

Test Report

Applicant : Dongguan Liesheng Electronic Co., Ltd.

Address Room 10073, No. 156, Humen Avenue, Humen

Town, Dongguan City, Guangdong Province

Product Name: Smart Watch

Brand Mark: Haylou/Filwans

Model : HF003

FCC ID : 2AMQ6-HF003

Report Number : BLA-EMC-202404-A10903

Date of Receipt : 2024.04.29

Date of Test : 2024.04.29 to 2024.05.17

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Compiled by:

Review by:

Approved by:

Issued Date:

BlueAsia of Technical Services(Shenzhen) Co., Etd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District

Shenzhen, Guangdong Province, China

Table of Contents

1	Ger	neral information	4
	1.1	General information	2
	1.2	General description of EUT	4
2	Tos	t summary	
3	Tes	t Configuration	6
	3.1	Test mode	
	3.2	Operation Frequency each of channel	7
	3.3	Test channel	7
	3.4	Configuration diagram of EUT	7
	3.5	Auxiliary equipment	8
	3.6	Test environment	8
4	Lab	poratory information	9
	4.1	Laboratory and accreditations	Ç
	4.2	Measurement uncertainty	
_		t equipment	
5			
6	Tes	t result	11
	6.1	Antenna requirement	11
	6.2	Conducted emissions at AC power line (150 kHz-30 MHz)	12
	6.3	Conducted peak output Power	16
	6.4	Minimum 6dB bandwidth	17
	6.5	Power spectrum density	18
	6.6	Conducted Band Edges Measurement	19
	6.7	Conducted spurious emissions	20
	6.8	Radiated spurious emissions	21
	6.9	Radiated emissions which fall in the restricted bands	32
7	App	oendix A	39
Δ		x B: photographs of test setup	
Α	ppendi	x C: photographs of EUT	69

Page 3 of 69

Revise Record

Version No.	Date	Description
01	2024.05.17	Original

1 General information

1.1 General information

Applicant	Dongguan Liesheng Electronic Co., Ltd.
Address	Room 10073, No. 156, Humen Avenue, Humen Town, Dongguan City, Guangdong Province
Manufacturer	Dongguan Liesheng Electronic Co., Ltd.
Address	Room 10073, No. 156, Humen Avenue, Humen Town, Dongguan City, Guangdong Province
Factory	Shenzhen Kingwear Technology Development Co., Ltd. Longhua Branch
Address	501,building A2, Silicon valley power intelligent terminal Industrial Park ,20Dafu Industrial Zone, Dafu commnity, Guanlan stree, Longhua District ,Shenzhen

1.2 General description of EUT

Product name	Smart Watch			
Model no.	HF003			
Series model	N/A			
Operation Frequency:	2402MHz-2480MHz			
Modulation Type:	GFSK			
Rate data:	1Mbps; 2Mbps			
Channel Spacing:	2MHz			
Number of Channels:	40			
Antenna Type:	Internal antenna			
Antenna Gain:	-8.54 dBi (Provided by customer)			
Power supply or adapter information	DC3.8V			
Hardware Version	N/A			
Software Version	N/A			
Note: For a more detailed description, please refer to Specification or User's Manual supplied by				

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

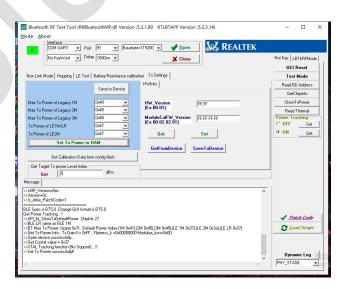
Page 5 of 69

2 Test summary

No.	Test item	Result	Remark
1	Antenna Requirement	Pass	
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	Pass	
3	Conducted Peak Output Power	Pass	
4	Minimum 6dB Bandwidth	Pass	
5	Power Spectrum Density	Pass	
6	Conducted Band Edges Measurement	Pass	
7	Conducted Spurious Emissions	Pass	
8	Radiated Spurious Emissions	Pass	
9	Radiated Emissions which fall in the restricted bands	Pass	

3 Test Configuration

3.1 Test mode


Test Mode Note 1	Description
TX Keep the EUT in continuously transmitting with modulation mode.	
RX Keep the EUT in receiving mode	
TX Low channel Keep the EUT in continuously transmitting mode in low channel	
TX middle channel Keep the EUT in continuously transmitting mode in middle channel	
TX high channel Keep the EUT in continuously transmitting mode in high channel	

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use; the EUT was operated in the engineering mode Note 2 to fix the TX or Rx frequency that was for the purpose of the measurements.

Note 2: Special software is used. The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

Power level setup in software						
Test Software Name	RTLBTAPP					
Mode	Channel	Frequency (MHz)	Soft Set			
	CH00	2402				
GFSK	CH39	2442	TX level : 10			
	CH78	2480				

Run Software

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Report No.: BLA-EMC-202404-A10903

Page 7 of 69

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

3.3 Test channel

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

3.4 Configuration diagram of EUT

Support equipment

	Name	Device type	Brand	Mode	Series No	Remark
ſ	(1)	PC	Lenovo	E460C	N/A	N/A
	(2)	Fixed frequency board	N/A	N/A	N/A	N/A

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202404-A10903

Page 8 of 69

3.5 Auxiliary equipment

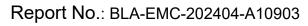
Device Type	Manufacturer	Model Name	Serial No.	Remark	
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)	
Note: "" mean no any auxiliary device during testing.					

3.6 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 3.8V

4 Laboratory information

4.1 Laboratory and accreditations


The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China
CNAS accredited No.:	L9788
A2LA Cert. No.:	5071.01
FCC Designation No.:	CN1252
ISED CAB identifier No.:	CN0028
Telephone:	+86-755-28682673
FAX:	+86-755-28682673

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

Page 10 of 69

5 Test equipment

Equipment No.	Equipment Name	Model No.	Manufacture	S/N	Cal. Date	Next Cal. Date
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2023/08/30	2024/08/29
BLA-EMC-009	EMI Receiver	ESR7	R&S	101199	2023/08/30	2024/08/29
BLA-EMC-012	broad band Antenna	VULB9168	Schwarz beck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarz beck	01892	2022/09/13	2025/09/12
BLA-EMC-014	Amplifier	PA_000318G-45	SKET	PA2018043003	2023/08/30	2024/08/29
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2023/11/16	2024/11/15
BLA-EMC-028	Spectrum	N9020A	Agilent	MY53420839	2023/11/16	2024/11/15
BLA-EMC-038	Spectrum	N9020A	Agilent	MY49100060	2023/08/30	2024/08/29
BLA-EMC-042	Power sensor	RPR3006W	DARE	14I00889SN042	2023/09/01	2024/08/31
BLA-EMC-043	Loop antenna	FMZB1519B	SCHNARZBECK	00102	2022/09/14	2025/09/13
BLA-EMC-044	Wideband radio communication tester	CMW500	R&S	132429	2023/08/30	2024/08/29
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2023/07/07	2024/07/06
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2023/07/07	2024/07/06
BLA-EMC-062	Signal Generator	N5181A	Agilent	MY46240904	2023/07/07	2024/07/06
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2023/07/07	2024/07/06
BLA-EMC-065	broadband Antenna	VULB9168	Schwarz beck	01065P	2022/12/12	2025/12/11
BLA-EMC-066	Amplifier	LNPA_30M01G-30	SKET	SK2021060801	2023/07/07	2024/07/06
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2023/08/30	2024/08/29
BLA-EMC-080	Signal Generator	N5182A	Agilent	MY47420955	2023/08/30	2024/08/29
BLA-EMC-086	Amplifier	LNPA_18G40G-50dB	SKET	SK2022071301	2023/08/14	2024/08/13

6 Test result

6.1 Antenna requirement

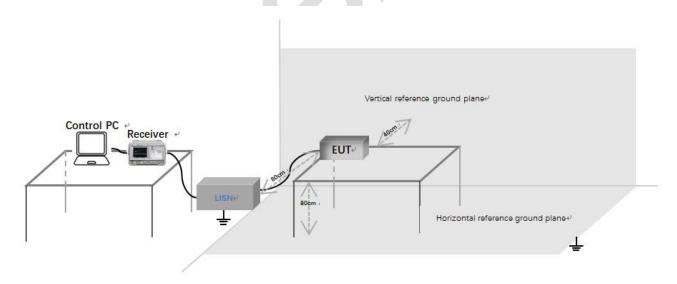
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -8.54 dBi.

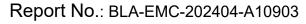

6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 6.2				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				

6.2.1 Limit

For any or of a mine in a /MILE)	Conducted limit(dBµV)					
Frequency of emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of the frequency						

6.2.2 Test setup



Description of test setup connection:

- a) Connect the control PC to the receiver through a USB to GPIB cable;
- b) The receiver is connected to the LISN through a coaxial line;
- c) Connect the power port of LISN to the EUT.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Page 13 of 69

6.2.3 Procedure

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

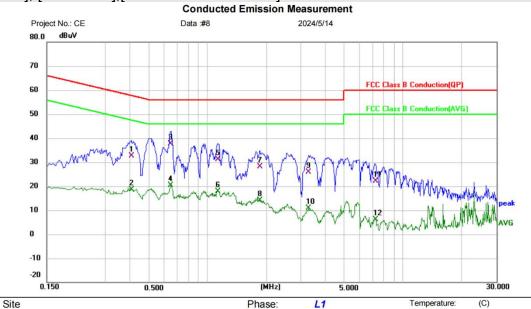
LISN=Read Level+ Cable Loss+ LISN Factor

Humidity:

Sweep Time: 10 ms

RBW: 9 KHz

VBW: 30 KHz


ESPI

%RH

6.2.4 Test data

[Test mode: TX]; [Line: Line]; [Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Smart Watch M/N: HF003

Mode: BLE Mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.4060	22.65	9.98	32.63	57.73	-25.10	QP			
2		0.4060	8.53	9.98	18.51	47.73	-29.22	AVG			
3	*	0.6460	27.73	9.96	37.69	56.00	-18.31	QP			
4		0.6460	10.31	9.96	20.27	46.00	-25.73	AVG			
5		1.1260	21.37	9.84	31.21	56.00	-24.79	QP			
6		1.1260	7.94	9.84	17.78	46.00	-28.22	AVG			
7		1.8500	18.06	10.10	28.16	56.00	-27.84	QP			
8		1.8500	3.92	10.10	14.02	46.00	-31.98	AVG			
9		3.2900	15.75	10.03	25.78	56.00	-30.22	QP			
10		3.2900	0.95	10.03	10.98	46.00	-35.02	AVG			
11		7.2300	11.12	10.95	22.07	60.00	-37.93	QP			
12		7.2300	-4.82	10.95	6.13	50.00	-43.87	AVG			
*:Ma	ximu	m data	x:Over lim	it !:over	margin	·	·				(Reference Only

Spectrum Analyzer:

Power:

Distance:

Test Result: Pass

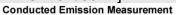
Receiver:

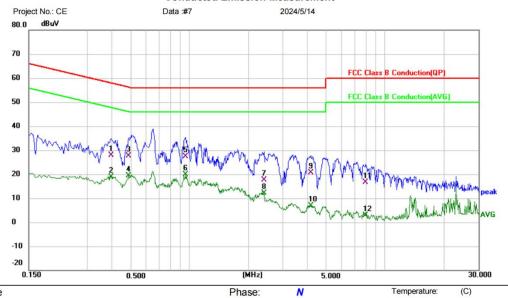
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

%RH

Humidity:


Sweep Time: 10 ms


RBW: 9 KHz

VBW: 30 KHz

[Test mode: TX]; [Line: Neutral]; [Power: AC120V/60Hz]

Power:

Distance:

Limit: FCC Class B Conduction(QP)

EUT: Smart Watch

M/N: HF003 Mode: BLE Mode

Note:

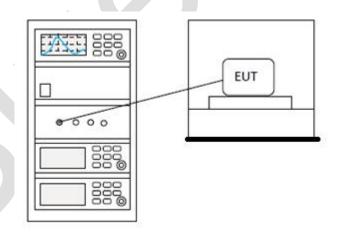
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.3940	18.08	9.81	27.89	57.98	-30.09	QP			
2		0.3940	9.02	9.81	18.83	47.98	-29.15	AVG			
3		0.4860	17.82	9.81	27.63	56.24	-28.61	QP			
4		0.4860	9.67	9.81	19.48	46.24	-26.76	AVG			
5		0.9580	17.44	9.87	27.31	56.00	-28.69	QP			
6	*	0.9580	10.13	9.87	20.00	46.00	-26.00	AVG			
7		2.4060	7.49	10.03	17.52	56.00	-38.48	QP			
8		2.4060	2.11	10.03	12.14	46.00	-33.86	AVG			
9		4.1660	10.52	10.10	20.62	56.00	-35.38	QP			
10		4.1660	-3.23	10.10	6.87	46.00	-39.13	AVG			
11		7.9500	5.46	11.14	16.60	60.00	-43.40	QP			
12		7.9500	-8.14	11.14	3.00	50.00	-47.00	AVG			

*:Maximum data x:Over limit !:over margin (Reference Only Receiver: ESPI_1 Spectrum Analyzer: ESPI

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481


6.3 Conducted peak output Power

Test Standard 47 CFR Part 15, Subpart C 15.247			
Test Method ANSI C63.10 (2013) Section 7.8.5			
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		

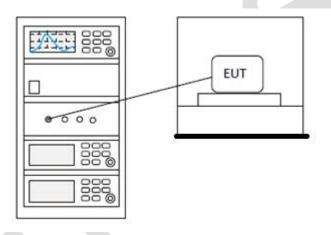
6.3.1 Limit

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

6.3.2 Test setup

6.3.3 Test data

Pass: Please refer to appendix A for details


6.4 Minimum 6dB bandwidth

Test Standard 47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			

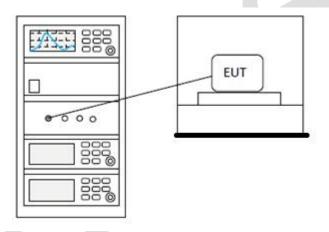
6.4.1 Limit

≥500 kHz

6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details


6.5 Power spectrum density

Test Standard 47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

6.5.3 Test data

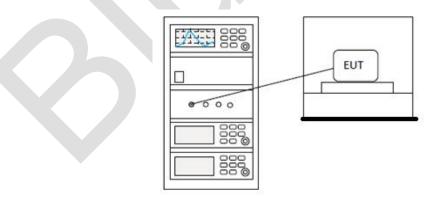
Pass: Please refer to appendix A for details

Page 19 of 69

6.6 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

6.6.3 Test data

Pass: Please refer to appendix A for details

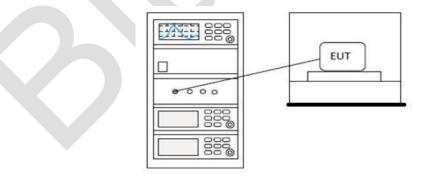
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

6.7 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

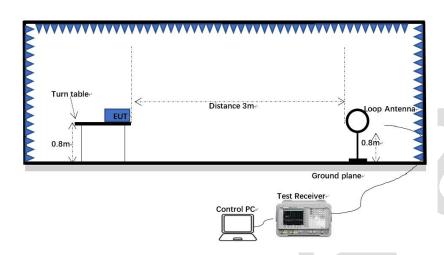
Tel: +86-755-23059481

Page 21 of 69

6.8 Radiated spurious emissions

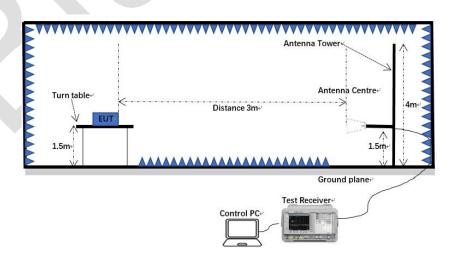
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.8.1 Limit


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

6.8.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Page 23 of 69

6.8.3 Procedure

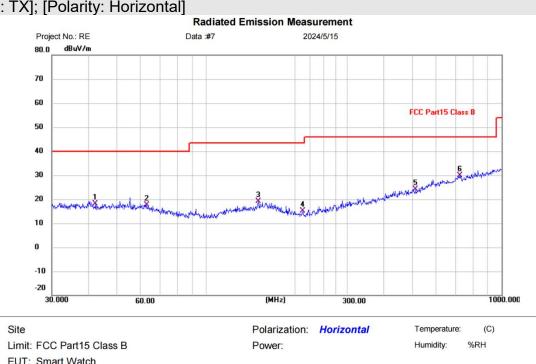
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

6.8.4 Test data

Below 1GHz

[Test mode: TX]; [Polarity: Horizontal]

EUT: Smart Watch M/N: HF003

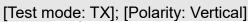
Mode: BLE-TX-Mode

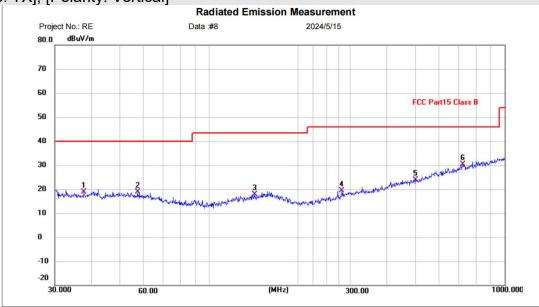
Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	42.1542	-1.03	19.10	18.07	40.00	-21.93	QP	Р	
2	62.8708	-0.64	18.16	17.52	40.00	-22.48	QP	Р	
3	150.0108	-0.49	19.56	19.07	43.50	-24.43	QP	Р	
4	212.2695	-0.64	15.76	15.12	43.50	-28.38	QP	Р	
5	511.8352	0.32	23.89	24.21	46.00	-21.79	QP	Р	
6 *	721.7259	1.35	28.56	29.91	46.00	-16.09	QP	Р	

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.


Tel: +86-755-23059481


Temperature:

%RH

Humidity:

Polarization: Vertical

Site

Limit: FCC Part15 Class B

EUT: Smart Watch
M/N: HF003

Mode: BLE-TX-Mode

Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.5479	-0.15	19.04	18.89	40.00	-21.11	QP	Р	
2	57.1914	-0.18	19.08	18.90	40.00	-21.10	QP	Р	
3	142.3243	-0.32	18.19	17.87	43.50	-25.63	QP	Р	
4	281.0075	0.99	18.39	19.38	46.00	-26.62	QP	Р	
5	499.4247	-0.19	24.08	23.89	46.00	-22.11	QP	Р	
6 *	721.7259	1.77	28.56	30.33	46.00	-15.67	QP	Р	

Power:

*Maximum data would limit liquar marai

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

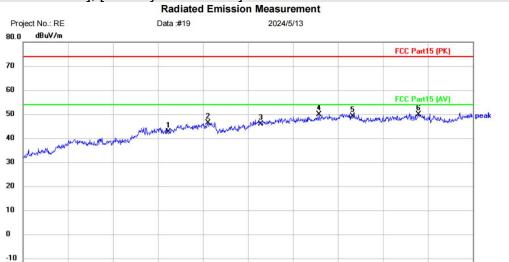
Tel: +86-755-23059481

10400.00 11575.00 12750.00

(C)

%RH

Temperature:


Humidity:

Above 1GHz:

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.

[Test mode: TX low channel]; [Polarity: Horizontal]

Polarization:

Power:

Horizontal

Site

Limit: FCC Part15 (PK) EUT: Smart Watch

1000.000 2175.00

M/N: HF003

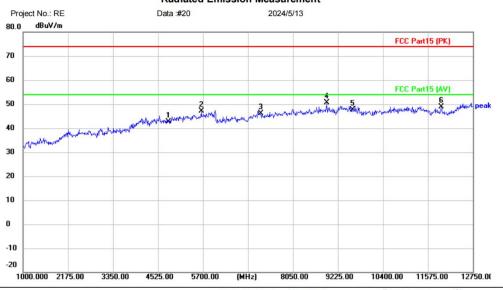
Mode: BLE1M-TX-2402

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000	36.96	5.64	42.60	74.00	-31.40	peak		
2		5829.250	38.20	8.21	46.41	74.00	-27.59	peak		
3		7206.000	36.52	9.24	45.76	74.00	-28.24	peak		
4	*	8731.500	38.41	11.56	49.97	74.00	-24.03	peak		
5		9608.000	36.87	12.31	49.18	74.00	-24.82	peak		
6		11328.25	37.28	12.67	49.95	74.00	-24.05	peak		

*:Maximum data x:Over limit !:over margin

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

[Test mode: TX low channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK) **EUT: Smart Watch**

M/N: HF003 Mode: BLE1M-TX-2402

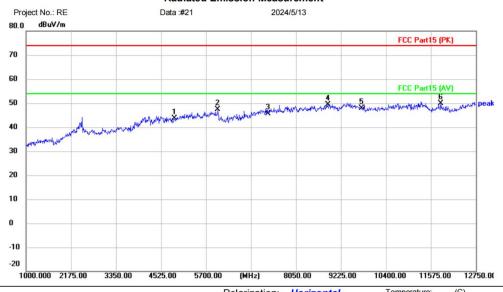
Note:

700.00	(MHz)	8050.00	9225.00	10400.00	11575.00	12750.00
F	olarization:	Vertic	al	Temper	ature:	(C)
F	Power:			Humidit	y: %R	Н

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4804.000	36.89	5.64	42.53	74.00	-31.47	peak	
	5653.000	39.42	7.76	47.18	74.00	-26.82	peak	
	7206.000	36.79	9.24	46.03	74.00	-27.97	peak	
*	8931.250	38.36	12.19	50.55	74.00	-23.45	peak	
	9608.000	35.30	12.31	47.61	74.00	-26.39	peak	
		37.25	11.67	48.92	74.00	-25.08	peak	
	*		Mk. Freq. Level MHz dBuV 4804.000 36.89 5653.000 39.42 7206.000 36.79 * 8931.250 38.36 9608.000 35.30 11927.50 37.25	Mk. Freq. Level dBuV dB 4804.000 36.89 5.64 5653.000 39.42 7.76 7206.000 36.79 9.24 * 8931.250 38.36 12.19 9608.000 35.30 12.31 11927.50 37.25 11.67	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4804.000 36.89 5.64 42.53 5653.000 39.42 7.76 47.18 7206.000 36.79 9.24 46.03 * 8931.250 38.36 12.19 50.55 9608.000 35.30 12.31 47.61 11927.50 37.25 11.67 48.92	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 4804.000 36.89 5.64 42.53 74.00 5653.000 39.42 7.76 47.18 74.00 7206.000 36.79 9.24 46.03 74.00 * 8931.250 38.36 12.19 50.55 74.00 9608.000 35.30 12.31 47.61 74.00 11927.50 37.25 11.67 48.92 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB 4804.000 36.89 5.64 42.53 74.00 -31.47 5653.000 39.42 7.76 47.18 74.00 -26.82 7206.000 36.79 9.24 46.03 74.00 -27.97 * 8931.250 38.36 12.19 50.55 74.00 -23.45 9608.000 35.30 12.31 47.61 74.00 -26.39 11927.50 37.25 11.67 48.92 74.00 -25.08	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m

*:Maximum data x:Over limit !:over margin Reference Only Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

[Test mode: TX middle channel]; [Polarity: Horizontal]

Radiated Emission Measurement

Site

Limit: FCC Part15 (PK) **EUT: Smart Watch**

M/N: HF003

Mode: BLE1M-TX-2442

Note:

00.00	(MHz)	8050.00	9225.00	10400.00	11575.00	12750.00
Р	olarizatio	n: <i>Horizo</i>	ontal	Temper	ature:	(C)
Р	ower:			Humidit	y: %RH	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	37.86	5.75	43.61	74.00	-30.39	peak	
2		6005.500	41.68	5.61	47.29	74.00	-26.71	peak	
3		7326.000	36.29	9.43	45.72	74.00	-28.28	peak	
4		8884.250	37.29	11.98	49.27	74.00	-24.73	peak	
5		9768.000	35.74	12.22	47.96	74.00	-26.04	peak	
6	*	11833.50	38.28	11.71	49.99	74.00	-24.01	peak	

*:Maximum data x:Over limit !:over margin Reference Only Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

[Test mode: TX middle channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK)

1000.000 2175.00

4525.00

EUT: Smart Watch M/N: HF003

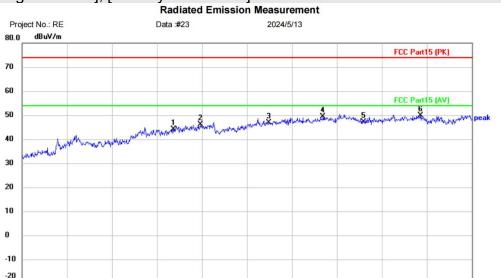
-10 -20

Mode: BLE1M-TX-2442

Note:

700.00 (MHz)	8050.00	9225.00	10400.00	11575.00	12750.00
Polarizatio	n: Vertic	al	Temper	ature: ((C)
Power:			Humidit	y: %RH	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	38.29	5.75	44.04	74.00	-29.96	peak	
2		5852.750	38.57	8.42	46.99	74.00	-27.01	peak	
3		7326.000	36.76	9.43	46.19	74.00	-27.81	peak	
4		8672.750	37.78	11.40	49.18	74.00	-24.82	peak	
5		9768.000	35.19	12.22	47.41	74.00	-26.59	peak	
6	*	11892.25	37.96	11.66	49.62	74.00	-24.38	peak	


Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

[Test mode: TX High channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK) EUT: Smart Watch

1000.000 2175.00

4525.00

Mode: BLE1M-TX-2480

Note:

M/N: HF003

700.00	(MHz)	8050.00	9225.00	10400.00	1157	5.00	12750.00
	Polarization:	Horizo	ontal	Temperature:		(C)	
	Power:			Humid	ity:	%RH	

No.	Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	37.54	6.60	44.14	74.00	-29.86	peak	
2		5664.750	38.22	7.83	46.05	74.00	-27.95	peak	
3		7440.000	37.16	9.64	46.80	74.00	-27.20	peak	
4		8860.750	37.54	11.83	49.37	74.00	-24.63	peak	
5		9920.000	34.87	12.14	47.01	74.00	-26.99	peak	
6	*	11410.50	37.19	12.61	49.80	74.00	-24.20	peak	

*:Maximum data x:Over limit !:over margin

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481