

Page 1 of 60

TEST REPORT

Product Name	:	HAYLOU RT3
Brand Mark	:	HAYLOU
Model No.	:	HAYLOU-LS15
FCC ID	:	2AMQ6-HAYLOULS15
Report Number	:	BLA-EMC-202204-A5002
Date of Sample Receipt	:	2022/4/18
Date of Test	:	2022/4/18 to 2022/4/25
Date of Issue	:	2022/4/25
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Dongguan Liesheng Electronic Co., Ltd Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozu Blue Thong

Review by: Date:

weels 2022/4/25 ces(She

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	on No. Date Description	
00	2022/4/25	Original

TABLE OF CONTENTS

1	Т	EST SUMMARY	5
2	G	BENERAL INFORMATION	6
3	G	SENERAL DESCRIPTION OF E.U.T.	6
4	т	EST ENVIRONMENT	7
		EST MODE	
5			
6		NEASUREMENT UNCERTAINTY	
7			8
8		ABORATORY LOCATION	
9	т	EST INSTRUMENTS LIST	9
10	С	CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
	10.1		
	10.1		
	10.2		
	10.4		
11	C	CONDUCTED BAND EDGES MEASUREMENT	16
	11.1		
	11.1		
	11.3		
12	۸	NTENNA REQUIREMENT	18
			-
	12.1		
13	R	RADIATED SPURIOUS EMISSIONS	19
	13.1	LIMITS	19
	13.2	BLOCK DIAGRAM OF TEST SETUP	20
	13.3		
	13.4	TEST DATA	22
14	R	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	30
	14.1	LIMITS	30
	14.2	BLOCK DIAGRAM OF TEST SETUP	31
	14.3	PROCEDURE	31
	14.4	TEST DATA	33

15	CON	IDUCTED SPURIOUS EMISSIONS	37
1	5.1	LIMITS	37
1	5.2	BLOCK DIAGRAM OF TEST SETUP	37
1	5.3	TEST DATA	38
16	POV	VER SPECTRUM DENSITY	39
1	6.1	LIMITS	39
1	6.2	BLOCK DIAGRAM OF TEST SETUP	39
1	6.3	TEST DATA	39
17	CON	IDUCTED PEAK OUTPUT POWER	40
1	7.1	LIMITS	40
1	7.2	BLOCK DIAGRAM OF TEST SETUP	
1	7.3	TEST DATA	
18	ΜΙΝ	IMUM 6DB BANDWIDTH	42
1	8.1	LIMITS	42
1	8.2	BLOCK DIAGRAM OF TEST SETUP	42
1	8.3	TEST DATA	
19	APP	ENDIX	43
APF	PEND	X A: PHOTOGRAPHS OF TEST SETUP	58
APF	PEND	X B: PHOTOGRAPHS OF EUT	60
<			

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Liesheng Electronic Co., Ltd	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China	
Manufacturer	Dongguan Liesheng Electronic Co., Ltd	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China	
Factory	Dongguan Liesheng Electronic Co., Ltd	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China	
Product Name	HAYLOU RT3	
Test Model No.	HAYLOU-LS15	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Provided by the applicant)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC3.7V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.		
Remark: Full battery is used during all test except ac conducted emission			

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)			
Radiated Emission(9kHz-30MHz)	±4.34dB			
Radiated Emission(30Mz-1000MHz)	±4.24dB			
Radiated Emission(1GHz-18GHz)	±4.68dB			
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB			

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment Manufacturer Model S/N Cal.Date					
Shield room	SKET	833	N/A	25/11/2020	24/11/2023
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement									
Equipment	Manufacturer	Model S/N		Cal.Date	Cal.Due				
Spectrum	R&S FSP40		100817	24/9/2021	23/9/2022				
Spectrum	Spectrum Agilent N9020A		MY49100060	24/9/2021	23/9/2022				
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

Test Equipment Of	Test Equipment Of Radiated Spurious Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due					
Chamber	SKET	966	N/A	10/11/2020	9/11/2023					
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022					
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022					
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022					
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022					

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EMI software EZ		N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Chamber	SKET	966	N/A	10/11/2020	9/11/2023		
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022		
Receiver	Receiver R&S		ESR7 101199		23/9/2022		
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227				
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022		
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022		
EMI software	EZ	EZ-EMC	N/A	N/A	N/A		
Loop antenna SCHNARZBECK		FMZB1519B 00102		26/9/2020	25/9/2022		
				•			

Test Equipment Of Conducted Spurious Emissions									
Equipment	Manufacturer Model		S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A MY49100060		24/9/2021	23/9/2022				
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

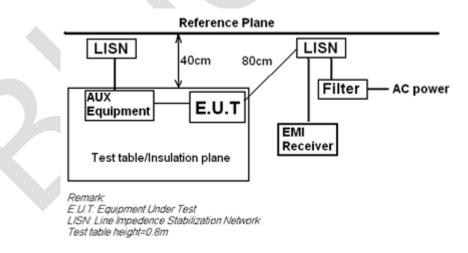
Test Equipment Of Power Spectrum Density					
Equipment Manufacturer Model S/N Cal.Date C					

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Spectrum Agilent		MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Conducted Peak Output Power								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Spectrum Agilent N9020A		MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Minimum 6dB Bandwidth									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022				
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

10.1 LIMITS

Frequency of	Conducted limit(dBµV)				
emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

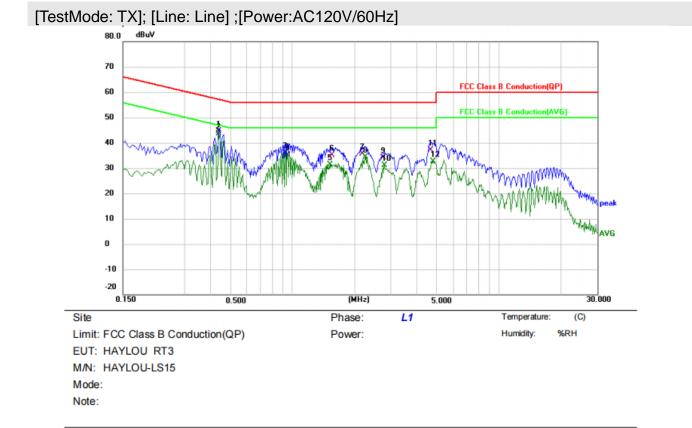
10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

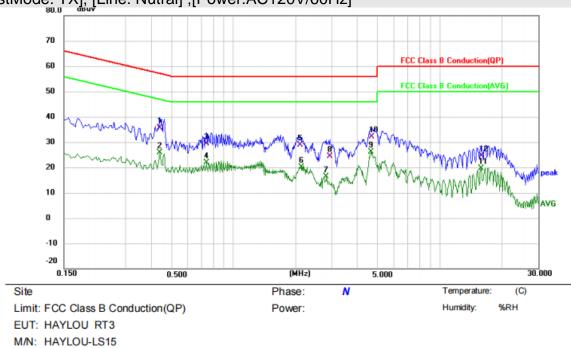
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4380	34.80	9.85	44.65	57.10	-12.45	QP	
2	*	0.4380	33.72	9.85	43.57	47.10	-3.53	AVG	
3		0.9220	26.31	9.91	36.22	46.00	-9.78	AVG	
4		0.9460	25.14	9.91	35.05	56.00	-20.95	QP	
5		1.5140	21.43	9.93	31.36	46.00	-14.64	AVG	
6		1.5500	25.10	9.93	35.03	56.00	-20.97	QP	
7		2.1860	25.62	9.94	35.56	56.00	-20.44	QP	
8		2.2580	24.55	9.95	34.50	46.00	-11.50	AVG	
9		2.7659	24.20	9.97	34.17	56.00	-21.83	QP	
10		2.7900	21.23	9.97	31.20	46.00	-14.80	AVG	
11		4.6620	27.05	9.98	37.03	56.00	-18.97	QP	
12		4.8100	22.74	10.00	32.74	46.00	-13.26	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only

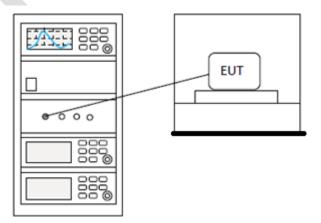
[TestMode: TX]; [Line: Nutral] ; [Power:AC120V/60Hz]

EUT: HAYLOU RT3 M/N: HAYLOU-LS15 Mode: Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4380	25.85	9.78	35.63	57.10	-21.47	QP	
2		0.4380	16.20	9.78	25.98	47.10	-21.12	AVG	
3		0.7380	19.64	9.82	29.46	56.00	-26.54	QP	
4		0.7380	12.01	9.82	21.83	46.00	-24.17	AVG	
5		2.1060	18.93	9.86	28.79	56.00	-27.21	QP	
6		2.1300	10.30	9.86	20.16	46.00	-25.84	AVG	
7		2.8100	6.43	9.89	16.32	46.00	-29.68	AVG	
8		2.9180	14.48	9.90	24.38	56.00	-31.62	QP	
9	*	4.6340	16.08	9.94	26.02	46.00	-19.98	AVG	
10		4.6779	22.18	9.94	32.12	56.00	-23.88	QP	
11		15.8180	9.39	10.31	19.70	50.00	-30.30	AVG	
12		15.9020	14.21	10.30	24.51	60.00	-35.49	QP	

*:Maximum data x:Over limit !:over margin

(Reference Only


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202204-A5002 Page 17 of 60

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	N/A					

12.1 CONCLUSION

Standard Requirement:

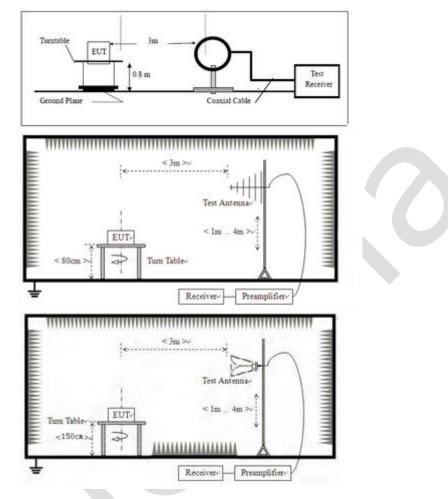
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

13 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G					
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					


13.1 LIMITS

13.1 LIMITS		
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

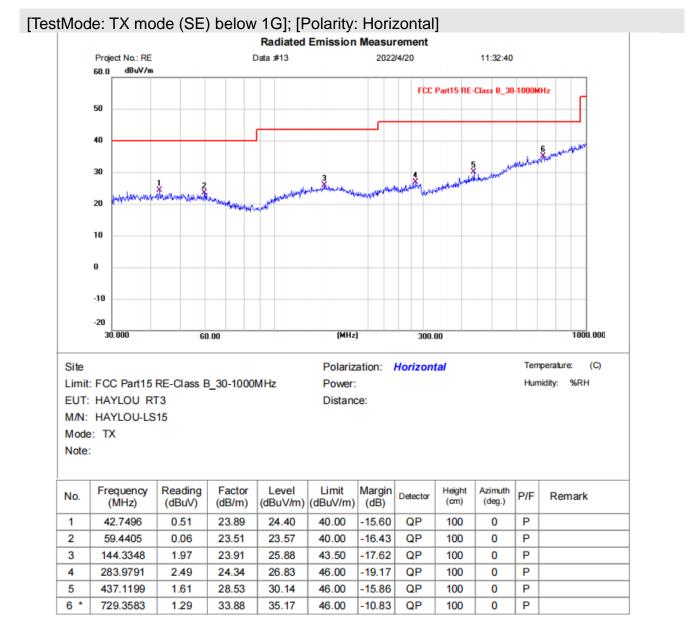
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

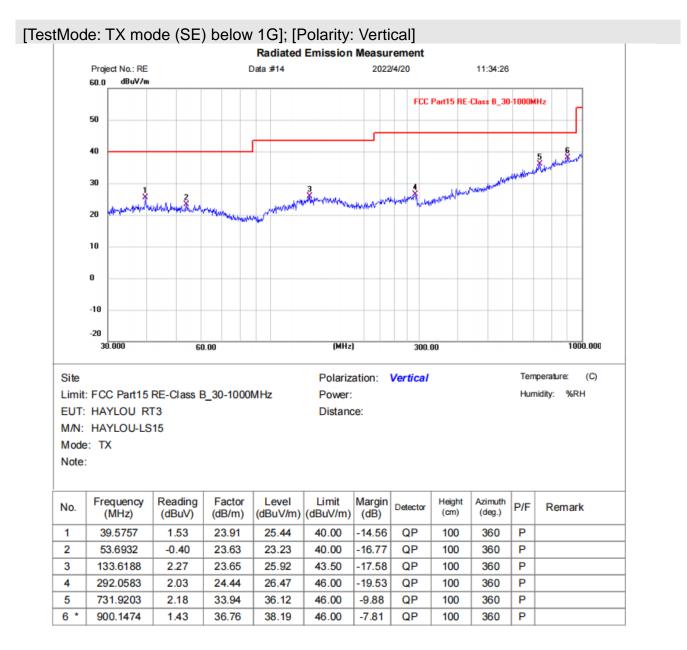
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

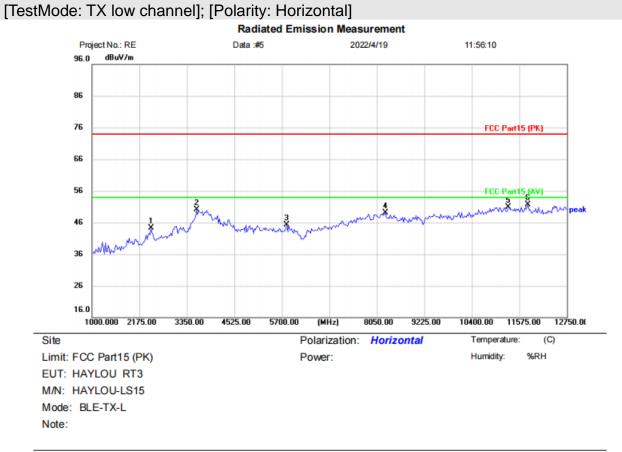

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown. Fundamental frequency is blocked by filter, and only spurious emission is shown.

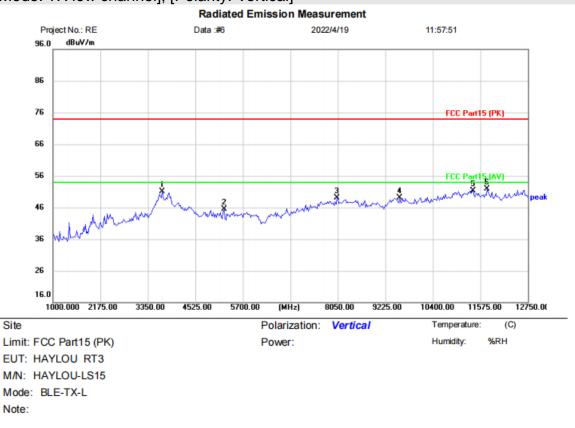
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



13.4 TEST DATA

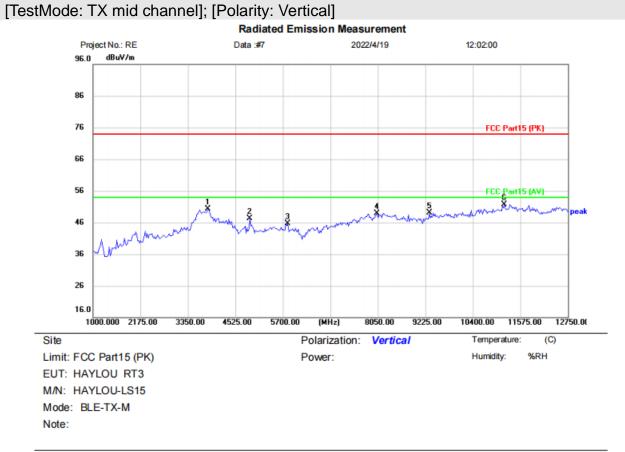


*:Maximum data x:Over limit !:over margin



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2457.000	45.46	-1.15	44.31	74.00	-29.69	peak	
2		3585.000	42.78	7.29	50.07	74.00	-23.93	peak	
3		5817.500	41.38	3.88	45.26	74.00	-28.74	peak	
4		8261.500	40.81	8.23	49.04	74.00	-24.96	peak	
5		11293.000	39.09	11.91	51.00	74.00	-23.00	peak	
6	*	11786.500	40.04	11.57	51.61	74.00	-22.39	peak	

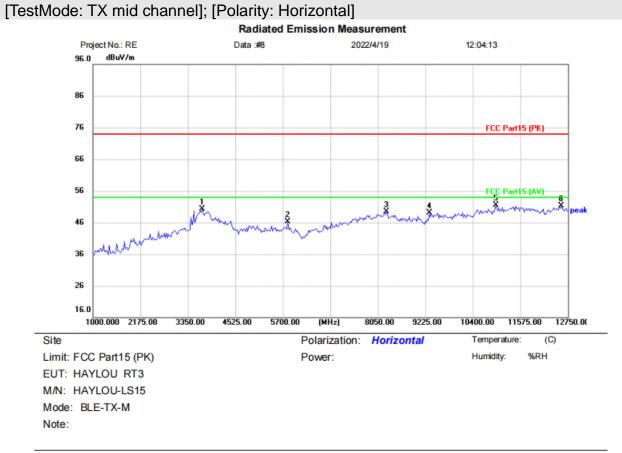
(Reference Only



TestMode:	TV Iour	ahannall	Delerity	Varticall	
Testiviode.		channell.	reolanty.	venucan	

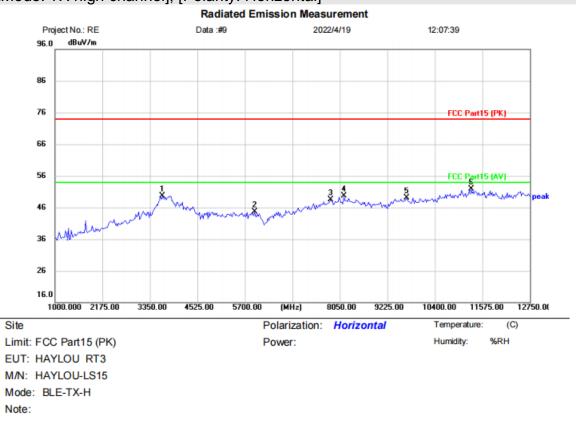
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3702.500	43.29	7.72	51.01	74.00	-22.99	peak	
2		5230.000	42.17	3.38	45.55	74.00	-28.45	peak	
3		8026.500	41.13	7.98	49.11	74.00	-24.89	peak	
4		9577.500	39.84	9.21	49.05	74.00	-24.95	peak	
5		11387.000	39.51	11.78	51.29	74.00	-22.71	peak	
6	*	11739.500	40.13	11.70	51.83	74.00	-22.17	peak	

(Reference Only



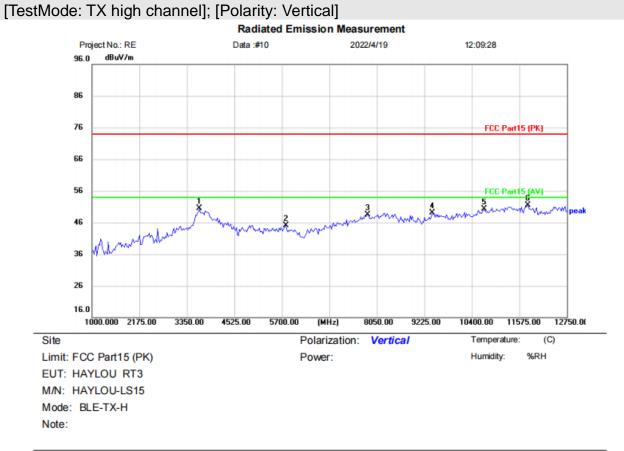
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3843.500	43.18	7.12	50.30	74.00	-23.70	peak	
2		4877.500	43.87	3.37	47.24	74.00	-26.76	peak	
3		5817.500	41.90	3.88	45.78	74.00	-28.22	peak	
4		8026.500	40.95	7.98	48.93	74.00	-25.07	peak	
5		9319.000	40.40	8.72	49.12	74.00	-24.88	peak	
6	*	11175.500	39.65	12.03	51.68	74.00	-22.32	peak	

(Reference Only



MHz dBu// dBu//m dBu//m <thdbu m<="" th=""> <thdbu m<="" th=""></thdbu></thdbu>	No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
2 5817.500 42.46 3.88 46.34 74.00 -27.66 peak 3 8261.500 41.31 8.23 49.54 74.00 -24.46 peak 4 9319.000 40.44 8.72 49.16 74.00 -24.84 peak 5 * 10964.000 39.62 11.94 51.56 74.00 -22.44 peak			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
3 8261.500 41.31 8.23 49.54 74.00 -24.46 peak 4 9319.000 40.44 8.72 49.16 74.00 -24.84 peak 5 * 10964.000 39.62 11.94 51.56 74.00 -22.44 peak	1		3702.500	42.52	7.72	50.24	74.00	-23.76	peak	
4 9319.000 40.44 8.72 49.16 74.00 -24.84 peak 5 * 10964.000 39.62 11.94 51.56 74.00 -22.44 peak	2		5817.500	42.46	3.88	46.34	74.00	-27.66	peak	
5 * 10964.000 39.62 11.94 51.56 74.00 -22.44 peak	3		8261.500	41.31	8.23	49.54	74.00	-24.46	peak	
	4		9319.000	40.44	8.72	49.16	74.00	-24.84	peak	
6 12585.500 39.49 11.81 51.30 74.00 -22.70 peak	5	*	10964.000	39.62	11.94	51.56	74.00	-22.44	peak	
	6		12585.500	39.49	11.81	51.30	74.00	-22.70	peak	

(Reference Only


[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3655.500	41.85	7.76	49.61	74.00	-24.39	peak	
2		5935.000	40.67	3.98	44.65	74.00	-29.35	peak	
3		7815.000	40.82	7.72	48.54	74.00	-25.46	peak	
4		8144.000	41.59	8.13	49.72	74.00	-24.28	peak	
5		9695.000	39.64	9.48	49.12	74.00	-24.88	peak	
6	*	11293.000	39.95	11.91	51.86	74.00	-22.14	peak	

*:Maximum data x:Over limit !:over margin

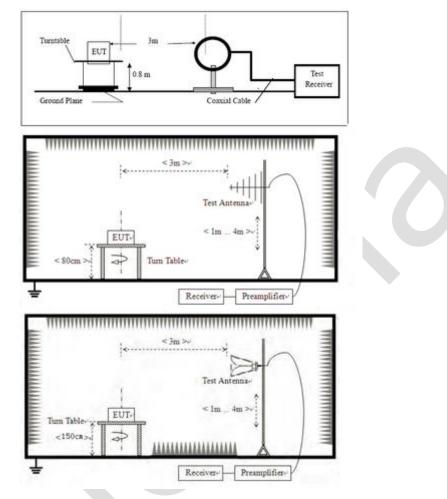
(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		3655.500	42.70	7.76	50.46	74.00	-23.54	peak	
2		5794.000	41.26	3.88	45.14	74.00	-28.86	peak	
3		7815.000	40.81	7.72	48.53	74.00	-25.47	peak	
4		9413.000	40.31	8.86	49.17	74.00	-24.83	peak	
5		10705.500	38.75	11.48	50.23	74.00	-23.77	peak	
6	*	11786.500	39.90	11.57	51.47	74.00	-22.53	peak	

(Reference Only

14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247							
Test Method	ANSI C63.10 (2013) Section 6.10.5							
Test Mode (Pre-Scan)	ТХ							
Test Mode (Final Test)	ТХ							
Tester	Jozu							
Temperature	25 ℃							
Humidity	60%							


14.1 LIMITS

14.1 LIMITS		
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

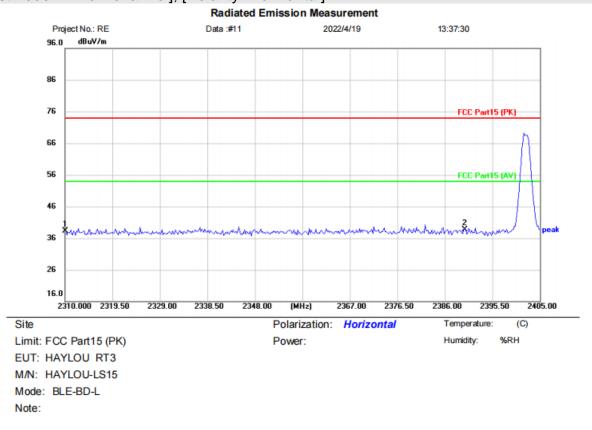
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

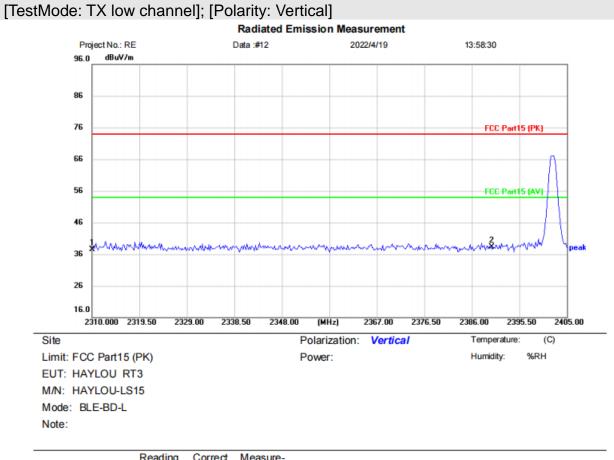
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

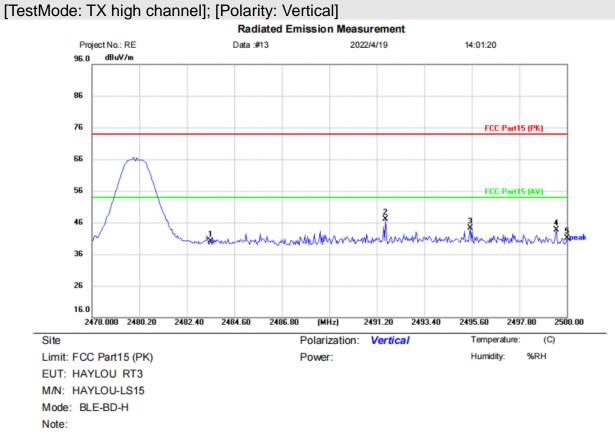
14.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	42.28	-3.93	38.35	74.00	-35.65	peak	
2	*	2390.000	42.23	-3.58	38.65	74.00	-35.35	peak	

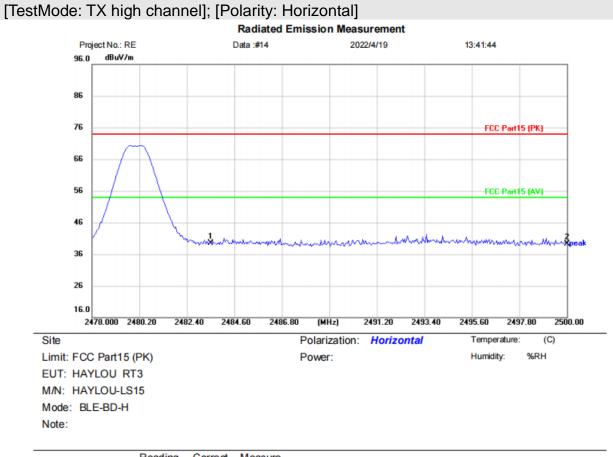
*:Maximum data x:Over limit !:over margin

(Reference Only



1	lo.	Mk.	Freq.	Level	Factor	measure-		Over		
_			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
_	1		2310.000	41.52	-3.93	37.59	74.00	-36.41	peak	
	2	*	2390.000	41.92	-3.58	38.34	74.00	-35.66	peak	

(Reference Only

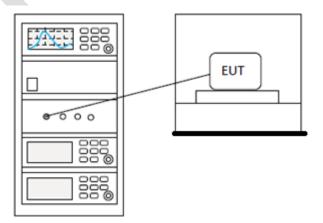


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	43.24	-3.14	40.10	74.00	-33.90	peak	
2	*	2491.596	50.18	-3.11	47.07	74.00	-26.93	peak	
3		2495.512	47.49	-3.10	44.39	74.00	-29.61	peak	
4		2499.516	46.79	-3.08	43.71	74.00	-30.29	peak	
5		2500.000	44.11	-3.08	41.03	74.00	-32.97	peak	

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	42.55	-3.14	39.41	74.00	-34.59	peak	
2		2500.000	42.34	-3.08	39.26	74.00	-34.74	peak	

(Reference Only


15 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

15.1 LIMITS

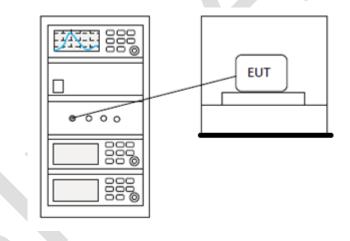
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202204-A5002 Page 38 of 60

15.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

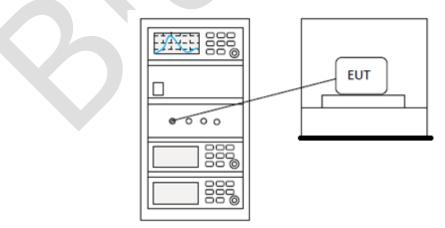
16.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25 °C
Humidity	60%
17.1 LIMITS	

17.1 LIMITS

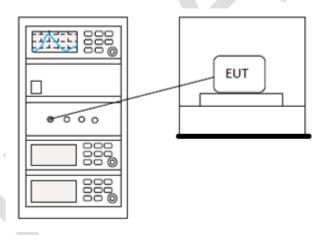
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for \geq 50 hopping channels
902-928	0.25 for $25 \le$ hopping channels < 50
	1 for digital modulation
	1 for \geq 75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725 5050	1 for frequency hopping systems and digital
5725-5850	modulation

17.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202204-A5002 Page 41 of 60

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%

18.1 LIMITS

Limit: \geq 500 kHz

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



19 APPENDIX

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	2.476	30	Pass
NVNT	BLE	2442	Ant1	2.277	30	Pass
NVNT	BLE	2480	Ant1	2.439	30	Pass

Power NVNT BLE 2402MHz Ant1

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.657	0.5	Pass
NVNT	BLE	2442	Ant1	0.671	0.5	Pass
NVNT	BLE	2480	Ant1	0.653	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1



-6dB Bandwidth NVNT BLE 2442MHz Ant1

	m Analyzer - Occupied BV	N			
	RF 50 Ω AC eq 2.442000000		Center Freq: 2.4420000	ALIGNAUTO 000 GHz Avg Hold: 100/100	03:02:16 PM Apr 19, 2022 Radio Std: None
]	++ #IFGain:Low	#Atten: 30 dB	Avginola: 100/100	Radio Device: BTS
0 dB/div	Ref Offset 2.53 dE Ref 22.53 dBm				Mkr3 2.442373 GHz -4.4799 dBm
2.5					
.53				3	
.47					
7.5					- month
7.5	man alout water				- Marian
7.5					
7.5					
57.5 57.5					
07.5					
enter 2.4 Res BW			#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occup	ied Bandwidtl	h	Total Power	8.18 dBm	
	1.0	0433 MHz			
Transm	nit Freq Error	37.743 kHz	OBW Power	99.00 %	
x dB Ba	andwidth	670.6 kHz	x dB	-6.00 dB	
6G				STATUS	

-6dB Bandwidth NVNT BLE 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.039566111
NVNT	BLE	2442	Ant1	1.043281155
NVNT	BLE	2480	Ant1	1.043235103

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-6.796	8	Pass
NVNT	BLE	2442	Ant1	-7.413	8	Pass
NVNT	BLE	2480	Ant1	-7.201	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-56.41	-30	Pass
NVNT	BLE	2480	Ant1	-56.26	-30	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

RT	RF 50 Ω	AC		SENSE:INT	AL	IGN AUTO		02:58:0r	5 PM Apr 19, 2022
nter F	req 2.40200		PNO: Wide ↔ IFGain:Low		Run	Avg Type: Avg Hold: ^	100/100	т	RACE 123456 TYPE MWWWWW DET PNNNNN
dB/div	Ref Offset 2.57 Ref 20.00 d						Mł		800 GHz 672 dBm
				1	~~ ^~				
			^	Y		man 1			
			~			h			
	MMM	h.m. m	www			, AJ	whyn	A ama -	
	a vonde von die die ei	. And L . P. O						- way - Wy Gov -	Are and Press
	402000 GHz 100 kHz			W 300 kHz	1		Sweer	Span 1.000 m	8.000 MHz s (1001 pts)
	100 1112		#¥L			STATUS	0466	2 1.000 IIIs	, (100 i pts)

Band Edge NVNT BLE 2402MHz Ant1 Emission

Agiler	it Spe	ectrur	n Ana	lyzer - Swept SA									
Cer	ter	Fre	eq 2	50 Ω AC 2.35600000	F	PNO: Fast ↔		Free Run n: 30 dB	AL	IGN AUTO Avg Type Avg Hold:	: Log-Pwr 100/100		9 PMApr 19, 2022 RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
10 d	B/div			Offset 2.51 dE 20.00 dBm									02 0 GHz 575 dBm
Log 10.0		-											. 1
0.00													♦'
-10.0													
-20.0													
-30.0	⊨												-28.38 dBm
-40.0	\vdash											- 4	
-50.0	⊢				1							\uparrow	
-60.0	hen	ukarduk	hyndd fa'	Lamballuting 1949	had the state of the	gAnghAnda-Udladur	ships have no	Manur K. Him	MUNIN	ulindu antikari	᠕ᢂᡰᠴᡫᢣᠯ᠋᠅ᡣᢛᢍ᠙ᢣᡁᠰ	adderedd yn hynnau yn ywraith yn y Ar ywraith yn ywraith y	
-70.0													
Stai #Re						#VB	W 300	kHz			Swee	Stop 2 p 9.600 m	.40600 GHz s (1001 pts)
MKR		TRC			<	Y		FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	<u> </u>
1 2 3	N N N		f f f		2.402 0 GHz 2.400 0 GHz 2.390 0 GHz	-56.740 -59.386	dBm						
4 5	Ν		f		2.386 4 GHz	-54.744	dBm						
6 7													
3 4 5 6 7 8 9													
10 11													~
<													
MSG										STATUS			

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

nter F	_R ⊧ req 2.52	50 Ω AC			1	SENSE:INT	ree Run	ALI	GNAUTO Avg Type: Avg Hold: 1		03:03:4 T	6 PM Apr 19, 202 RACE 1 2 3 4 5 TYPE MWMM
				PNO: F IFGain:l	ast ⊶⊷ Low	#Atten:	:30 dB		Avginoid: "	100/100		DET P N N N N
dB/div		et 2.58 dE .00 dBm									Mkr1 2.4 1.	80 1 GH .428 dBr
	1											
o 🗕 🕺) [.]			_								
0				_								
0												
0 +				_								-28.62 dB
0	0.4											
	24	har a	. 0 ³			uninterest	ulman daha dalam		40.5			anthratal lange
.0	. Compression	antro Ali Alina a	ባህም በ <u>በት</u> ኒያሳት ቀዋላቸው	Mapping and	h h h	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	ֈֈֈ՟՟ֈՠֈՠՠՠ	and and	ingentarier (Vyhilig	www.	N/Wydor ^a w/Nilgewraightyry	⁽⁾ - III - IV - IV - IV - IV - IV - IV -
.0												
art 2.47	7600 GHz	2									Stop 2	.57600 GH
es BW	100 kHz				#VB	W 300 k	Hz			Swee	ep 9.600 me	s (1001 pts
MODE T	RC SCL		X		Y		FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	
N [′]	1 f		2.480 1 GH		1.428							
N N	f f		2.483 5 GH 2.500 0 GH		-56.558 -59.572							
N	f		2.485 8 GH		-54.885	dBm						
									STATUS			
						IIII	_		STATUS			
						IIII			STATUS			
									STATUS			
									STATUS			
									STATUS			
									STATUS			
									STATUS			×
3 N - 4 5 N - 7 5									STATUS			
									STATUS			
									STATUS			
									STATUS			
									STATUS			

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-47.43	-30	Pass
NVNT	BLE	2442	Ant1	-46.29	-30	Pass
NVNT	BLE	2480	Ant1	-45.87	-30	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

		ii Aila	lyzer - Swept SA									
ter	Fre	RF eq 1	50 Ω AC 3.2650000	I	PNO: Fast 🔸			AL				3 PM Apr 19, 2022 RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
3/div					1							.412 GHz .755 dBm
			1									
		-										
												-27.82 dBm
												∖ 2
			3		5				600 A.	ر. بالرام می العام	an marth an martin	Lamonson
	Jum	ملمسهم	monto	merculan	mannan	way washing	Restormen	and a start of the				
			۲		#VB	W 300 kH	z			Sw		26.50 GHz s (1001 pts)
	TRC		>		Y		INCTION	FUNCT	ION WIDTH		FUNCTION VALUE	<u> </u>
N N N N N		f f f f		23.800 GHz 4.874 GHz 7.018 GHz	-45.256 -55.865 -55.012	dBm dBm dBm						=
												~
									STATUS			
	30 30 30 30 30 30 30 30 30 30 30 30 30 3	30 Mi 5 30 Mi 8 BW 1 1009 TO 1009 TO 1000 TO 1	Ref Vdiv Ref 30 MHz 30 MHz BW 100 H 1 f N 1 f N 1 f	Ref Offset 2.51 dE Ref 20.00 dBm	Ref Offset 2.51 dB Ref 20.00 dBm	Ph0: Fast IFGain:Low Ref Offset 2.51 dB ref 20.00 dBm 1 1 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	PR0: Fast → Ing: Fre IFGain:Low #Atten: 3 Ref Offset 2.51 dB rdiv Ref 20.00 dBm 1 3 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	PRO: Fast → Ing: Free Kun IFGain:Low #Atten: 30 dB Ref Offset 2.51 dB Mdiv Ref 20.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	PNO: Fast	PNO: Fast	PNO: Fast Ing: Free Kun AvgjHold: 10/10 Ref Offset 2.51 dB Ref 20.00 dBm Image: August and	PNO: Fast Free Run Avginoid: 10/10 Ref Offset 2.51 dB 0. Mkr1 2 0. Image: State of the set of the

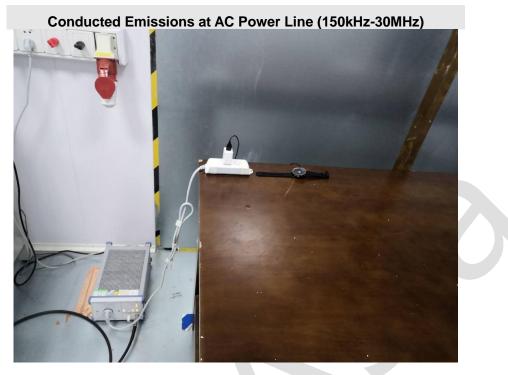
Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

Agiler	nt Spe	ectrur	n Ana	lyzer - Swept SA			SENSE:INT			IGNAUTO		00.00.5	3 PM Apr 19, 2022
Cer	iter	Fre	eq 1	50 Ω AC 3.2650000		PNO: Fast 🔸	Tainer	ree Run : 30 dB	AL.	Avg Type: Avg Hold:	: Log-Pwr 10/10	Т	RACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
10 d Log	B/div			Offset 2.53 dE 20.00 dBm									.439 GHz 168 dBm
10.0			_	1									
0.00	⊢		-7										
-10.0	⊢												
-20.0	⊢												-28.69 dBm
-30.0													
-40.0					3 _4							- man mana	amore chinned
-50.0 -60.0		ر. مور	m	and a march	mennen	menonement	Lovernort	almerson	m	and a dealer with	Constraint of the Constraint		
-70.0													
Stai #Re				٢Hz		#VB	W 300 k	íHz			Sw	Stop eep 2.530 s	26.50 GHz 5 (1001 pts)
MKR	MODE N	TRC		X	2.439 GHz	V 0.168	d Dava	FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	<u> </u>
1 2 3	N N		f f		25.335 GHz 4.980 GHz	-44.983 -55.246	dBm dBm						
4 5 6	N N		f f		7.362 GHz 9.956 GHz								a
3 4 5 6 7 8 9 10													
10 11 <													~
MSG										STATUS			



Tx. Spurious NVNT BLE 2480MHz Ant1 Emission


er Freq 13.26	DQ AC 5000000 GHz PN IFG		Free Run n: 30 dB	ALIGN AUTO Avg Type: Log-P Avg Hold: 10/10	03:1	D4:20 PM Apr 19, 20 TRACE 1 2 3 4 TYPE M WWW DET P N N N
Ref Offset					Mkr1	2.492 GI 1.774 dB
1						
						-28.60
						2
		5	han an an Artification Alexandr	Brand Brand Strates	mar mar and a second	munto
with the market and the get of the	Mar and a strategy an	when and the second	arthogon, a share a			
t 30 MHz s BW 100 kHz		#VBW 300	kHz		Sweep 2.53	top 26.50 G 10 s (1001 p
MODE TRC SCL N 1 f	× 2.492 GHz	т 1.774 dBm	FUNCTION FU	NCTION WIDTH	FUNCTION VAL	UE
N 1 f N 1 f N 1 f N 1 f N 1 f	25.229 GHz 4.821 GHz 7.547 GHz 10.009 GHz	-44.475 dBm -55.886 dBm -55.808 dBm -55.843 dBm				
) [3
				STATUS		

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202204-A5001

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.