480000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz

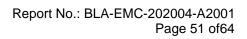
10.4APPENDIX: MAXIMUM POWER SPECTRAL DENSITY

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
BLE	Ant1	2402	-9.58	<=8	PASS
		2442	-9.77	<=8	PASS
		2480	-9.99	<=8	PASS

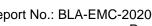


| Section | Sect


Report No.: BLA-EMC-202004-A2001 Page 49 of64

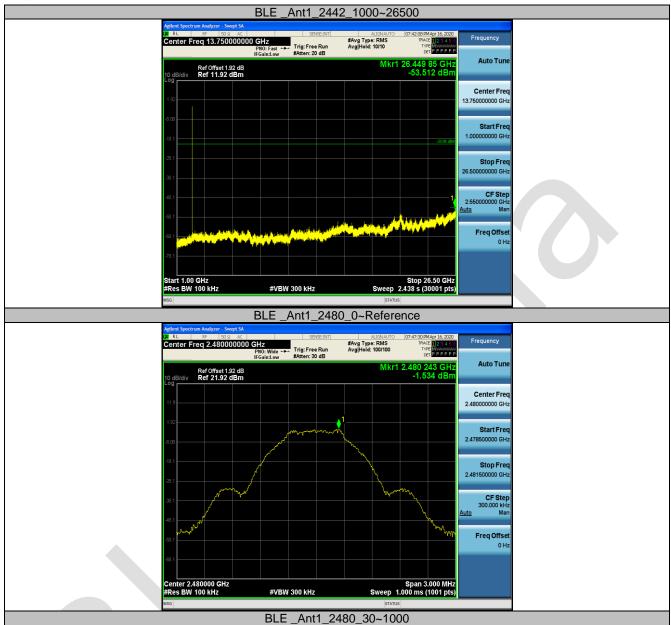

10.5 APPENDIX: BAND EDGE MEASUREMENTS

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE	Ant1	Low	2402	0.30	-56.23	<=-19.7	PASS
		High	2480	-0.82	-55.56	<=-20.82	PASS



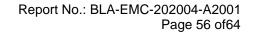
10.6 APPENDIX: CONDUCTED SPURIOUSEMISSION

TestMode	Antenna	Channel	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
		2402	Reference	0.24	0.24		PASS
BLE	Ant1		30~1000	30~1000	-67.239	<=-19.764	PASS
			1000~26500	1000~26500	-54.059	<=-19.764	PASS
		2442	Reference	-0.86	-0.86		PASS
			30~1000	30~1000	-45.127	<=-20.863	PASS
			1000~26500	1000~26500	-53.512	<=-20.863	PASS
		2480	Reference	-1.53	-1.53		PASS
			30~1000	30~1000	-68.174	<=-21.534	PASS
			1000~26500	1000~26500	-53.689	<=-21.534	PASS

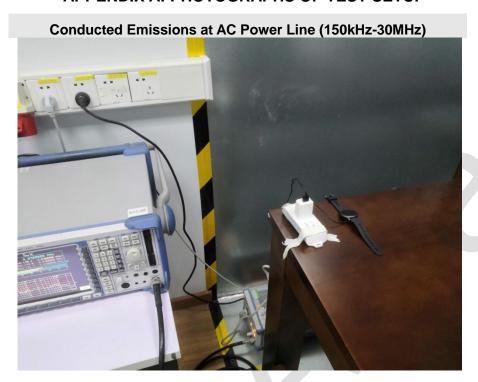

Freq Offset

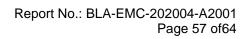
Stop 1.0000 GHz Sweep 94.00 ms (30001 pts)

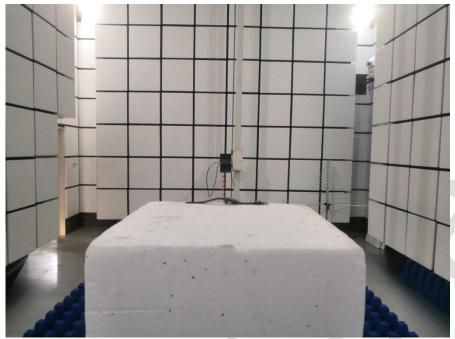
#VBW 300 kHz

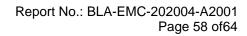


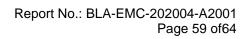
#Avg Type: RMS Avg|Hold: 10/10 Auto Tun (r1 939.83 MH -68.174 dBn Ref Offset 1.92 dB Ref 11.92 dBm Center Free 515.000000 MH Stop Freq 1.000000000 GHz Freq Offset Stop 1.0000 GHz Sweep 94.00 ms (30001 pts) #VBW 300 kHz BLE _Ant1_2480_1000~26500 0) RL 8F 50.2 AC


Center Freq 13.750000000 GHz
PN0: Fast →
IFGaint.tow
#Atten: 20 dB #Avg Type: RMS Avg|Hold: 10/10 TRACE 123456
TYPE MINISTRACE
DET PPPPP Auto Tune 26.361 45 GH -53.689 dBn Ref Offset 1.92 dB Ref 11.92 dBm

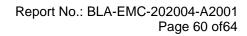


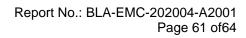

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

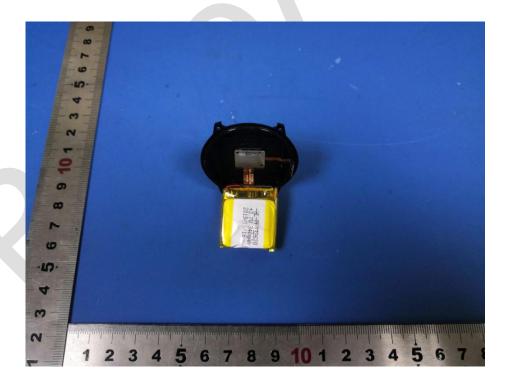


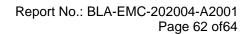


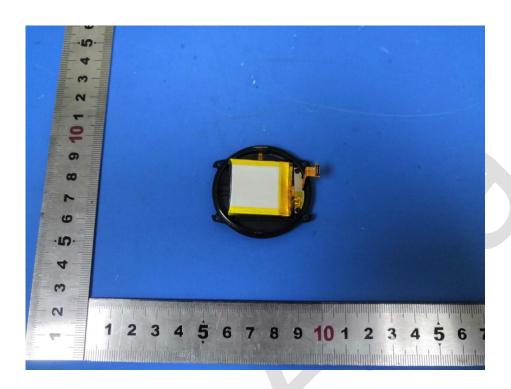
APPENDIX B: PHOTOGRAPHS OF EUT

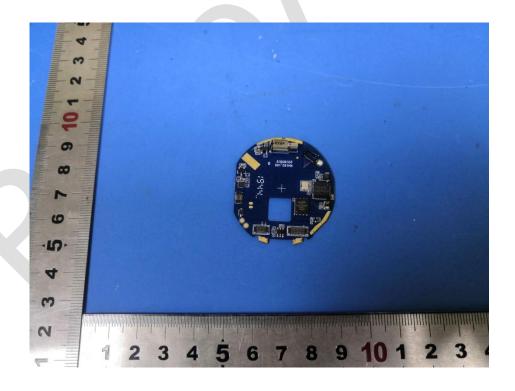


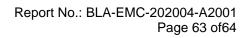


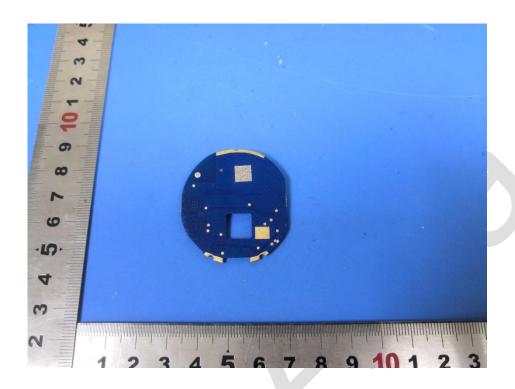


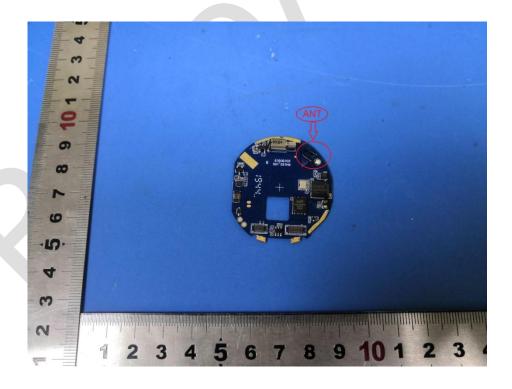












----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

