TEST REPORT

of

FCC Part 15 Subpart C AND CANADA RSS-247

 \square New Application; \square Class I PC; \square Class II PC

Product :	Bluetooth V4.1 Module
Brand:	Sunrise
Model:	FB00000BT
Model Difference:	N/A
FCC ID:	2AMPPFB00000BT
IC:	11471A-FB00000BT
FCC Rule Part: IC Rule Part:	§15.247, Cat: DSS RSS-247 issue 2: 2017 RSS-Gen issue 5: 2019
Applicant:	Sunrise Technology Co., Ltd
Address:	No.28, Longshan St., Xitun Dist., Taichung City 407, Taiwan

Test Performed by: International Standards Laboratory Corp. <LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW0997; TAF: 0997; IC: IC4067B-4;

*Address: No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel : 886-3-407-1718; Fax: 886-3-407-1738

Report No.: ISL-20LR351FCDSS Issue Date : 2020/11/12

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein. The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification. This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant:	Sunrise Technology Co., Ltd
Product Description:	Bluetooth V4.1 Module
Brand Name:	Sunrise
Model No.:	FB00000BT
Model Difference:	N/A
FCC ID:	2AMPPFB00000BT
IC:	11471A-FB00000BT
Date of test:	2020/10/22 ~ 2020/11/10
Date of EUT Received:	2020/10/21

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Jason Chao	Date:	2020/11/12
	Jason Chao / Senior Engineer		
Prepared By:	Elise Chen	Date:	2020/11/12
	Elisa Chen / Senior Engineer		
Approved By:	Jerry Lin	Date:	2020/11/12
	Jerry Liu / Technical Manager		

International Standards Laboratory Corp.

Version

Version No. Date		Description
00 2020/11/12		Initial creation of document

Uncertainty of Measurement

ISO/IEC 17025 requires that an estimate of measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Description Of Test	Uncertainty		
Conducted Emission (AC power line)	2.586 dB		
	≤ 30MHz: 2.96dB		
Field Strength of Spurious Radiation	30-1GHz: 4.22 dB		
	1-40 GHz: 4.08 dB		
Conducted Power	2.412 GHz: 1.30 dB		
	5.805 GHz: 1.55 dB		
Derror Develter	2.412 GHz:1.30 dB		
Power Density	5.805 GHz: 1.67 dB		
Frequency	0.0032%		
Time	0.01%		
DC Voltage	1%		

Table of Contents

1.	Gene	eral Information	6
	1.1.	Product Description	6
	1.2.	Related Submittal(s) / Grant (s)	7
	1.3.	Test Methodology	7
	1.4.	Test Facility	7
	1.5.	Special Accessories	7
	1.6.	Equipment Modifications	7
	1.1.	Reference	7
2.	Syste	em Test Configuration	8
	2.1	EUT Configuration	8
	2.2	EUT Exercise	8
	2.3	Test Procedure	8
	2.4	Configuration of Tested System	9
3.	Sum	mary of Test Results	
4.		cription of Test Modes	
5.		duced Emission Test	
	5.1	Standard Applicable:	
	5.2	Measurement Equipment Used:	
	5.3	EUT Setup:	
	5.4	Measurement Procedure:	
	5.5	Measurement Result:	
6.	Peak	x Output Power Measurement	
	6.1	Standard Applicable:	
	6.2	Measurement Equipment Used:	
	6.3	Test Set-up:	16
	6.4	Measurement Procedure:	16
	6.5	Measurement Result:	17
7.	Spur	rious Emission Test	
	7.1	Standard Applicable:	
	7.2	Measurement Equipment Used:	
	7.3	Test SET-UP:	
	7.4	Measurement Procedure:	19
	7.5	Field Strength Calculation	19
	7.6	Measurement Result:	19
8.	100k	xHz Bandwidth of Band Edges Measurement	
	7.1	Standard Applicable:	
	7.2	Measurement Equipment Used:	27
	7.3	Test SET-UP:	
	7.4	Measurement Procedure:	29
	7.5	Field Strength Calculation	29
	7.6	Measurement Result:	

9.	Frequ	ency Separation	
	9.1	Standard Applicable:	46
	9.2	Measurement Equipment Used:	46
	9.3	Test Set-up:	46
	9.4	Measurement Procedure:	46
	9.5	Measurement Result:	46
10.	Numł	ber of Hopping Frequency	
	10.1	Standard Applicable:	
	10.2	Measurement Equipment Used:	49
	10.3	Test Set-up:	49
	10.4	Measurement Procedure:	49
	10.5	Measurement Result:	49
11.	Time	of Occupancy (Dwell Time)	
	11.1	Standard Applicable:	51
	11.2	Measurement Equipment Used:	51
	11.3	Test Set-up:	51
	11.4	Measurement Procedure:	51
	11.5	Measurement Result:	52
12.	20dB	Bandwidth & 99% Bandwidth	
	12.1	Standard Applicable:	58
	12.2	Measurement Equipment Used:	58
	12.3	Test Set-up:	58
	12.4	Measurement Procedure:	58
	12.5	Measurement Result:	59
13.	Anter	nna Requirement	
	13.1	Standard Applicable:	
	13.2	Antenna Connected Construction:	

1. General Information

1.1. Product Description

General:

Product Name:	Bluetooth V4.1 Module
Brand Name:	Sunrise
Model Name:	FB00000BT
Model Difference:	N/A
Power Supply:	5Vdc from adaptor (JIG)
USB port:	1 (JIG)
Testing Sample ID:	20170824 REV:10
IC RSS-Gen:	
Product SW/HW version	V1.0
Radio SW/HW version	V1.0
PMN (Product Marketing Name)	FB00000BT
HVIN (Hardware Version Identification Number)	FB00000BT
FVIN (Firmware Version Identification Number)	N/A
Test SoftWare Version	Ampak RFTestTool Ver.5.6
RF power setting:	default
BT:	
Frequency Range:	2402 – 2480MHz
Bluetooth Version:	V4.0
Channel number:	79 channels, 1MHz step
Modulation type	$GFSK + \pi/4DQPSK + 8DPSK$
Tune-up power	-9.95 dBm
Power Tolerance:	+/- 0.5 dBm
Dwell Time:	N/A
Antenna Designation:	PCB Antennas, 2dBi

-6 of 70-

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: <u>2AMPPFB00000BT</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules and IC: <u>11471A-FB00000BT</u> filing to comply with Industry Canada RSS-247 issue 2.

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of **International Standards Laboratory Corp.**<LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.10: 2013. FCC Registration Number is: 487532; Designation Number is: TW0997, Canada Registration Number: 4067B-4.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

1.1. Reference

KDB Document: 558074 D01 15.247 Meas Guidance v05r02.

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

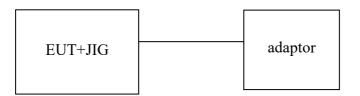
2.2 EUT Exercise

The EUT (Transmitter) was tested with a test program to fix the TX/RX frequency that was for the purpose of the measurements. For more information please see test data and APPENDIX 1 for set-up photographs.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013 and RSS-Gen issue 5: 2019. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8/1.5 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." Is still within the 3dB illumination BW of the measurement antenna. According to the requirements in Section 8 and 13 and Sub-clause 8.3.1.2 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)

Table 1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	ЛG	NA	NA	NA	Non-Shielded	Non-Shielded
2	adaptor	NA	PA005A-05010CN	NA	NA	Non-Shielded

FCC Rules	Description Of Test	Result
\$15.207(a)/ RSS-Gen \$8.8	AC Power line Conducted Emission	Compliant
\$15.247(b)(1)/ RSS-247 issue 2,\$A5.4(b)	Peak Output Power	Compliant
§15.247(d) RSS-247 issue 2, §5.5	100 kHz Bandwidth of Frequency Band Edges	Compliant
§15.247(c) RSS-247 issue 2, §5.5	Spurious Emission	Compliant
§15.247(a)(1)/ RSS-247 issue 2,§A5.1(b)	Frequency Separation	Compliant
§15.247(a)(1)(iii)/ RSS-247 issue 2,§A5.1(d)	Number of hopping frequency	Compliant
§15.247(a)(1)(ii)/ RSS-247 issue 2,§A5.1(d)	Time of Occupancy	Compliant
§15.247(a)(1) RSS-Gen §6.6 RSS-247 issue 2, §5.1(a)	20dB Bandwidth & 99% Power Bandwidth	Compliant
§15.203, §15.247(c) RSS-GEN 8.3	Antenna Requirement	Compliant

3. Summary of Test Results

4. Description of Test Modes

Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low (2402MHz) \cdot mid (2441MHz) and high (2480MHz) with each modulation were chosen for full testing.

All mode has been pre-scanned, and only the cast of the worst is presented in the report.

The worst case BDR mode was reported for Radiated Emission.

5. Conduced Emission Test

5.1 Standard Applicable:

According to §15.207 and RSS-Gen §8.8, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

F	Limits					
Frequency range	dB	(uV)				
MHz	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60 50					
Note						
1. The lower limit shall apply at the transition frequencies						
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.						

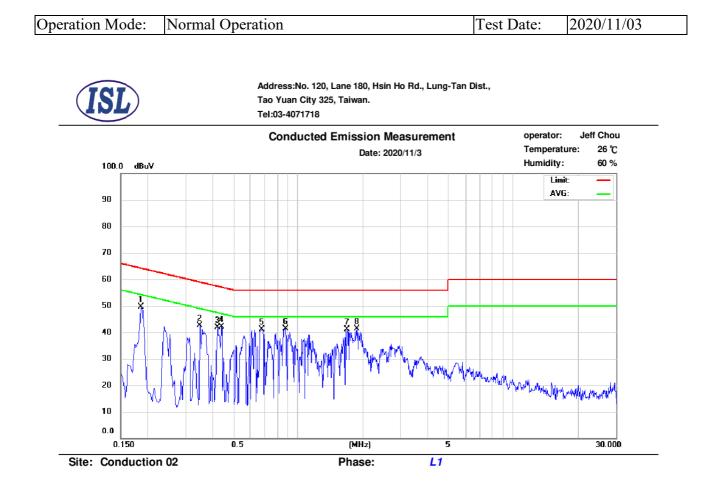
5.2 Measurement Equipment Used:

Location	Equipment Name	Brand	Model	IS/N		Next Cal. Date
Conduction 02	LISN 03	R&S	ESH3-Z5	828874/010	11/05/2020	11/05/2021
Conduction 02	LISN 21	R&S	ENV216	101476	07/21/2020	07/21/2021
	Conduction 02-1 Cable	WOKEN	CFD 300-NL	Conduction 02 -1	09/18/2020	09/18/2021
Conduction 02	EMI Receiver 14	ROHDE& SCHWARZ	ESCI	101034	05/22/2020	05/22/2021
Conduction 02	ISN T4 07	Teseq GmbH	ISN T400A	49913	08/02/2020	08/02/2021
Conduction 02	ISN T8 10	Teseq GmbH	ISN T800	42773	08/02/2020	08/02/2021

5.3 EUT Setup:

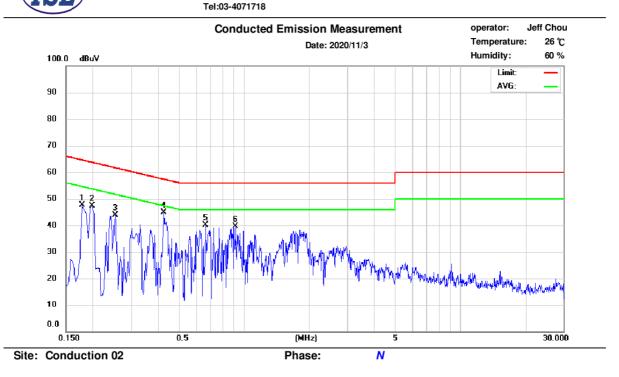
- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10-2013.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

5.4 Measurement Procedure:


- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.


AC POWER LINE CONDUCTED EMISSION TEST DATA

No.	Frequency	QP_R	AVG_R	Correct Factor	QP Emission	QP Limit	QP Margin	AVG Emission	AVG Limit	AVG Margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
1	0.186	37.34	27.06	9.68	47.02	64.21	-17.19	36.74	54.21	-17.47
2	0.350	22.91	1.18	9.69	32.60	58.96	-26.36	10.87	48.96	-38.09
3	0.422	31.52	21.25	9.69	41.21	57.41	-16.20	30.94	47.41	-16.47
4	0.442	32.18	17.28	9.69	41.87	57.02	-15.15	26.97	47.02	-20.05
5	0.678	29.83	18.98	9.70	39.53	56.00	-16.47	28.68	46.00	-17.32
6	0.870	30.24	15.97	9.70	39.94	56.00	-16.06	25.67	46.00	-20.33
7	1.686	29.04	13.42	9.74	38.78	56.00	-17.22	23.16	46.00	-22.84
8	1.874	29.01	14.06	9.75	38.76	56.00	-17.24	23.81	46.00	-22.19

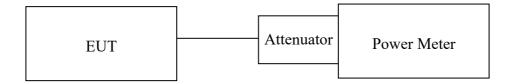
Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan.

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.178	35.67	18.19	9.68	45.35	64.58	-19.23	27.87	54.58	-26.71
2	0.198	30.43	7.38	9.68	40.11	63.69	-23.58	17.06	53.69	-36.63
3	0.254	30.37	10.06	9.68	40.05	61.63	-21.58	19.74	51.63	-31.89
4	0.426	27.93	16.33	9.68	37.61	57.33	-19.72	26.01	47.33	-21.32
5	0.662	24.85	8.37	9.69	34.54	56.00	-21.46	18.06	46.00	-27.94
6	0.914	19.74	8.35	9.70	29.44	56.00	-26.56	18.05	46.00	-27.95

6. Peak Output Power Measurement

6.1 Standard Applicable:

According to §15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850MHz band: 1Watt. For all other frequency hopping systems in the 2400 – 2483.5MHz band: 0.125 Watts.


According to RSS-247 issue 2,§A5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal Date	. Next Cal. Date
Conducted	Power Meter	Anritsu	ML2495A	1116010	09/25/2020	09/25/2021
Conducted	Power Sensor	Anritsu	MA2411B	34NKF50	09/25/2020	09/25/2021
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO33	01/03/2020	01/03/2021
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO34	01/09/2020	01/09/2021
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO35	06/29/2020	06/29/2021
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO36	06/29/2020	06/29/2021
Conducted	Temperature Cham- ber	KSON	THS-B4H100	2287	03/11/2020	03/11/2021
Conducted	DC Power supply	ABM	8185D	N/A	01/03/2020	01/03/2021
Conducted	AC Power supply	EXTECH	CFC105W	NA	N/A	N/A
Conducted	Spectrum analyzer	Keysight	N9010A	MY56070257	09/23/2020	09/23/2021
Conducted	Spectrum analyzer	R&S	FSP40	100116	01/10/2020	01/10/2021
Conducted	Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

BDR Mode

Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)		
Low	-9.95	0.00010	1		
Mid	-11.24	0.00008	1		
High	-13.03	0.00005	1		

EDR 2M Mode

Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)		
Low	-10.42	0.00009	0.125		
Mid	-11.99	0.00006	0.125		
High	-13.65	0.00004	0.125		

EDR 3M Mode

Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)		
Low	-10.53	0.00009	0.125		
Mid	-12.18	0.00006	0.125		
High	-13.86	0.00004	0.125		

Offset: 2dB

7. Spurious Emission Test

7.1 Standard Applicable:

According to §15.247(d), all other emissions outside these bands shall not exceed the general radiated emission limits specified in §15.209(a). And according to §15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

According to RSS-247 issue 2, §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digi-tally modulated device is operating, the RF power that is produced shall be at least 20 dB be-low that in the 100 kHz bandwidth within the band that contains the highest level of the de-sired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Measurement Equipment Used:

7.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.

7.2.2. Radiated emission:

Refer to section 7.2 for details.

7.3 Test SET-UP:

The test item only performed radiated mode

Refer to section 7.3 for details.

7.4 Measurement Procedure:

- 1. According 414788 section 2, Either OATS or chamber for radiated emission below 30MHz, the test was done at 966 chamber, the test site was evaluated with OATS and the Chamber has test signals level greater than OATS's .
- 2. The EUT was placed on a turn table which is 0.8m/1.5m above ground plane in 966 chamber.
- 3. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 5. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Repeat above procedures until all frequency measured were complete.

7.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

7.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

Operation Mode

2020/11/18

Test Date

-15.56

-16.08

-6.29

-16.35

-5.77

-11.61

Peak

Peak

Peak

Peak

Peak

Peak

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

HORIZONTAL

Fundamental Frequency 2402MHz										
	erature	1 •	P°C		Hum	nidity 64	ŀ%			
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H		
1	35.82	32.36	-6.15	26.21	40.00	-13.79	Peak	VERTICAL		
2	60.07	31.29	-5.92	25.37	40.00	-14.63	Peak	VERTICAL		
3	208.48	44.96	-7.23	37.73	43.50	-5.77	Peak	VERTICAL		
4	292.87	31.70	-4.02	27.68	46.00	-18.32	Peak	VERTICAL		
5	576.11	32.06	1.05	33.11	46.00	-12.89	Peak	VERTICAL		
6	838.01	29.10	5.17	34.27	46.00	-11.73	Peak	VERTICAL		

Radiated Spurious Emission Measurement Result:	: (below 1GHz) (Worst case: BDR)
---	----------------------------------

TX CH Low

-7.11

-5.73

-7.23

-4.26

1.05

5.42

35.05

33.15

44.44

33.91

39.18

28.97

Remark:

1

2

3

4

5

6

127.00

137.67

208.48

283.17

576.11

864.20

1 No further spurious emissions detected from the lowest internal frequency and 30MHz.

43.50

43.50

43.50

46.00

46.00

46.00

2 Measuring frequencies from the lowest internal frequency to the 1GHz.

27.94

27.42

37.21

29.65

40.23

34.39

- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown " " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Opera Funda	2020/11/18							
Fundamental Frequency2441MHzTemperature24°CHumidity								64%
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	35.82	33.60	-6.15	27.45	40.00	-12.55	Peak	VERTICAL
2	125.06	32.16	-7.31	24.85	43.50	-18.65	Peak	VERTICAL
3	208.48	45.13	-7.23	37.90	43.50	-5.60	Peak	VERTICAL
4	576.11	32.97	1.05	34.02	46.00	-11.98	Peak	VERTICAL
5	656.62	29.32	2.31	31.63	46.00	-14.37	Peak	VERTICAL
6	857.41	28.41	5.47	33.88	46.00	-12.12	Peak	VERTICAL
1	125.06	35.16	-7.31	27.85	43.50	-15.65	Peak	HORIZONTAL
2	208.48	43.87	-7.23	36.64	43.50	-6.86	Peak	HORIZONTAL
3	273.47	33.11	-4.64	28.47	46.00	-17.53	Peak	HORIZONTAL
4	292.87	32.63	-4.02	28.61	46.00	-17.39	Peak	HORIZONTAL
5	576.11	38.83	1.05	39.88	46.00	-6.12	Peak	HORIZONTAL
6	822.49	28.39	5.09	33.48	46.00	-12.52	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Opera Funda	2020/11/18							
Temp	Humidity	64%						
No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	35.82	32.82	-6.15	26.67	40.00	-13.33	Peak	VERTICAL
2	125.06	33.37	-7.31	26.06	43.50	-17.44	Peak	VERTICAL
3	208.48	44.89	-7.23	37.66	43.50	-5.84	Peak	VERTICAL
4	480.08	30.86	-0.78	30.08	46.00	-15.92	Peak	VERTICAL
5	576.11	31.33	1.05	32.38	46.00	-13.62	Peak	VERTICAL
6	794.36	28.26	4.65	32.91	46.00	-13.09	Peak	VERTICAL
1	123.12	35.10	-7.43	27.67	43.50	-15.83	Peak	HORIZONTAL
2	208.48	43.20	-7.23	35.97	43.50	-7.53	Peak	HORIZONTAL
3	283.17	34.44	-4.26	30.18	46.00	-15.82	Peak	HORIZONTAL
4	302.57	33.19	-3.86	29.33	46.00	-16.67	Peak	HORIZONTAL
5	576.11	38.27	1.05	39.32	46.00	-6.68	Peak	HORIZONTAL
6	882.63	28.85	5.80	34.65	46.00	-11.35	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (below 1GHz)

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100kHz, VBW=300kHz.

Opera Funda	2020/11/18							
Temp	64%							
No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	IVITIZ	uDuv	uD		uDu v/III	uD		V/11
1	4804.00	46.91	-6.73	40.18	74.00	-33.82	Peak	VERTICAL
2	7206.00	47.20	-2.89	44.31	74.00	-29.69	Peak	VERTICAL
3	7587.00	47.96	-2.53	45.43	74.00	-28.57	Peak	VERTICAL
1	4804.00	48.31	-6.73	41.58	74.00	-32.42	Peak	HORIZONTAL
2	7206.00	46.56	-2.89	43.67	74.00	-30.33	Peak	HORIZONTAL
3	7881.00	47.69	-1.99	45.70	74.00	-28.30	Peak	HORIZONTAL

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Opera Funda	2020/11/18											
	Fundamental Frequency2441 MHzTemperature24°CHumidity											
No	i C intergrit											
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H				
1	4882.00	47.34	-6.61	40.73	74.00	-33.27	Peak	VERTICAL				
2	7323.00	46.21	-2.86	43.35	74.00	-30.65	Peak	VERTICAL				
3	7811.00	47.79	-2.08	45.71	74.00	-28.29	Peak	VERTICAL				
1	4882.00	46.47	-6.61	39.86	74.00	-34.14	Peak	HORIZONTAL				
2	7323.00	46.69	-2.86	43.83	74.00	-30.17	Peak	HORIZONTAL				
3	7538.00	47.96	-2.66	45.30	74.00	-28.70	Peak	HORIZONTAL				

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Opera Funda	2020/11/18											
	Fundamental Frequency2480 MHzTemperature24°CHumidity											
No	No Freq Reading Factor Level Limit Margin Remark											
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H				
1	4960.00	46.89	-6.45	40.44	74.00	-33.56	Peak	VERTICAL				
2	7440.00	46.51	-2.83	43.68	74.00	-30.32	Peak	VERTICAL				
3	7678.00	48.58	-2.31	46.27	74.00	-27.73	Peak	VERTICAL				
1	4960.00	46.65	-6.45	40.20	74.00	-33.80	Peak	HORIZONTAL				
2	6852.00	48.70	-2.86	45.84	74.00	-28.16	Peak	HORIZONTAL				
3	7440.00	46.22	-2.83	43.39	74.00	-30.61	Peak	HORIZONTAL				

Radiated Spurious Emission Measurement Result (above 1GHz)

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

8. 100kHz Bandwidth of Band Edges Measurement

7.1 Standard Applicable:

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

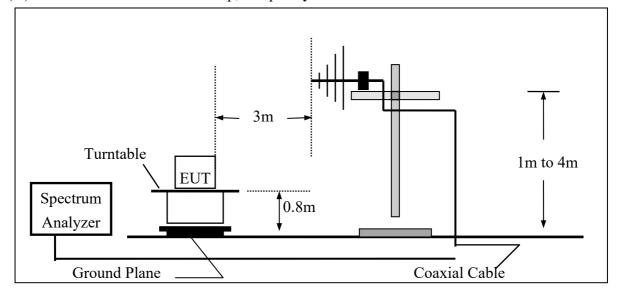
According to RSS-247 issue 2, §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digi-tally modulated device is operating, the RF power that is produced shall be at least 20 dB be-low that in the 100 kHz bandwidth within the band that contains the highest level of the de-sired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

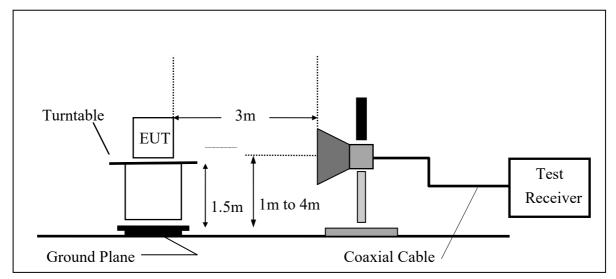
7.2 Measurement Equipment Used:

7.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.


7.2.2. Radiated emission:

Location Conducted	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Spectrum analyzer	R&S	FSV40	101919	08/13/2020	08/13/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2020	05/05/2021
Chamber 19	Loop Antenna	EM	EM-6879	271	05/21/2020	05/21/2021
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 5dB Att.	736	02/11/2020	02/11/2021
Chamber 19	Horn antenna (1GHz-18GHz)	ETS LIND- GREN	3117	00218718	09/25/2020	09/25/2021
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/25/2019	11/25/2020
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/13/2020	03/13/2021
Chamber 19	Preamplifier (9kHz-1GHz)	НР	8447F	3113A04621	06/19/2020	06/19/2021
Chamber 19	Preamplifier (1GHz-26GHz)	EM	EM01M26G	060681	05/04/2020	05/04/2021
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/04/2020	05/04/2021
Chamber 19	RF Cable (9kHz-18GHz)	HUBER SU- HNER	Sucoflex 104A	MY1397/4A	01/10/2020	01/10/2021
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&37421/2	11/21/2019	11/21/2020
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/06/2020	01/06/2021
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A



7.3 Test SET-UP:

The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

 第2日本は 期留料技股份有限公司 International Standards Laboratory

7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

7.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

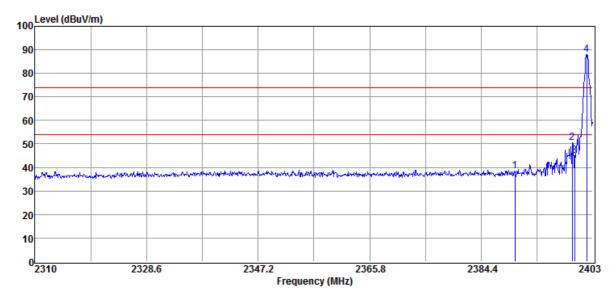
$\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

7.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.

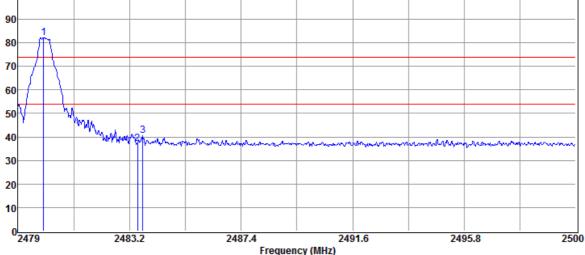
Radiated Emission: (BDR mode)


Funda	tion Mode mental Frequ erature		H Low MHz			Test Dat Humidit		/11/18
100	Level (dBuV/m)							
90								
80								Ĩ
70								
60								
50								
40	a and the second se	manuna	a kalaan ahadaa ah	muslika utu u salama sa	A a Ab word data is Ar	. Kasharat Alandadar		CONST 1
30	*****	the found for the second s			ALEN ALEN ALEN ALEN AL	and a support of a		
20								
10								
0	2310	2328.6	234	7.2	2365.8	23	84.4	2403
	2310	2328.0	234	Frequency (I		23	04.4	2403
No	Freq MHz	Reading	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
		dBuV						
1	2390.00	49.20	-11.43	37.77	74.00	-36.23	Peak	VERTIC

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	49.20	-11.43	37.77	74.00	-36.23	Peak	VERTICAL
2	2399.65	57.39	-11.42	45.97	74.00	-28.03	Peak	VERTICAL
3	2400.00	55.92	-11.42	44.50	66.01	-21.51	Peak	VERTICAL
4	2402.16	97.42	-11.41	86.01	F	-	Peak	VERTICAL

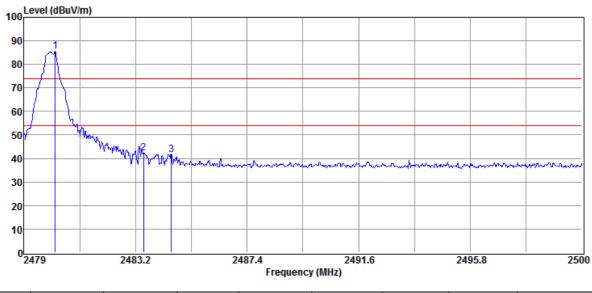
Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.



No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	49.91	-11.43	38.48	74.00	-35.52	Peak	HORIZONTAL
2	2399.56	62.06	-11.42	50.64	74.00	-23.36	Peak	HORIZONTAL
3	2400.00	56.36	-11.42	44.94	68.11	-23.17	Peak	HORIZONTAL
4	2401.98	99.52	-11.41	88.11	F	-	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

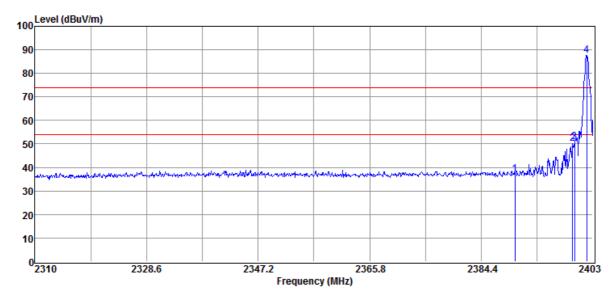

Operation Mode Fundamental Frequency	TX CH High		Test Da	te 2020/11/1	8
Temperature	2480 MHZ 24°C		Humidi	ty 64%	
100 Level (dBuV/m)					

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2479.97	93.56	-11.30	82.26	F	-	Peak	VERTICAL
2	2483.50	48.27	-11.29	36.98	74.00	-37.02	Peak	VERTICAL
3	2483.70	51.95	-11.29	40.66	74.00	-33.34	Peak	VERTICAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2480.18	96.71	-11.30	85.41	F	-	Peak	HORIZONTAL
2	2483.50	53.42	-11.29	42.13	74.00	-31.87	Peak	HORIZONTAL
3	2484.54	53.03	-11.29	41.74	74.00	-32.26	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.


Radiated Emission (EDR 2M mode):

	tion Mode mental Frequ		H Low MHz			Test Dat	te 2020/	/11/18
	erature	24°C				Humidit	y 64%	
100	_evel (dBuV/m)							
90								4
80								_
70								<u></u>
60								₩
50								23
40	warmon had a commentation	an a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		MAN Mark Mark Mark Mark Mark	wanter	whether mundarite	
30								
20								
10								
0	2310	2328.6	2347		2365.8	238	4.4	2403
				Frequency (M	Hz)			
No	Freq MHz	Reading	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
		dBuV						
1	2390.00	47.53	-11.43	36.10	74.00	-37.90	Peak	VERTICAL
2	2398.91	56.12	-11.42	44.70	74.00	-29.30	Peak	VERTICAL
3	2400.00	56.25	-11.42	44.83	65.49	-20.66	Peak	VERTICAL
4	2401.88	96.90	-11.41	85.49	F	-	Peak	VERTICAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	48.58	-11.43	37.15	74.00	-36.85	Peak	HORIZONTAL
2	2399.65	61.49	-11.42	50.07	74.00	-23.93	Peak	HORIZONTAL
3	2400.00	62.26	-11.42	50.84	67.65	-16.81	Peak	HORIZONTAL
4	2401.98	99.06	-11.41	87.65	F	-	Peak	HORIZONTAL

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

2495.8

2500

Operation Mode Fundamental Frequency Temperature	TX CH High 2480 MHz 24°C	Test Date Humidity	2020/11/18 64%
100 Level (dBuV/m)			
90			
80			
70			
60			
50			
40 40	2 3 WWW.Lawana har man market and the second	me she who was	Munistran and mary
30			
20			

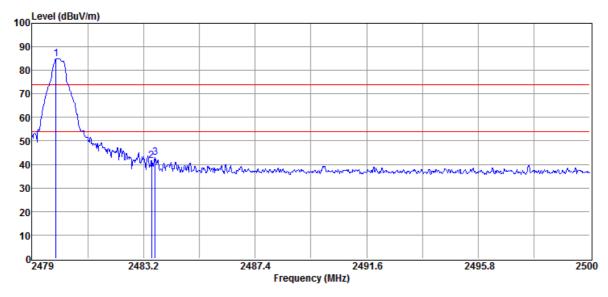
-36 of 70-

2487.4	2491.6
Frequency	y (MHz)

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2480.01	93.42	-11.30	82.12	F	-	Peak	VERTICAL
2	2483.50	49.39	-11.29	38.10	74.00	-35.90	Peak	VERTICAL
3	2484.54	50.66	-11.29	39.37	74.00	-34.63	Peak	VERTICAL

Remark:

10


⁰2479

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

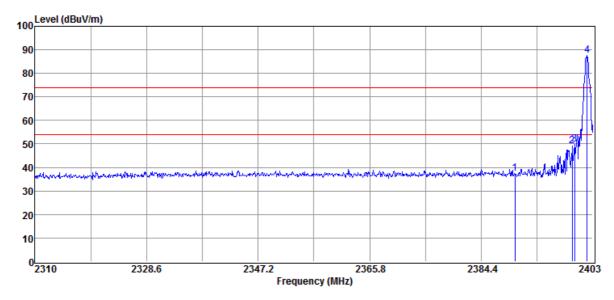
Note: "F" denotes fundamental frequency

2483.2

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2479.90	96.26	-11.30	84.96	F	-	Peak	HORIZONTAL
2	2483.50	52.75	-11.29	41.46	74.00	-32.54	Peak	HORIZONTAL
3	2483.64	54.34	-11.29	43.05	74.00	-30.95	Peak	HORIZONTAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.


Radiated Emission (EDR 3M mode):

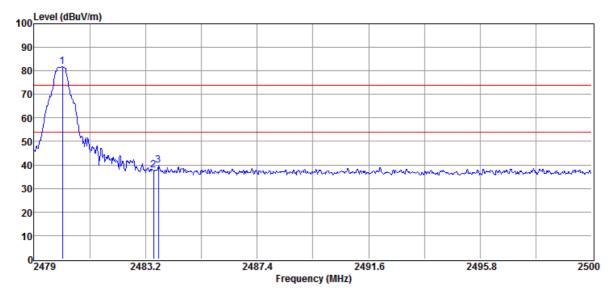
F	undaı	ion Moc nental F		ency 2402	H Low MHz					Test Dat		/11/18
Т	empe	rature		24°C						Humidit	y 64%	
	100□	.evel (dBuV/	m)									
	90											4
	80											4
	70											
	60											<u> </u>
	50											
	40				March the Million Startin	Audum and a	1.00	6 9 .		underson and a descel	under and and	
	30	and an	wy where we	And the second s	L C THE CONTRACTOR OF THE		and a state	or to Alamata			- Walter - Philade de	
	20											
	10											
	0	310		2328.6	2347	12		236	5.0	238	44	2403
	2	.510		2320.0	2341	Frequenc	cy (Mi		5.0	230	4.4	2403
	No	Free MH	-	Reading dBuV	Factor dB/m	Leve dBuV/			imit ıV/m	Margin dB	Remark	Pol V/H
	1	2390.	00	49.06	-11.43	37.63	3	74	1.00	-36.37	Peak	VERTICAL
	2	2398.	82	55.33	-11.42	43.91	[74	4.00	-30.09	Peak	VERTICAL
	3	2400.	00	57.14	-11.42	45.72	2	64	1.89	-19.17	Peak	VERTICAL
	4	2401.	98	96.30	-11.41	84.89)		F	-	Peak	VERTICAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2390.00	48.73	-11.43	37.30	74.00	-36.70	Peak	HORIZONTAL
2	2399.56	60.69	-11.42	49.27	74.00	-24.73	Peak	HORIZONTAL
3	2400.00	61.32	-11.42	49.90	67.46	-17.56	Peak	HORIZONTAL
4	2402.07	98.87	-11.41	87.46	F	-	Peak	HORIZONTAL

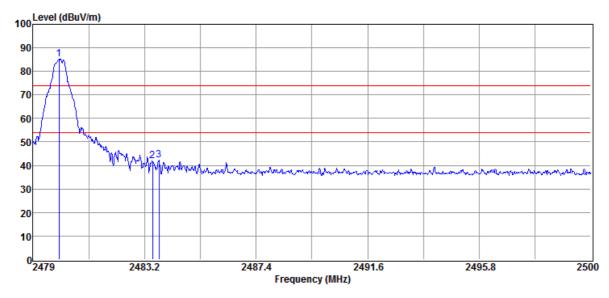
Remark:


- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX CH High
Fundamental Frequency	2480 MHz
Temperature	24°C

Test Date 2020/11/18

Humidity 64%


-40 of 70-

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2480.07	93.07	-11.30	81.77	F	-	Peak	VERTICAL
2	2483.50	48.92	-11.29	37.63	74.00	-36.37	Peak	VERTICAL
3	2483.68	51.00	-11.29	39.71	74.00	-34.29	Peak	VERTICAL

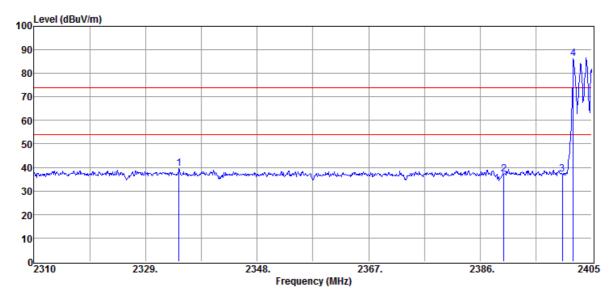
Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2479.99	96.38	-11.30	85.08	F	-	Peak	HORIZONTAL
2	2483.50	53.10	-11.29	41.81	74.00	-32.19	Peak	HORIZONTAL
3	2483.75	53.54	-11.29	42.25	74.00	-31.75	Peak	HORIZONTAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.


Radiated Emission (Hopping mode):

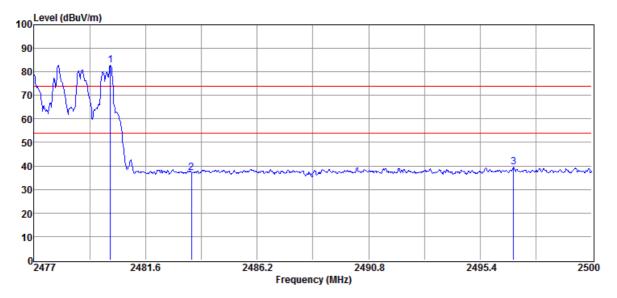
-	ame	n Mode ntal Fre ture			H Low MHz					Test Hum			2020/ 64%	/11/1	8	
10	0 Leve	l (dBuV/m)													
9																
8	0														-1-1	
7															ŧΨ.	
6	0														14	
5																
4		_									1			3		
3	m	Anne Breedwarded	and the second	hall and the second	manyment	we wanted and	mon	h-h-un-all-u	man	polinsportuned	- Arm	- AN	er man	-T-MARINAN-I		
2																
1																
	0															
	°2310)		2329.	234	48. Frequen	icy (N		67.		23	86.			2405	5
No	o	Freq MHz]	Reading dBuV	Factor dB/m	Leve dBuV/			mit V/m	Margi dB	in	Re	mark		Po V/H	
1		2382.3	0	50.85	-11.43	39.42	2	74	.00	-34.5	8	Р	eak	VE	RTI	CAL
2		2390.0	0	48.50	-11.43	37.07	7	74	.00	-36.9	3	Р	eak	VE	RTI	CAL
3		2400.0	0	48.56	-11.42	37.14	1	55	.77	-18.6	3	Р	eak	VE	RTI	CAL
4		2401.8	7	87.18	-11.41	75.77	7]	F	-		Р	eak	VE	RTI	CAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2334.70	50.98	-11.58	39.40	74.00	-34.60	Peak	HORIZONTAL
2	2390.00	48.53	-11.43	37.10	74.00	-36.90	Peak	HORIZONTAL
3	2400.00	48.45	-11.42	37.03	66.09	-29.06	Peak	HORIZONTAL
4	2401.87	97.50	-11.41	86.09	F	-	Peak	HORIZONTAL

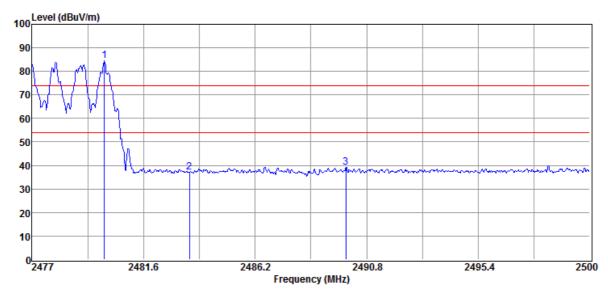
Remark:


- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Operation Mode	TX CH High
Fundamental Frequency	2480 MHz
Temperature	24°C

Test Date 2020/11/18

Humidity 64%


-44 of 70-

No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2480.15	94.06	-11.30	82.76	F		Peak	VERTICAL
2	2483.50	48.35	-11.29	37.06	74.00	-36.94	Peak	VERTICAL
3	2496.78	50.66	-11.26	39.40	74.00	-34.60	Peak	VERTICAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

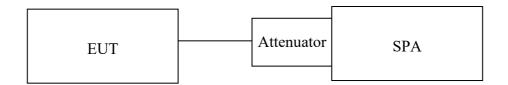
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2479.99	95.68	-11.30	84.38	F		Peak	HORIZONTAL
2	2483.50	48.57	-11.29	37.28	74.00	-36.72	Peak	HORIZONTAL
3	2489.95	50.61	-11.28	39.33	74.00	-34.67	Peak	HORIZONTAL

Remark:

- 1 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3 Spectrum Peak mode IF bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 4 Spectrum AV mode if bandwidth Setting : 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

9. Frequency Separation

9.1 Standard Applicable:


According to FCC 15.247 (a)(1) & RSS-247 5.1(b) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

9.2 Measurement Equipment Used:

Refer to section 6.2 for details.

9.3 Test Set-up:

9.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Adjust Span to 3 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

9.5 Measurement Result:

Channel separation (MHz)	Limit	Result
1	25kHz or 2/3 of the 20dB bandwidth (whichever is greater)	PASS

Note: Refer to next page for plots.

Keysight Spectrum Analyzer - Swept SA IM RF SU 32 Ac Center Freq 2.403000000 GHz PNO: Wide PNO: Wide 03:55:11 PM Nov 04, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P P Frequency Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run IFGain:Low #Atten: 30 dB Auto Tune ΔMkr1 1.000 MHz -1.004 dB Ref Offset 0.5 dB Ref 20.50 dBm 10 dB/div **Center Freq** 2.403000000 GHz Start Freq 2.401500000 GHz 1<u>∆</u>2 $\sim X_{2}$ J ۳M Stop Freq 2.404500000 GHz m **CF** Step 300.000 kHz Man Auto **Freq Offset** 0 Hz Scale Type Span 3.000 MHz Log Sweep 1.000 ms (1001 pts) Center 2.403000 GHz #Res BW 100 kHz Lin #VBW 300 kHz SG STATUS

Frequency Separation Test Data Low

Mid

High

10. Number of Hopping Frequency

10.1 Standard Applicable:

According to 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 15 hopping frequencies.

According to RSS 247 issue 2,§5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels.

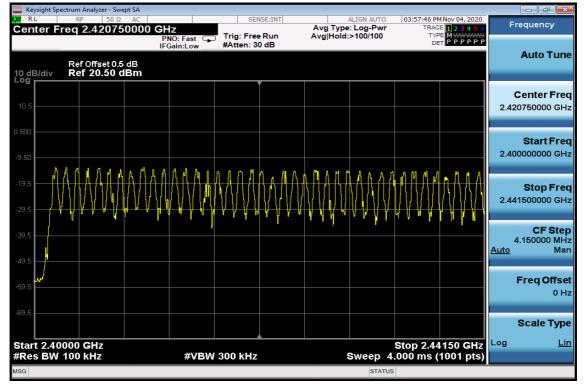
10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

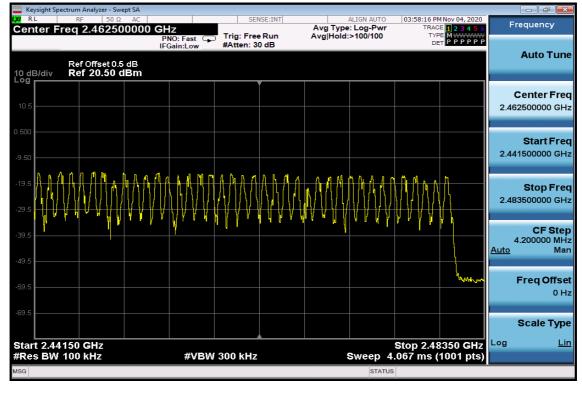
10.3 Test Set-up:

Refer to section 9.3 for details.

10.4 Measurement Procedure:


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW=100kHz, VBW=300kHz
- 5. Max hold, view and count how many channel in the band.

10.5 Measurement Result:


Note: Refer to next page for plots.

Channel Number 2.4 GHz – 2.441.5GHz

2.441.5 GHz – 2.4835GHz

11. Time of Occupancy (Dwell Time)

11.1 Standard Applicable:

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz. The average time of occupancy on any frequency shall not greater than 0.4 s within period of 0.4 seconds multiplied by the number of hopping channel employed.

According to RSS 247 issue 2, §5.1(d), FHSs operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

11.2 Measurement Equipment Used:

Refer to section 6.2 for details.

11.3 Test Set-up:

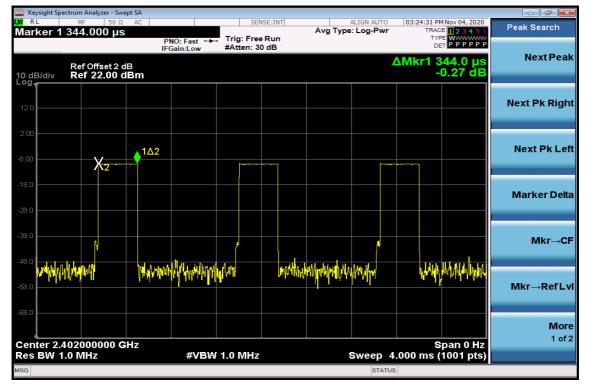
Refer to section 9.3 for details.

11.4 Measurement Procedure:

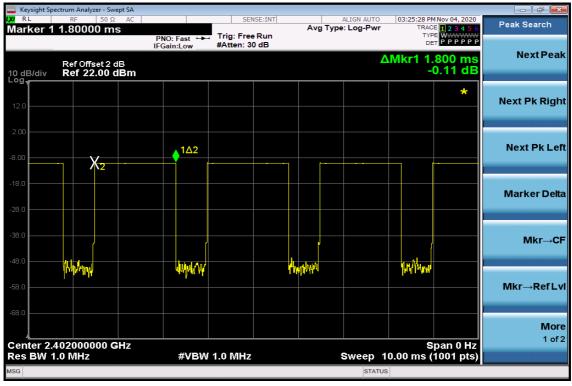
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW / VBW =1MHz, Span = 0Hz, Adjust Sweep = 2.5ms.
- 5. Repeat above procedures until all frequency measured were complete.

11.5 Measurement Result:

A period time = 0.4 (ms) * 79 = 31.6 (s)

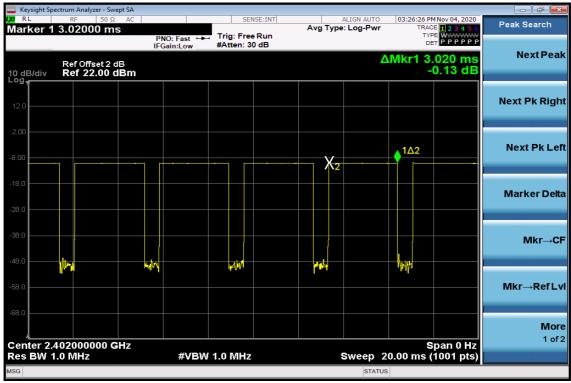

CH Low	DH1 time slot DH3 time slot DH5 time slot	= $1.800 \text{ (ms)} * (1600/4/79) * 31.6 = 22$	110.08(ms)288.00(ms)322.13(ms)
CH Mid	DH1 time slot DH3 time slot DH5 time slot	= $1.790 \text{ (ms)} * (1600/4/79) * 31.6 = 2$	110.08 (ms) 286.40 (ms) 324.27 (ms)
CH High	DH1 time slot DH3 time slot DH5 time slot	= $1.790 \text{ (ms)} * (1600/4/79) * 31.6 = 22$	110.08 (ms) 286.40 (ms) 324.27 (ms)

Note: Refer to next page for plots.

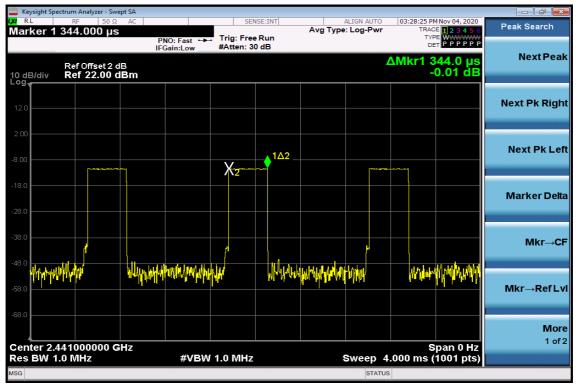


Low Channel

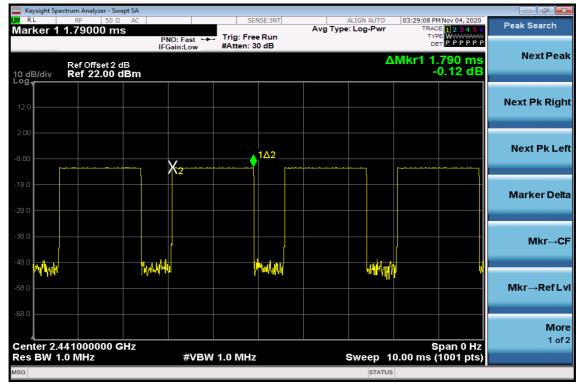
DH1

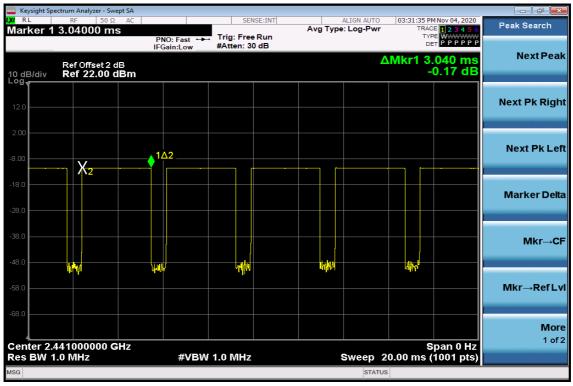


-53 of 70-

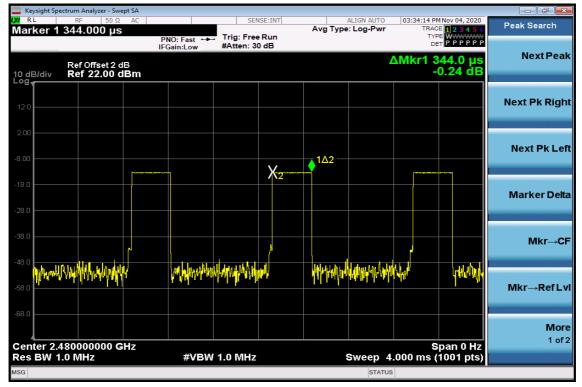


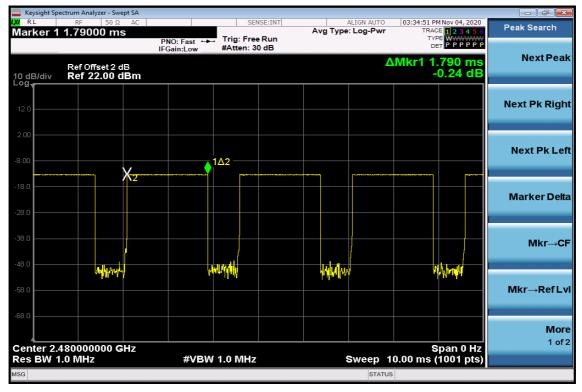
DH5

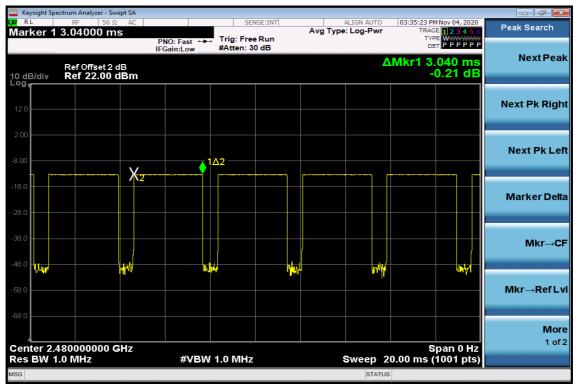



Mid Channel

DH3






High Channel

DH1

12. 20dB Bandwidth & 99% Bandwidth

12.1 Standard Applicable:

According to §15.247(a)(1),and RSS210 A8.1(b) for frequency hopping systems operating in the 2400MHz-2483.5 MHz no limit for 20dB bandwidth.

According to RSS-247 issue 2, §5.1 (a), the bandwidth of a frequency hopping channel is the 20 dB emission bandwidth.

12.2 Measurement Equipment Used:

Refer to section 6.2 for details.

12.3 Test Set-up:

Refer to section 9.3 for details.

12.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW= 1 % 5% of Bandwidth., Span= 3MHz, Sweep=auto
- 4. Mark the peak frequency and –20dB (upper and lower) frequency and 99%.
- 5. Repeat above procedures until all frequency measured were complete.

12.5 Measurement Result:

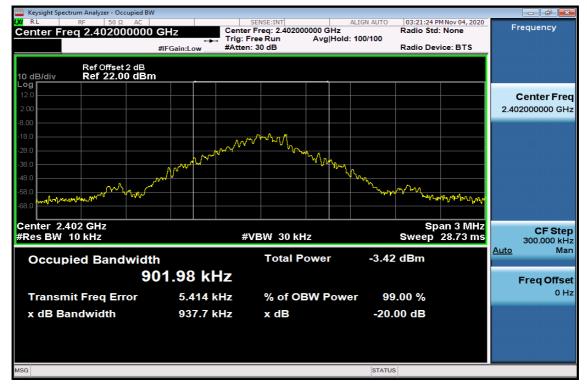
BDR Mode

СН	20dB Bandwidth	99% Bandwidth	
	(MHz)		
Low	0.938	0.901	
Mid	0.924	0.902	
High	0.938	0.904	

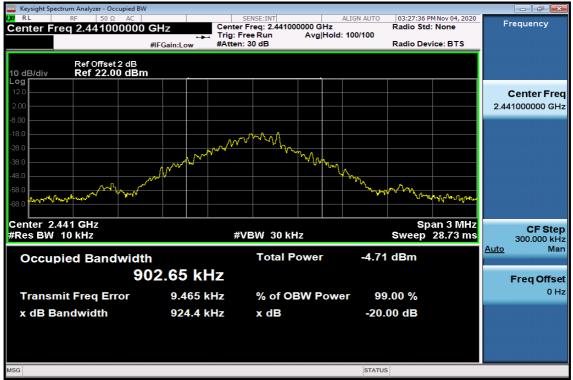
EDR 2M Mode

СН	20dB Bandwidth	2/3* 20dB Bandwidth	99% Bandwidth
	(MHz)		
Lower	0.973	0.649	0.921
Mid	1.011	0.674	0.923
Higher	1.014	0.676	0.927

-59 of 70-

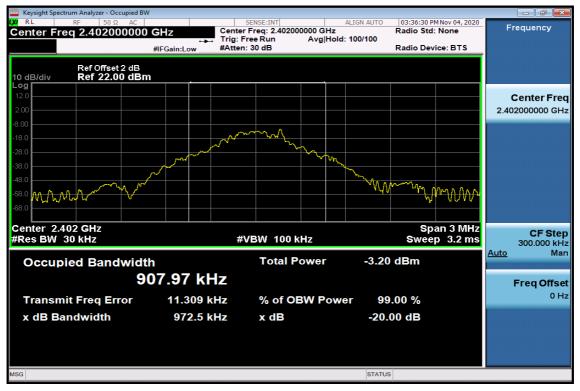

EDR 3M Mode

СН	20dB Bandwidth	2/3* 20dB Bandwidth	99% Bandwidth
	(MHz)		
Lower	1.005	0.670	0.923
Mid	1.013	0.675	0.924
Higher	1.002	0.668	0.927


Note: Refer to next page for plots.

BDR Mode 20dB Bandwidth Test Data CH-Low

20dB Bandwidth Test Data CH-Mid

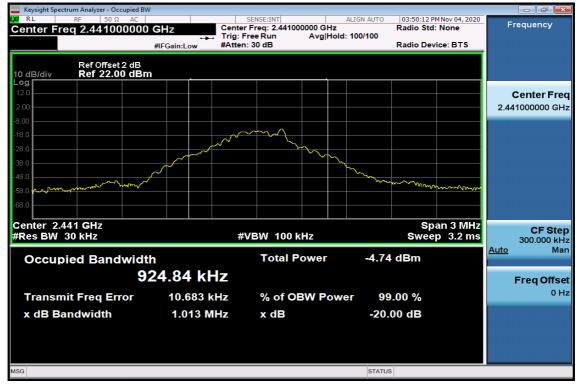


20dB Bandwidth Test Data CH-High

EDR 2M Mode 20dB Bandwidth Test Data CH-Low

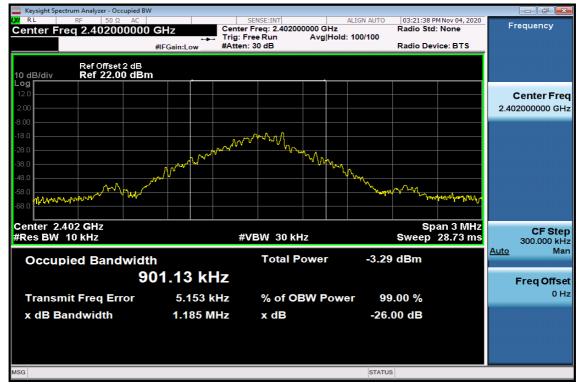
20dB Bandwidth Test Data CH-Mid

20dB Bandwidth Test Data CH-High



EDR 3M Mode 20dB Bandwidth Test Data CH-Low

20dB Bandwidth Test Data CH-Mid



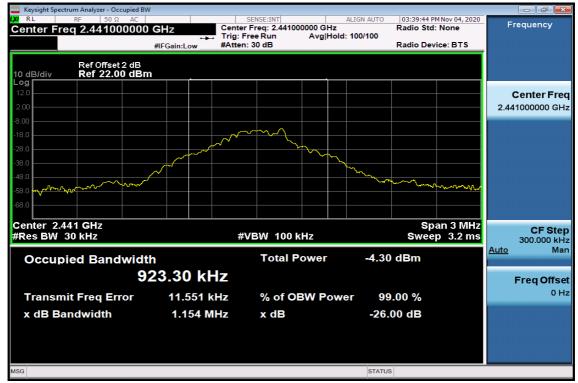
20dB Bandwidth Test Data CH-High



BDR Mode

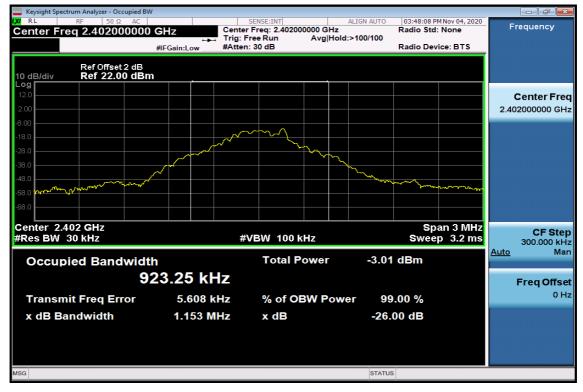
99% Bandwidth Test Data CH-Low

99% Bandwidth Test Data CH-Mid

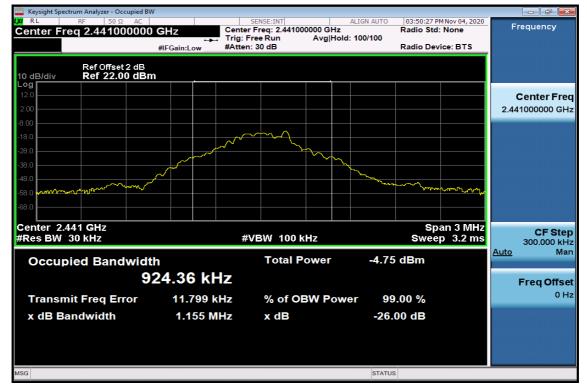


99% Bandwidth Test Data CH-High

EDR 2M Mode 99% Bandwidth Test Data CH-Low


99% Bandwidth Test Data CH-Mid

99% Bandwidth Test Data CH-High



EDR 3M Mode 99% Bandwidth Test Data CH-Low

99% Bandwidth Test Data CH-Mid

99% Bandwidth Test Data CH-High

13. Antenna Requirement

13.1 Standard Applicable:

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device.

And according to §15.247(c), if transmitting antennas of directional gain greater than 6dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to RSS-GEN 8.3, the applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level.9 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number or model number if Category II) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

13.2 Antenna Connected Construction:

The directional gains of antenna used for transmitting is 2 dBi and the antenna type is PCB antenna which is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.