

TEST REPORT

Product Name : HAYLOU Freear

Brand Mark : HAYLOU

Model No. : Haylou 100

FCC ID : 2AMQ6-HAYLOU100

Report Number : BLA-EMC-202203-A1303

Date of Sample Receipt : 2022/3/5

Date of Test : 2022/3/6 to 2022/3/22

Date of Issue : 2022/3/22

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Liesheng Electronic Co., Ltd.

Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City,

Guangdong, China

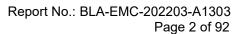
Prepared by:

BlueAsia of Technical Services(Shenzhen) Co., Ltd
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen,
Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Review by


proved by: 1/ his 7 Menu

Date:

weet. Liang

REPORT REVISE RECORD

Version No.	Date	Description
00	2022/3/22	Original

TABLE OF CONTENTS

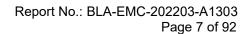
1	Т	EST SUMMARY	6			
2	G	SENERAL INFORMATION	7			
3	G	GENERAL DESCRIPTION OF E.U.T7				
4	т	EST ENVIRONMENT	8			
5		EST MODE				
		IEASUREMENT UNCERTAINTY				
6		DESCRIPTION OF SUPPORT UNIT				
7						
8		ABORATORY LOCATION				
9		EST INSTRUMENTS LIST				
1	R	ADIATED SPURIOUS EMISSIONS	14			
	1.1	LIMITS	14			
	1.2	BLOCK DIAGRAM OF TEST SETUP				
	1.3	PROCEDURE	15			
	1.4	TEST DATA	17			
2	R	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	2			
	2.1	LIMITS	21			
	2.1		Z:			
	2.2	BLOCK DIAGRAM OF TEST SETUP				
		BLOCK DIAGRAM OF TEST SETUP	26			
	2.2		26			
3	2.22.32.4	PROCEDURE	26 26			
	2.2 2.3 2.4	PROCEDURE TEST DATA	26 28 32			
	2.2 2.3 2.4 A 3.1	PROCEDURE TEST DATA NTENNA REQUIREMENT	26 28 32			
	2.2 2.3 2.4 A 3.1	PROCEDURE TEST DATA INTENNA REQUIREMENT CONCLUSION CONDUCTED BAND EDGES MEASUREMENT	26 28 32 32			
	2.2 2.3 2.4 A 3.1 C	PROCEDURE TEST DATA INTENNA REQUIREMENT CONCLUSION CONDUCTED BAND EDGES MEASUREMENT LIMITS	26 28 32 32 33			
	2.2 2.3 2.4 3.1 C 4.1 4.2	PROCEDURE TEST DATA INTENNA REQUIREMENT CONCLUSION CONDUCTED BAND EDGES MEASUREMENT LIMITS BLOCK DIAGRAM OF TEST SETUP	262832323333			
4	2.2 2.3 2.4 3.1 C 4.1 4.2 4.3	PROCEDURE TEST DATA NTENNA REQUIREMENT CONCLUSION CONDUCTED BAND EDGES MEASUREMENT LIMITS BLOCK DIAGRAM OF TEST SETUP TEST DATA	26 28 32 33 33 33			
	2.2 2.3 2.4 3.1 C 4.1 4.2 4.3	PROCEDURE TEST DATA NTENNA REQUIREMENT CONCLUSION SONDUCTED BAND EDGES MEASUREMENT LIMITS BLOCK DIAGRAM OF TEST SETUP TEST DATA CONDUCTED SPURIOUS EMISSIONS	2632333333			
4	2.2 2.3 2.4 3.1 C 4.1 4.2 4.3 C	PROCEDURE TEST DATA INTENNA REQUIREMENT CONCLUSION CONDUCTED BAND EDGES MEASUREMENT LIMITS BLOCK DIAGRAM OF TEST SETUP TEST DATA CONDUCTED SPURIOUS EMISSIONS LIMITS	26283233333334			
4	2.2 2.3 2.4 3.1 C 4.1 4.2 4.3	PROCEDURE TEST DATA NTENNA REQUIREMENT CONCLUSION SONDUCTED BAND EDGES MEASUREMENT LIMITS BLOCK DIAGRAM OF TEST SETUP TEST DATA CONDUCTED SPURIOUS EMISSIONS	26323333333434			

6	D	OWELL TIME	35
	6.1	LIMITS	35
	6.2	BLOCK DIAGRAM OF TEST SETUP	35
	6.3	EST DATA	35
7	Н	IOPPING CHANNEL NUMBER	36
	7.1	LIMITS	36
	7.2	BLOCK DIAGRAM OF TEST SETUP	
	7.3	TEST DATA	
8	_	CARRIER FREQUENCIES SEPARATION	
0	C		
	8.1	LIMITS	
	8.2	BLOCK DIAGRAM OF TEST SETUP	
	8.3	TEST DATA	
9	2	0DB BANDWIDTH	38
	9.1	BLOCK DIAGRAM OF TEST SETUP	38
	9.2	TEST DATA	38
10) C	CONDUCTED PEAK OUTPUT POWER	39
	10.1 10.2		
	10.2		
11	C	CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	40
	11.1	LIMITS	40
	11.2	BLOCK DIAGRAM OF TEST SETUP	40
	11.3	PROCEDURE	40
	11.4	TEST DATA	42
10) A	APPENDIX	44
	10.1	MAXIMUM CONDUCTED OUTPUT POWER	44
	10.2		
	10.3	Occupied Channel Bandwidth	54
	10.4	BAND EDGE	59
	10.5	BAND EDGE(HOPPING)	66
	10.6	CONDUCTED RF Spurious Emission	73
	10.7	CARRIER FREQUENCIES SEPARATION	83
	10.8	Number of Hopping Channel	85

Report No.: BLA-EMC-202203-A130	3
---------------------------------	---

Page 5 of 92

10.9	DWELL TIME	8	7
APPENDI	IX A: PHOTOGRAPHS OF TEST SETUP	9	1


Report No.: BLA-EMC-202203-A1303

Page 6 of 92

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Liesheng Electronic Co., Ltd.	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China	
Manufacturer	Dongguan Liesheng Electronic Co., Ltd.	
Address	Room 401-410, Building 1, No.86 Hongtu Road, Nancheng District, Dongguan City, Guangdong, China	
Factory	Dongguan Zhengrong Electronic Co., Ltd.	
Address	No.4, Shugang Avenue, Hongmei Town, Dongguan City, Guangdong	
Product Name	HAYLOU Freear	
Test Model No.	Haylou 100	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0	
Software Version	1.0	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK, p/4DQPSK, 8DPSK	
Channel Spacing:	1MHz	
Number of Channels:	79	
Antenna Type:	Chip Antenna	
Antenna Gain:	-1.78dBi	

Report No.: BLA-EMC-202203-A1303

Page 8 of 92

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25	DC3.7

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX	Keep the EUT in transmitting mode
TX mode (SE) keep the EUT in transmitting mode	
Remark:Only the data of the worst mode would be recorded in this report.	

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB

Report No.: BLA-EMC-202203-A1303

Page 9 of 92

7 DESCRIPTION OF SUPPORT UNIT

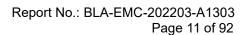
Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter (UGREEN)	UGREEN	CD112	N/A	N/A
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

No.41, South of Beihuan Road, Shangwu Community, Shiyan Subdistrict, Bao' an District, Shenzhen, Guangdong, ChinaTelephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.



9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Conducted Band Edges Measurement S/N Cal.Date **Equipment** Manufacturer Model Cal.Due Spectrum R&S FSP40 24/9/2021 100817 23/9/2022 Spectrum Agilent N9020A MY49100060 24/9/2021 23/9/2022 Signal Generator MY49060650 Agilent N5182A 24/9/2021 23/9/2022 Signal Generator Agilent E8257D MY44320250 24/9/2021 23/9/2022

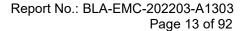
Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Dwell Time					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Hopping Channel Number					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022

Report No.: BLA-EMC-202203-A1303

Page 12 of 92


Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Carrier Frequencies Separation					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

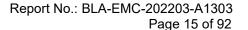
Test Equipment Of 20dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022



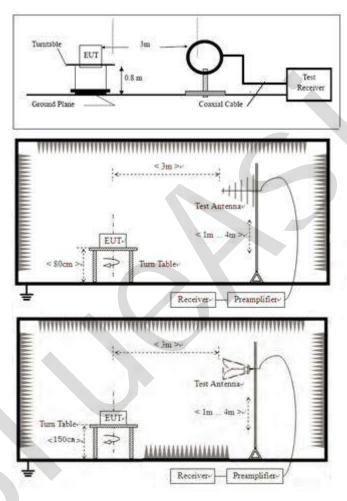
Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz) Cal.Due **Equipment** Manufacturer Model S/N Cal.Date Shield room SKET 833 25/11/2020 24/11/2023 N/A Receiver R&S ESPI3 101082 24/9/2021 23/9/2022 LISN R&S 3560.6550.15 **ENV216** 24/9/2021 23/9/2022 AKK1806000003 LISN 安泰信 AT166-2 26/9/2021 25/9/2022 EMI software ΕZ **EZ-EMC** N/A N/A N/A

1 RADIATED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX;TX mode (SE) below 1G
Test Mode (Final Test)	TX;TX mode (SE) below 1G
Tester	LEO
Temperature	25℃
Humidity	55%

1.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

1.2 BLOCK DIAGRAM OF TEST SETUP

1.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

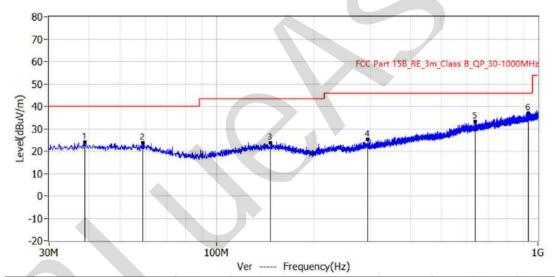
Report No.: BLA-EMC-202203-A1303

Page 16 of 92

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark

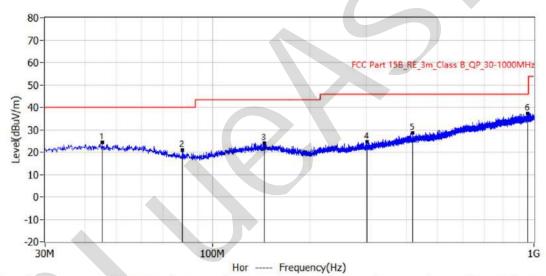
- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

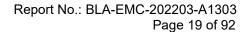


1.4 TEST DATA

[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

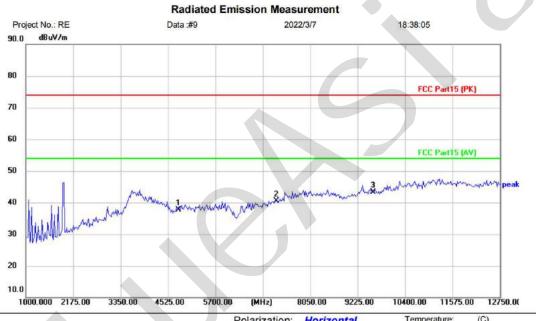
Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202203-A13			
EUT: Bone-conducted earphone	Test Engineer: Leo			
M/N: Haylou 100	Temperature:			
S/N:	Humidity:			
Test Mode: BT mode	Test Voltage:			
Note:	Test Data: 2022-03-07 15:35:46			


No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	38.730MHz	40.0	24.1	-15.9	0.1	24.0	QP	Ver	100.0	357.0
2*	58.858MHz	40.0	23.8	-16.2	0.3	23.5	QP	Ver	100.0	266.0
3*	147.006MHz	43.5	23.6	-19.9	0.0	23.6	QP	Ver	100.0	357.0
4*	294.325MHz	46.0	25.2	-20.8	1.3	23.9	QP	Ver	100.0	76.0
5*	637.463MHz	46.0	33.1	-12.9	1.6	31.5	QP	Ver	100.0	225.0
6*	933.919MHz	46.0	37.0	-9.0	1.6	35.4	QP	Ver	100.0	182.0


[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202203-A13		
EUT: Bone-conducted earphone	Test Engineer: Leo		
M/N: Haylou 100	Temperature:		
S/N:	Humidity:		
Test Mode: BT mode	Test Voltage:		
Note:	Test Data: 2022-03-07 15:33:55		

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	45.156MHz	40.0	24.3	-15.7	0.4	23.9	QP	Hor	100.0	315.0
2*	80.440MHz	40.0	21.0	-19.0	1.2	19.8	QP	Hor	100.0	274.0
3*	144.339MHz	43.5	24.0	-19.5	0.4	23.6	QP	Hor	100.0	252.0
4*	302.085MHz	46.0	24.6	-21.4	0.5	24.1	QP	Hor	100.0	59.0
5*	419.334MHz	46.0	28.6	-17.4	1.1	27.5	QP	Hor	100.0	259.0
6*	956.593MHz	46.0	37.2	-8.8	1.5	35.7	QP	Hor	100.0	0.0



Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

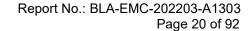
[TestMode: TX]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

Polarization: Horizontal Power:

Temperature: (C) Humidity:

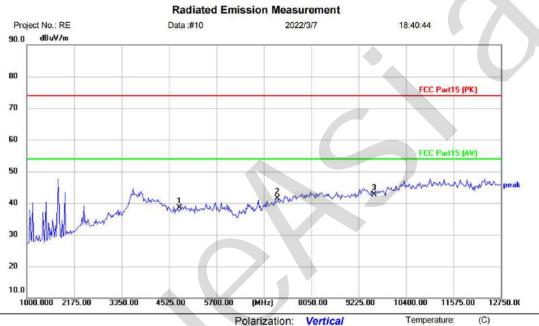
%RH


EUT: M/N:

Mode: TX-L Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4804.000	33.94	3.71	37.65	74.00	-36.35	peak		
2	7206.000	34.59	5.96	40.55	74.00	-33.45	peak		
3 *	9608.000	34.00	9.29	43.29	74.00	-30.71	peak		

*: Maximum data (Reference Only x:Over limit !:over margin

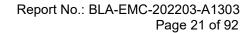


%RH

[TestMode: TX]; [Polarity: Vertical]

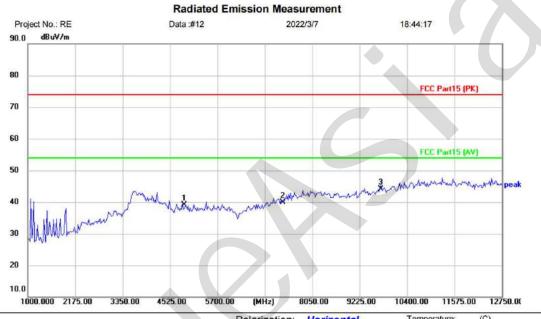
Limit: FCC Part15 (PK)

EUT: M/N: Mode: TX-L Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4804.000	34.70	3.71	38.41	74.00	-35.59	peak		
2		7206.000	35.58	5.96	41.54	74.00	-32.46	peak		
3	*	9608.000	33.48	9.29	42.77	74.00	-31.23	peak		

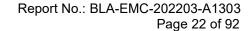
Power:


*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

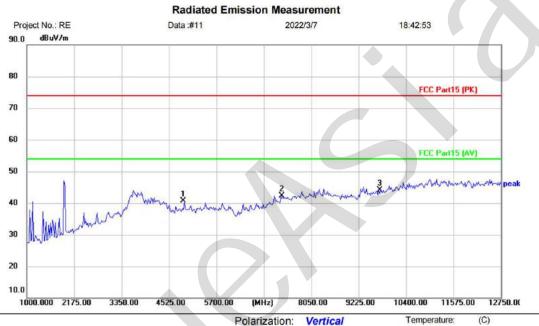
EUT: M/N: Mode: TX-M Note:


Site

Polarization: Horizontal Temperature: (C)
Power: Humidity: %RH

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4882.000	35.70	3.36	39.06	74.00	-34.94	peak		
2	7323.000	33.49	6.43	39.92	74.00	-34.08	peak		
3 *	9764.000	34.55	9.63	44.18	74.00	-29.82	peak		

*:Maximum data x:Over limit !:over margin (Reference Only

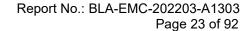


%RH

[TestMode: TX]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

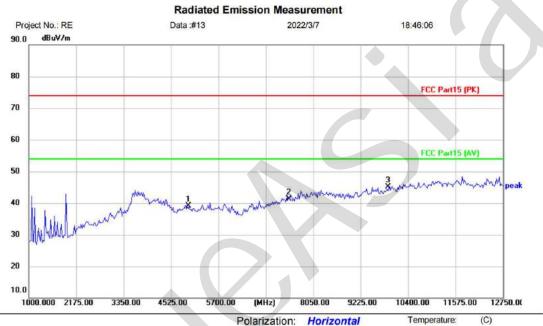
EUT: M/N: Mode: TX-M Note:


Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4882.000	37.28	3.36	40.64	74.00	-33.36	peak		
2	7323.000	35.92	6.43	42.35	74.00	-31.65	peak		
3 *	9764.000	34.40	9.63	44.03	74.00	-29.97	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

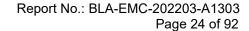


%RH

[TestMode: TX]; [Polarity: Horizontal]

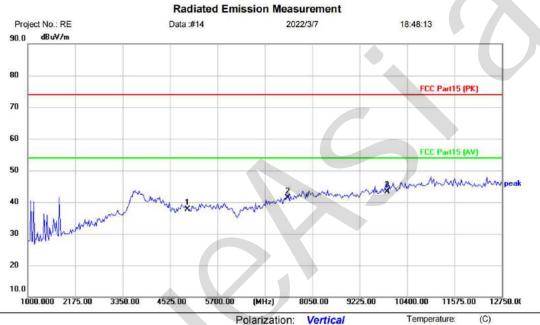
Limit: FCC Part15 (PK)

EUT: M/N: Mode: TX-H Note:


Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4960.000	35.26	3.75	39.01	74.00	-34.99	peak		
2	7440.000	34.46	6.86	41.32	74.00	-32.68	peak		
3 *	9920.000	35.04	10.16	45.20	74.00	-28.80	peak		

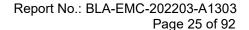
Power:


*: Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: M/N: Mode: TX-H Note:

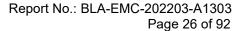

Site

Polarization: Vertical Temperature: (C)
Power: Humidity: %RH

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4960.000	34.04	3.75	37.79	74.00	-36.21	peak		
2	7440.000	34.52	6.86	41.38	74.00	-32.62	peak		
3 *	9920.000	33.22	10.16	43.38	74.00	-30.62	peak		

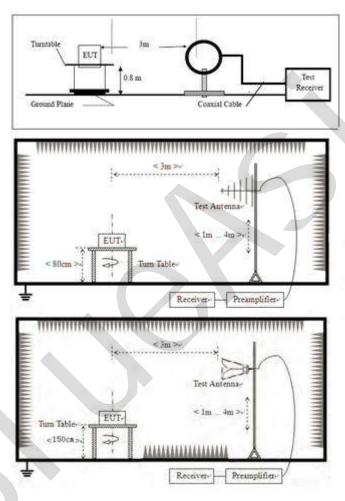
*:Maximum data x:Over limit !:over margin (Reference Only

2 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

2.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

2.2 BLOCK DIAGRAM OF TEST SETUP

2.3 PROCEDURE

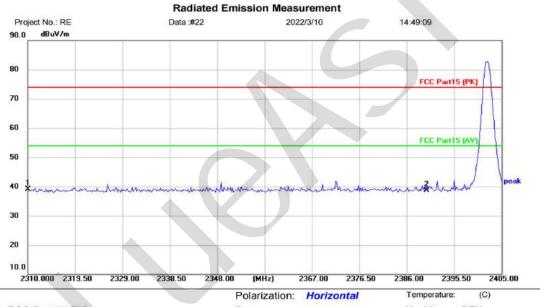
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No.: BLA-EMC-202203-A1303

Page 27 of 92

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.
- Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



TEST DATA

Remark:

During the test, pre-scan the GFSK, Pi/4QPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

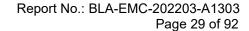
[TestMode: TX]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

Power:

Humidity:

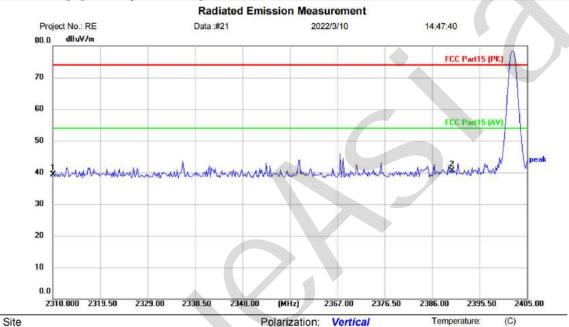
EUT: M/N: Mode: EDR-L


Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2310.000	43.04	-3.93	39.11	74.00	-34.89	peak		
2		2390.000	42.36	-3.58	38.78	74.00	-35.22	peak		

*:Maximum data x:Over limit !:over margin (Reference Only



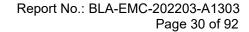
%RH

[TestMode: TX]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: M/N:

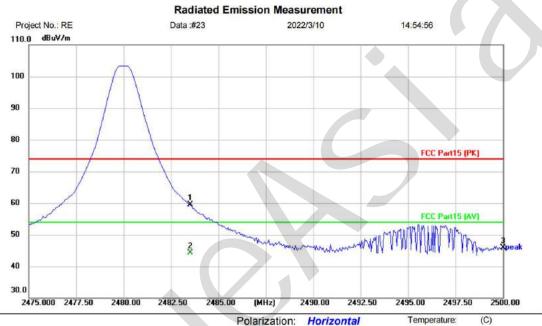
Mode: EDR-L


Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	2310.000	43.21	-3.93	39.28	74.00	-34.72	peak	
2 *	2390.000	44.14	-3.58	40.56	74.00	-33.44	peak	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only



%RH

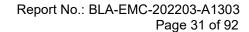
[TestMode: TX]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: M/N:

Site

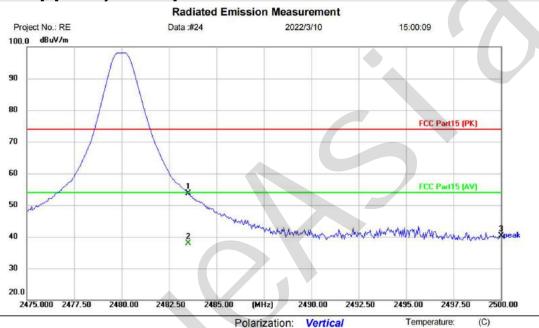
Mode: EDR-H


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	62.62	-3.14	59.48	74.00	-14.52	peak		
2	*	2483.500	47.35	-3.14	44.21	54.00	-9.79	AVG		
3		2500.000	49.00	-3.08	45.92	74.00	-28.08	peak		

Power:

*:Maximum data x:Over limit !:over margin (Reference Only



%RH

[TestMode: TX]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: M/N:

Site

Mode: EDR-H

Note:

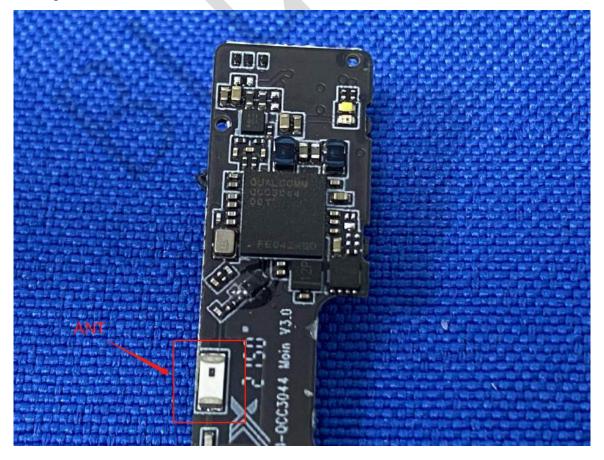
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	56.79	-3.14	53.65	74.00	-20.35	peak		
2	*	2483.500	41.12	-3.14	37.98	54.00	-16.02	AVG		
3		2500.000	43.34	-3.08	40.26	74.00	-33.74	peak		

Power:

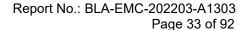
*:Maximum data x:Over limit !:over margin (Reference Only

3 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	N/A	


3.1 CONCLUSION

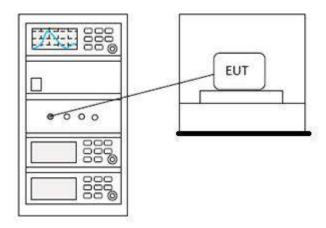
Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -1.78dBi.

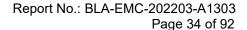
4 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

4.1 LIMITS

Limit:

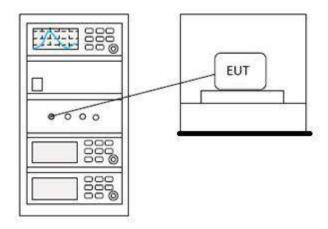
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


4.2 BLOCK DIAGRAM OF TEST SETUP

4.3 TEST DATA

Pass: Please Refer To Appendix: For Details

5 CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

5.1 LIMITS

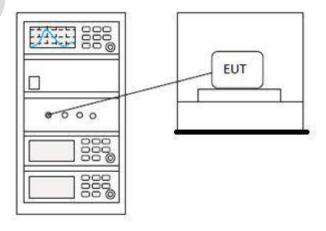
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.2 BLOCK DIAGRAM OF TEST SETUP

5.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


6 DWELL TIME

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.4
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

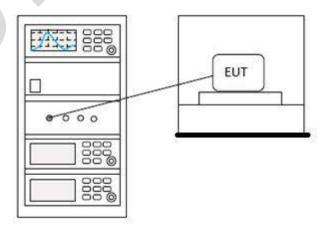
6.1 LIMITS

Frequency(MHz)	Limit
002.020	0.4S within a 20S period(20dB bandwidth<250kHz)
902-928	0.4S within a 10S period(20dB bandwidth≥250kHz)
	0.4S within a period of 0.4S multiplied by the
2400-2483.5	number
	of hopping channels
5725-5850	0.4S within a 30S period

6.2 BLOCK DIAGRAM OF TEST SETUP

6.3 EST DATA

Pass: Please Refer To Appendix: For Details


7 HOPPING CHANNEL NUMBER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.3
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

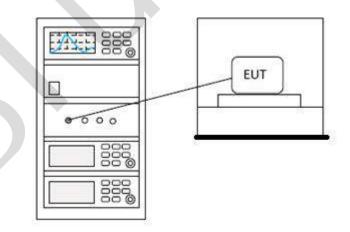
7.1 LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)
000 000	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


8 CARRIER FREQUENCIES SEPARATION

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

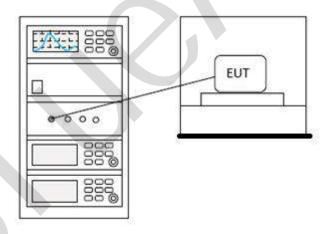
8.1 LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

8.2 BLOCK DIAGRAM OF TEST SETUP

8.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



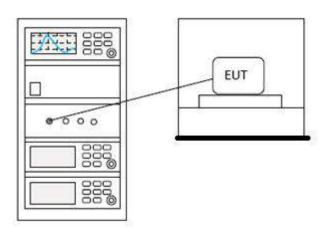
9 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.7
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

9.1 BLOCK DIAGRAM OF TEST SETUP

9.2 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


10 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Ben					
Temperature	25℃					
Humidity	55%					

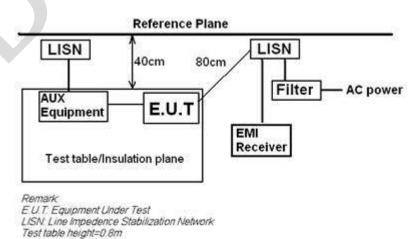
10.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725-5850	1 for frequency hopping systems and digital modulation				

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 EST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


11 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Ben
Temperature	25℃
Humidity	55%

11.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
*Decreases with the logarithm of the frequency.							

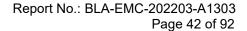
11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Report No.: BLA-EMC-202203-A1303

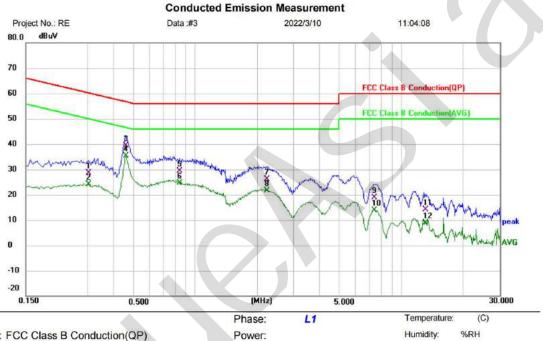
Page 41 of 92


3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor



11.4 TEST DATA

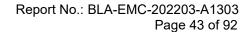
[TestMode: TX]; [Line: Line]; [POWER:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Bone-conducted earphone

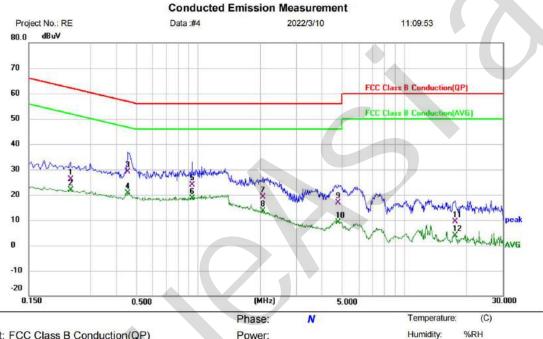
M/N: Haylou 100 Mode: BLE mode

Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	7	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3019	18.73	9.85	28.58	60.19	-31.61	QP	
2		0.3019	14.31	9.85	24.16	50.19	-26.03	AVG	
3		0.4580	29.51	9.87	39.38	56.73	-17.35	QP	
4	*	0.4580	25.57	9.87	35.44	46.73	-11.29	AVG	
5		0.8419	19.51	9.91	29.42	56.00	-26.58	QP	
6		0.8419	14.65	9.91	24.56	46.00	-21.44	AVG	
7		2.2259	16.24	9.94	26.18	56.00	-29.82	QP	
8		2.2259	11.63	9.94	21.57	46.00	-24.43	AVG	
9		7.3819	8.86	10.10	18.96	60.00	-41.04	QP	
10		7.3819	3.79	10.10	13.89	50.00	-36.11	AVG	
11		13.1140	3.91	10.26	14.17	60.00	-45.83	QP	
12		13.1140	-1.33	10.26	8.93	50.00	-41.07	AVG	

*: Maximum data x:Over limit (Reference Only !:over margin


Test Result: Pass

[TestMode: TX]; [Line: Nutral]; [POWER:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Bone-conducted earphone

M/N: Haylou 100 Mode: BLE mode

Note:

Site

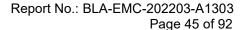
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2380	15.90	10.24	26.14	62.17	-36.03	QP	
2	0.2380	11.62	10.24	21.86	52.17	-30.31	AVG	
3	0.4540	19.44	9.79	29.23	56.80	-27.57	QP	
4 *	0.4540	10.84	9.79	20.63	46.80	-26.17	AVG	
5	0.9300	14.11	9.83	23.94	56.00	-32.06	QP	
6	0.9300	8.73	9.83	18.56	46.00	-27.44	AVG	
7	2.0579	9.29	9.86	19.15	56.00	-36.85	QP	
8	2.0579	3.80	9.86	13.66	46.00	-32.34	AVG	
9	4.7860	6.84	9.94	16.78	56.00	-39.22	QP	
10	4.7860	-0.79	9.94	9.15	46.00	-36.85	AVG	
11	17.5740	-0.97	10.37	9.40	60.00	-50.60	QP	
12	17.5740	-6.56	10.37	3.81	50.00	-46.19	AVG	

Power:

*: Maximum data x:Over limit !:over margin (Reference Only

Test Result: Pass

10 APPENDIX


10.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Conducted	Duty	Total	Limit	Verdict
		(MHz)	Power (dBm)	Factor	Power	(dBm)	
				(dB)	(dBm)		
NVNT	1-DH1	2402	0.956	0	0.956	21	Pass
NVNT	1-DH1	2441	1.464	0	1.464	21	Pass
NVNT	1-DH1	2480	0.644	0	0.644	21	Pass
NVNT	2-DH1	2402	0.605	0	0.605	21	Pass
NVNT	2-DH1	2441	1.16	0	1.16	21	Pass
NVNT	2-DH1	2480	0.223	0	0.223	21	Pass
NVNT	3-DH1	2402	1.266	0	1.266	21	Pass
NVNT	3-DH1	2441	1.701	0	1.701	21	Pass
NVNT	3-DH1	2480	0.834	0	0.834	21	Pass

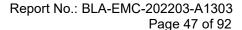
Power NVNT 1-DH1 2402MHz Ant1

Power NVNT 1-DH1 2441MHz Ant1

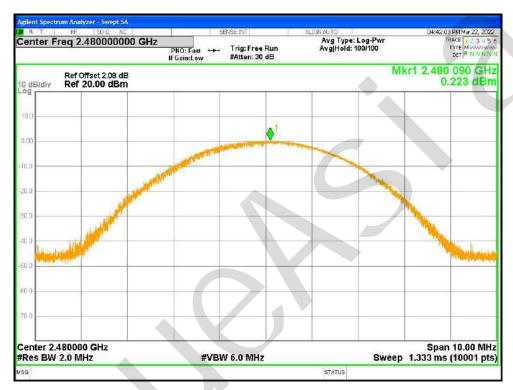
Power NVNT 1-DH1 2480MHz Ant1

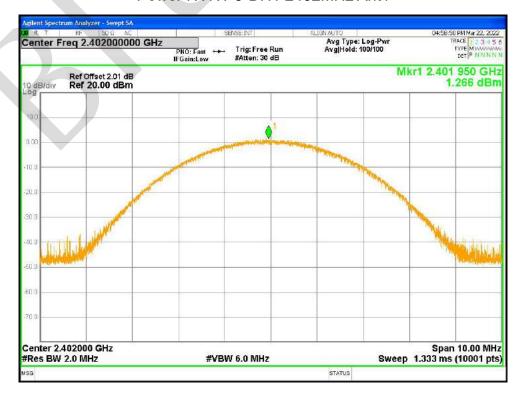


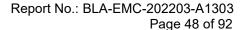



Power NVNT 2-DH1 2402MHz Ant1

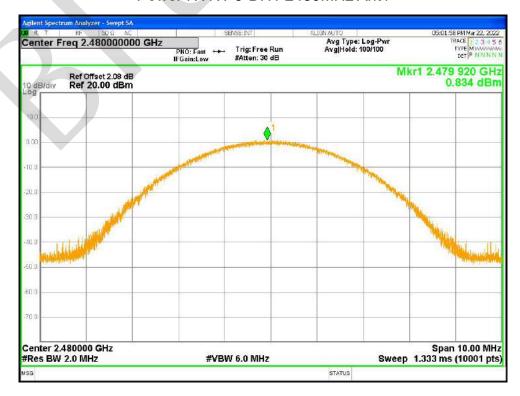
Power NVNT 2-DH1 2441MHz Ant1






Power NVNT 2-DH1 2480MHz Ant1

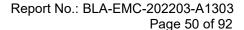
Power NVNT 3-DH1 2402MHz Ant1



Power NVNT 3-DH1 2441MHz Ant1

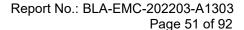
Power NVNT 3-DH1 2480MHz Ant1



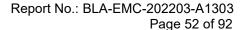

10.2 -20DB BANDWIDTH

Condition	Mode	Frequency	-20 dB Bandwidth	Limit -20 dB Bandwidth	Verdict
		(MHz)	(MHz)	(MHz)	
NVNT	1-DH1	2402	0.944	0	Pass
NVNT	1-DH1	2441	0.924	0	Pass
NVNT	1-DH1	2480	0.948	0	Pass
NVNT	2-DH1	2402	1.324	0	Pass
NVNT	2-DH1	2441	1.339	0	Pass
NVNT	2-DH1	2480	1.325	0	Pass
NVNT	3-DH1	2402	1.297	0	Pass
NVNT	3-DH1	2441	1.277	0	Pass
NVNT	3-DH1	2480	1.266	0	Pass

-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1

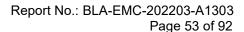

-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1


-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

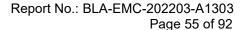



-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2402MHz Ant1

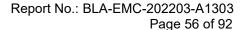
-20dB Bandwidth NVNT 3-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2480MHz Ant1

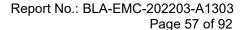

10.3 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	99% OBW (MHz)
NVNT	1-DH1	2402	0.8557463608
NVNT	1-DH1	2441	0.8544634885
NVNT	1-DH1	2480	0.855969276
NVNT	2-DH1	2402	1.185196337
NVNT	2-DH1	2441	1.182920034
NVNT	2-DH1	2480	1.190491008
NVNT	3-DH1	2402	1.169165801
NVNT	3-DH1	2441	1.165101302
NVNT	3-DH1	2480	1.169012833

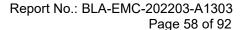
OBW NVNT 1-DH1 2402MHz Ant1


OBW NVNT 1-DH1 2441MHz Ant1

OBW NVNT 1-DH1 2480MHz Ant1


OBW NVNT 2-DH1 2402MHz Ant1

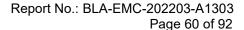
OBW NVNT 2-DH1 2441MHz Ant1


OBW NVNT 2-DH1 2480MHz Ant1

OBW NVNT 3-DH1 2402MHz Ant1

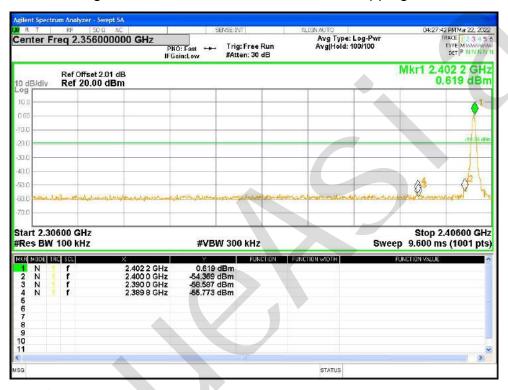
OBW NVNT 3-DH1 2441MHz Ant1

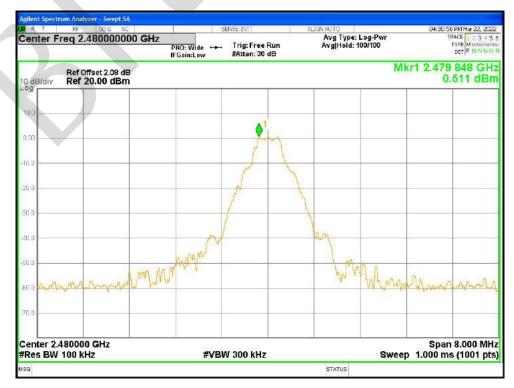
OBW NVNT 3-DH1 2480MHz Ant1

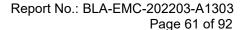

10.4 BAND EDGE

Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
		(MHz)	Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	No-Hopping	-56.39	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-56.71	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-53.81	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-53.58	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-53.82	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-53.65	-20	Pass

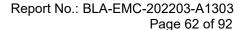
Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref



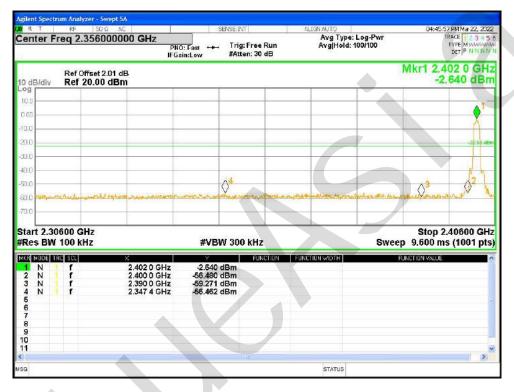


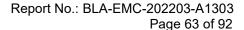

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref

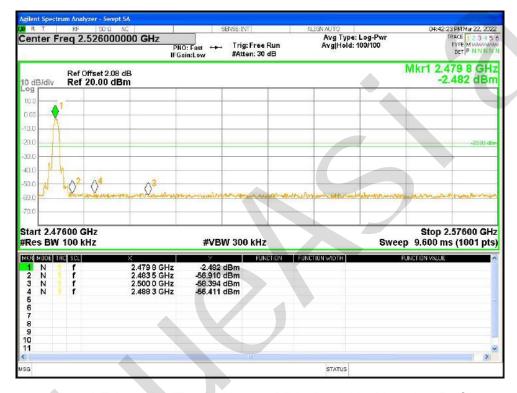

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission

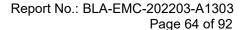
Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Ref



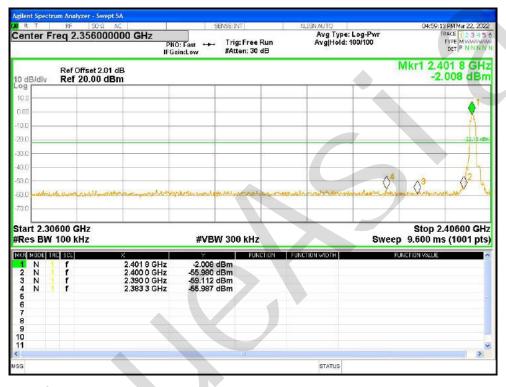

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission

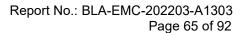
Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Ref




Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Emission

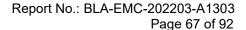
Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Ref




Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Emission

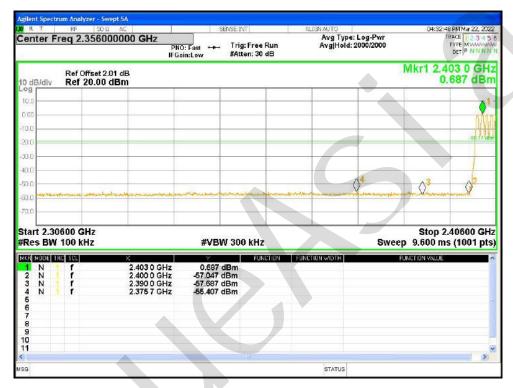
Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Ref

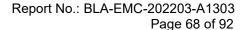
Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Emission


10.5 BAND EDGE(HOPPING)

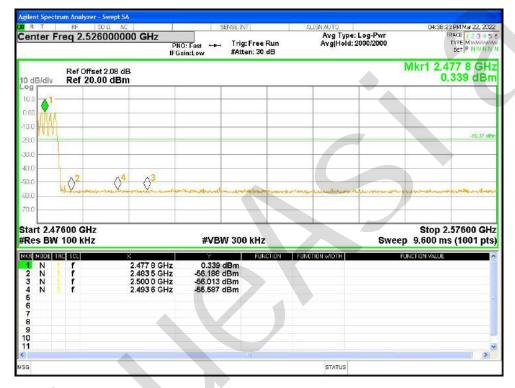
Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
		(MHz)	Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Hopping	-56.23	-20	Pass
NVNT	1-DH1	2480	Hopping	-56.21	-20	Pass
NVNT	2-DH1	2402	Hopping	-52.39	-20	Pass
NVNT	2-DH1	2480	Hopping	-52.33	-20	Pass
NVNT	3-DH1	2402	Hopping	-52.34	-20	Pass
NVNT	3-DH1	2480	Hopping	-52.39	-20	Pass

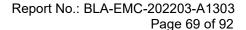
Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Ref



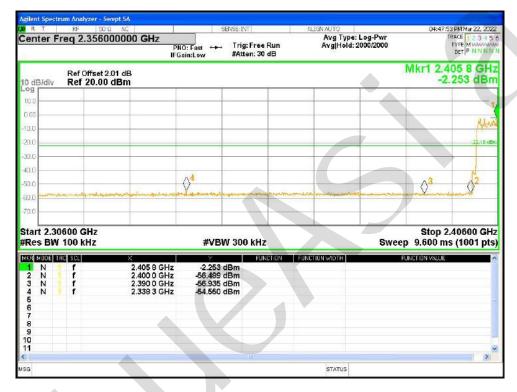

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Emission

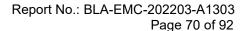
Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Ref




Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Emission

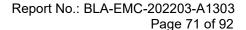
Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Ref



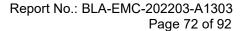

Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Ref

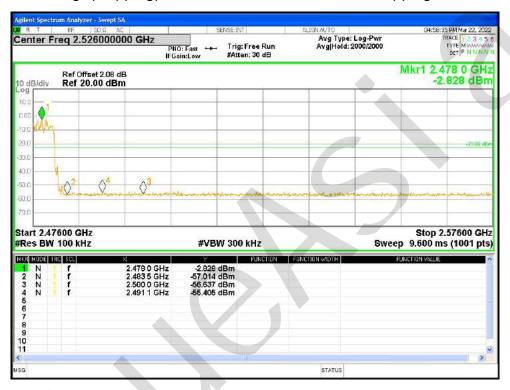


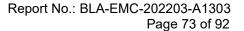

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Ref

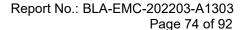

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Ref



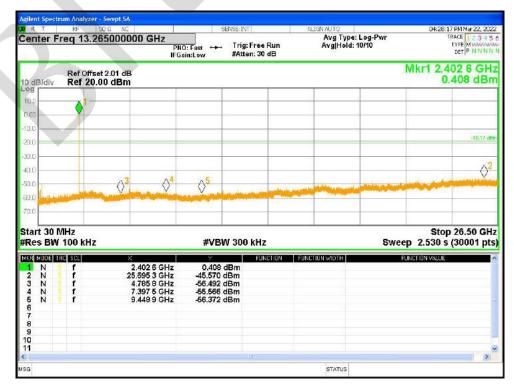


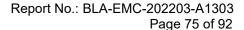
Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Emission



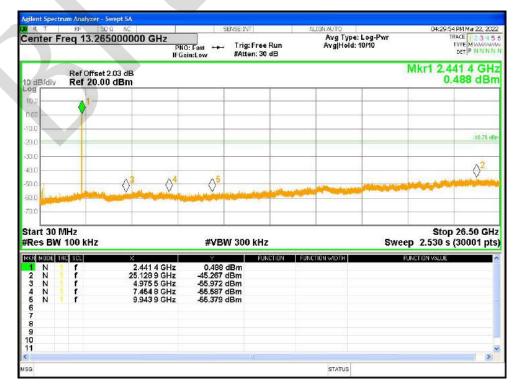
10.6 CONDUCTED RF SPURIOUS EMISSION

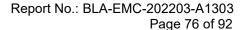
O 110	N 4 1		NA	1: 1/10/	17 P 1
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-46.41	-20	Pass
NVNT	1-DH1	2441	-46.5	-20	Pass
NVNT	1-DH1	2480	-46.17	-20	Pass
NVNT	2-DH1	2402	-43.33	-20	Pass
NVNT	2-DH1	2441	-44.25	-20	Pass
NVNT	2-DH1	2480	-43.15	-20	Pass
NVNT	3-DH1	2402	-41.6	-20	Pass
NVNT	3-DH1	2441	-43.88	-20	Pass
NVNT	3-DH1	2480	-42.23	-20	Pass




Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref

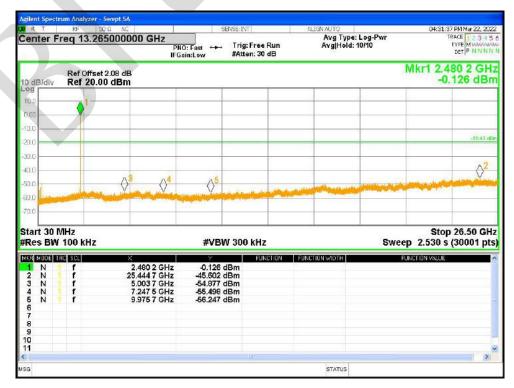
Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission

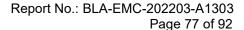




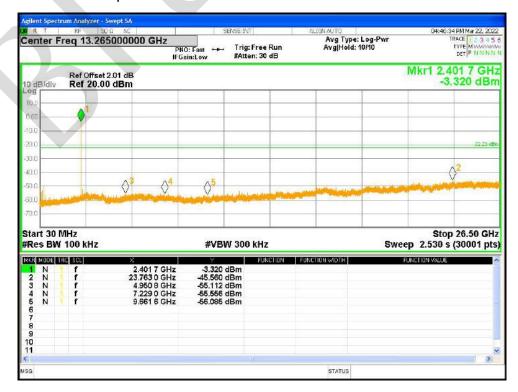
Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Ref

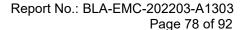
Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission



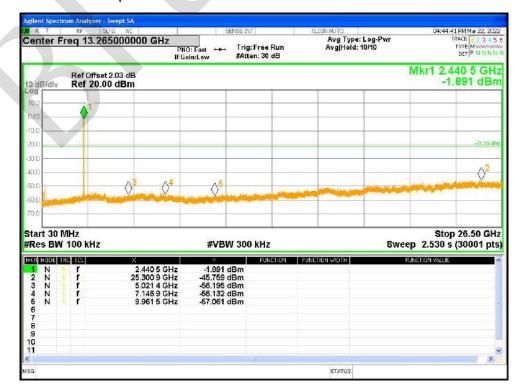

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Ref

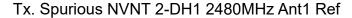
Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission

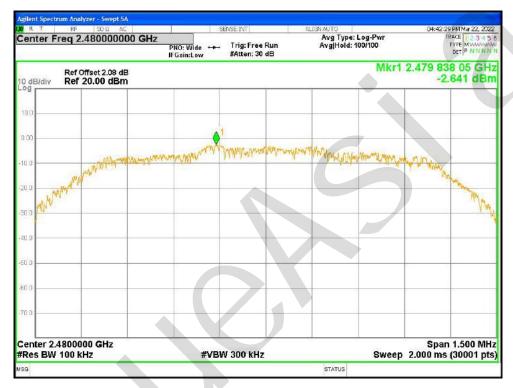



Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Ref

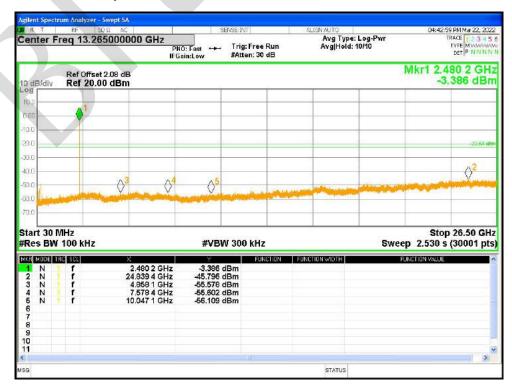
Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Emission




Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Ref

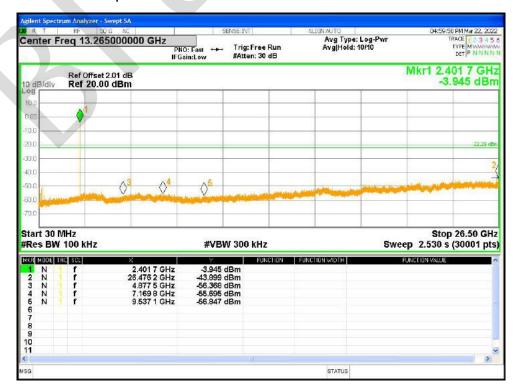


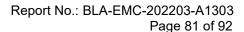
Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Emission



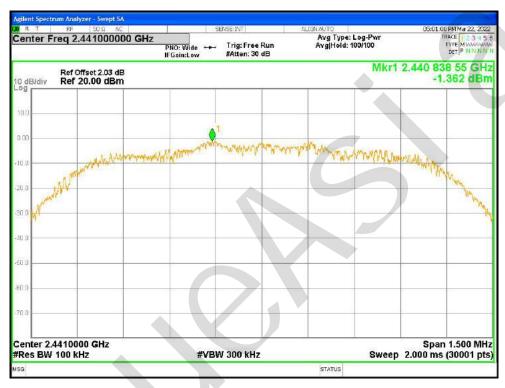


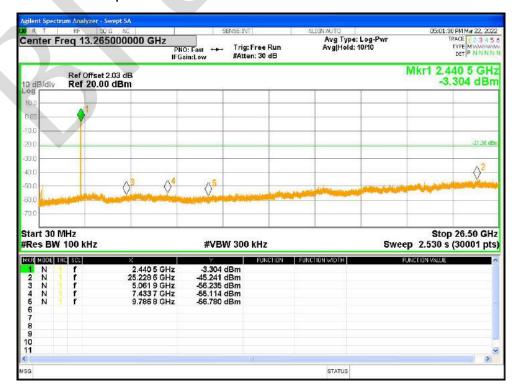
Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Emission

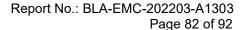



Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Ref

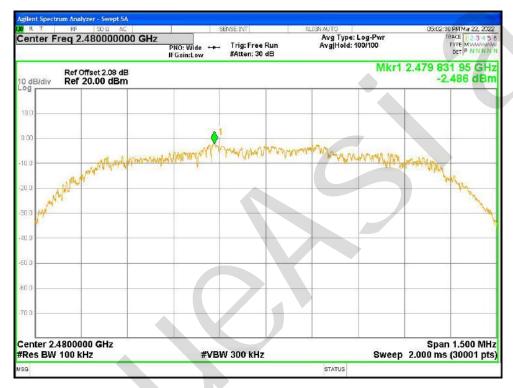
Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Emission

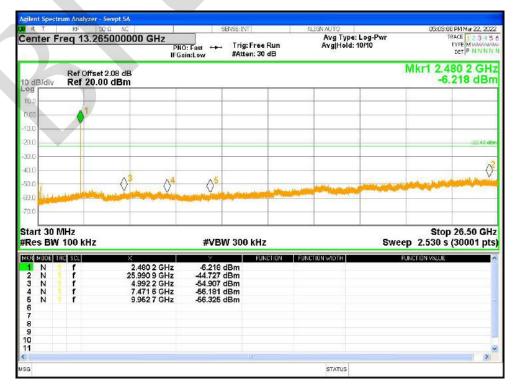





Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Emission

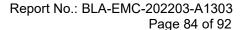




Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Ref

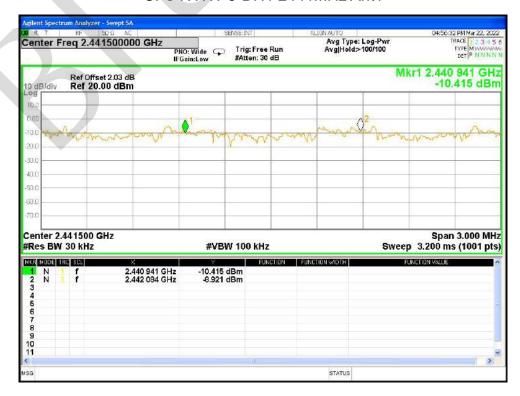
Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Emission




10.7 CARRIER FREQUENCIES SEPARATION

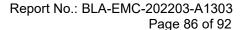
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH1	2441.005	2442.0145	1.0095	0.924	Pass
NVNT	2-DH1	2441.0725	2442.103	1.0305	0.893	Pass
NVNT	3-DH1	2440.9405	2442.0835	1.143	0.025	Pass

CFS NVNT 1-DH1 2441MHz Ant1



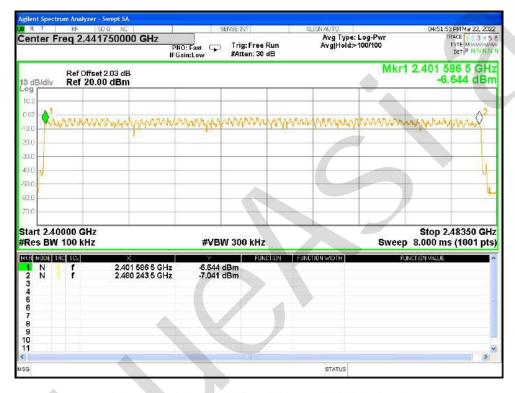
CFS NVNT 2-DH1 2441MHz Ant1

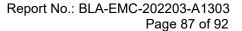
CFS NVNT 3-DH1 2441MHz Ant1



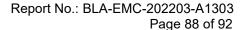
10.8 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass


Hopping No. NVNT 1-DH1 2441MHz Ant1

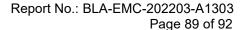

Hopping No. NVNT 2-DH1 2441MHz Ant1

Hopping No. NVNT 3-DH1 2441MHz Ant1

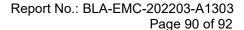


10.9 DWELL TIME

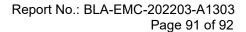
Condition	Mode	Frequency (MHz)	Pulse Time	Total Dwell Time (ms)	Burst Count	Period Time	Limit (ms)	Verdict
		, ,	(ms)	, ,		(ms)		
NVNT	1-DH1	2441	0.382	121.476	318	31600	400	Pass
NVNT	1-DH3	2441	1.639	245.85	150	31600	400	Pass
NVNT	1-DH5	2441	2.887	303.135	105	31600	400	Pass


Dwell NVNT 1-DH1 2441MHz Ant1 One Burst

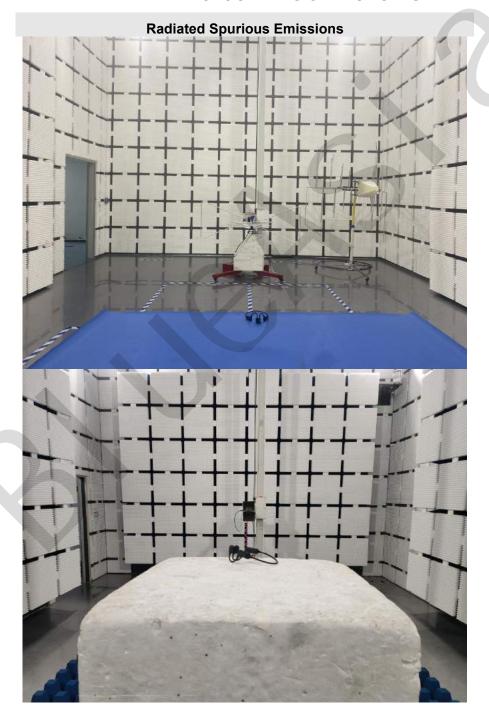
Dwell NVNT 1-DH1 2441MHz Ant1 Accumulated

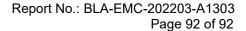

Dwell NVNT 1-DH3 2441MHz Ant1 One Burst

Dwell NVNT 1-DH3 2441MHz Ant1 Accumulated


Dwell NVNT 1-DH5 2441MHz Ant1 One Burst

Dwell NVNT 1-DH5 2441MHz Ant1 Accumulated





APPENDIX A: PHOTOGRAPHS OF TEST SETUP

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.

