

FCC SAR TEST REPORT

S T S

A

B

Report No.: STS1911246H02

Issued for

Joy Home Inc.

1388 Sutter St., San Francisco, California, United States

Product Name:	Smart Album	
Brand Name:	JOY	
Model Name:	J10	
Series Model:	N/A	
FCC ID:	2AMPAJ10	
	ANSI/IEEE Std. C95.1	
Test Standard:	FCC 47 CFR Part 2 (2.1093)	
	IEEE 1528: 2013	
Max. Report SAR (1g):	Body:1.267 W/kg	
- OAR (19).		

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Shenzhen,

ShenZhen STS Test Services Co.,Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Page 2 of 43

Report No.: STS1911246H02

Test Report Certification

Applicant's name:	Joy Home Inc.
Address:	1388 Sutter St., San Francisco, California, United States
Manufacture's Name	Unitronux(shenzhen) Intelligence Technology Co., Itd
Address:	7th floor,Building 7,ZhongYunTai industy Park, Tangtou 1st Road,Bao'an District,Shenzhen, China
Product description	
Product name:	Smart Album
Brand name:	JOY
Model name:	J10
Series Model:	N/A
Standards	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
The device was tested by Shen:	zhen STS Test Services Co., Ltd. in accordance with the

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	
Date (s) of performance of tests:	18 Dec. 2019~19 Dec. 2019
Date of Issue:	20 Dec. 2019
Test Result:	Pass

Testing Engineer :	Aann 13u
	(Aaron Bu)
Technical Manager :	Juson Ju APPROVAL
	(Jason Lu)
Authorized Signatory :	virtati
	(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Table of Contents

1.General Information	5
1.1 EUT Description	5
1.2 Test Environment	6
1.3 Test Factory	6
3. SAR Measurement System	8
3.1 Definition Of Specific Absorption Rate (SAR)	8
3.2 SAR System	8
4. Tissue Simulating Liquids	11
4.1 Simulating Liquids Parameter Check	11
5. SAR System Validation	13
5.1 Validation System	13
5.2 Validation Result	13
6. SAR Evaluation Procedures	14
7. EUT Antenna Location Sketch	15
7.1 SAR test exclusion consider table	16
8. EUT Test Position	18
8.1 Define Two Imaginary Lines On The Handset	18
9. Uncertainty	19
9.1 Measurement Uncertainty	19
9.2 System validation Uncertainty	21
10. Conducted Power Measurement	23
10.1 Test Result	23
10.2 Tune-up Power	25
11. EUT And Test Setup Photo	26
11.1 EUT Photo	26
11.2 Setup Photo	29
12. SAR Result Summary	30
12.1 Body SAR	30
12.2 repeated SAR measurement	31
13. Equipment List	33
Appendix A. System Validation Plots	34
Appendix B. SAR Test Plots	40
Appendix C. Probe Calibration And Dipole Calibration Report	43

Shenzhen STS Test Services Co., Ltd.

Page 4 of 43

Report No.: STS1911246H02

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents		
00	20 Dec. 2019	STS1911246H02	ALL	Initial Issue		
Note: Format version of the report -V01						

Shenzhen STS Test Services Co., Ltd.

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

I.I EUI Desch							
Product Name	Smart Albu	m					
Brand Name	JOY						
Model Name	J10						
Series Model	N/A	N/A					
FCC ID	2AMPAJ10	2AMPAJ10					
Model Difference	N/A	N/A					
Battery	Charge Lin Capacity: 5	Rated Voltage: 3.8V; Charge Limit: 4.35V; Capacity: 5000mAh					
Device Category	Portable						
Product stage	Production	unit					
RF Exposure Environment	General Po	pulation / Uncontrolled					
IMEI	057145013 746592017						
Hardware Version	PD8S23WE	3G-V3.0					
Software Version	Android 9.0						
Frequency Range	2.4GHz WLAN IEEE 802.11b/g/n(20MHz): 2412MHz to 2462 MHz 2.4GHz WLAN IEEE 802.11n(HT40): 2422MHz to 2452 MHz 5GHz IEEE 802.11a/n/ac (20MHz): 5180 MHz to 5240 MHz 5GHz IEEE 802.11n/ac (40MHz): 5190 MHz to 5230MHz 5GHz IEEE 802.11a/n/ac (20MHz): 5745 MHz to 5825MHz 5GHz IEEE 802.11n/ac (40MHz): 5755 MHz to 5795MHz 5GHz IEEE 802.11 ac(80MHz): 5210 MHz 5GHz IEEE 802.11 ac(80MHz): 5775MHz Bluetooth: 2402 MHz to 2480 MHz						
	Band	Mode	Body (W/kg)				
Max. Reported	DTS	2.4G WLAN	1.267				
SAR(1g):	NII	5.2G WLAN	0.265				
(Limit:1.6W/kg)	NII	5.8G WLAN	0.241				
FCC Equipment Class	DSS Bluetooth ^{Note} 0.210 Digital Transmission System (DTS) Part 15 Spread Spectrum Transmitter (DSS) Unlicensed National Information Infrastructure TX (NII)						
Operating Mode:	WLAN: 802.11 b/g/n(HT20) WLAN: 802.11 a/n/ac(HT20/40); ac/(HT80) Bluetooth: 4.1+EDR (GFSK +π/4DQPSK+8DPSK)						
Antenna Specification:		PIFA Antenna					
Hotspot Mode:	Not Suppo						
DTM Mode:	Not Support						
1. Bluetooth SAR w 2. The EUT battery			periodically during the test to ascertain uniform				

1.1 EUT Description

Shenzhen STS Test Services Co., Ltd.

power

Page 6 of 43 Report No.: STS1911246H02

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC Registration No.: 625569

A2LA Certificate No.: 4338.01

IC Registration No.: 12108A

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1911246H02

2.Test Standards And Limits:

No.	Identity	Document Title		
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations		
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz		
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques		
4	FCC KDB 447498 D01 v06	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies		
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz		
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting		
7	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices		
8	FCC KDB 616217 D04 v01r02	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers		

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE

GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

Page 8 of 43

3. SAR Measurement System

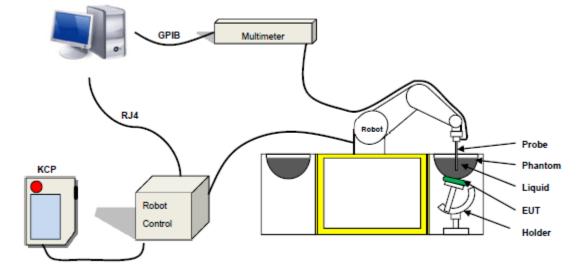
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


 $SAR = \frac{\sigma E^2}{\rho}$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Shenzhen STS Test Services Co., Ltd.

Page 9 of 43 Report No.: STS1911246H02

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 45/15 EPGO281 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 2.5 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 1mm)
- Probe linearity: 0±2.60%(0.11dB)
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

Shenzhen STS Test Services Co., Ltd.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	0.2	/	/	1.4	0.2	57.0	/	41.1	0.89	41.9
835	0.2	/	/	1.4	0.2	57.9	/	40.3	0.90	41.5
900	0.2	/	/	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	/	44.5	/	0.3	/	/	30.45	55.2	1.4	40.0
1900	/	44.5	/	0.3	1	1	30.45	55.2	1.4	40.0
2000	/	44.5	/	0.3	1	1	/	55.2	1.4	40.0
2450	/	44.9	1	0.1	/	1	/	55.0	1.80	39.2
2600	/	45.0	1	0.1	1	1	/	54.9	1.96	39.0

Body Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	0.2	/	/	0.9	0.1	47.2	/	51.7	0.96	55.5
835	0.2	/	/	0.9	0.1	48.2	1	50.8	0.97	55.2
900	0.2	1	1	0.9	0.1	48.2	1	50.8	1.05	55.0
1800	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
1900	/	29.4	1	0.4	1	1	30.45	70.2	1.52	53.3
2000	/	29.4	1	0.4	1	1	/	70.2	1.52	53.3
2450	/	31.3	/	0.1	1	/	/	68.6	1.95	52.7
2600	/	31.7	/	0.1	/	/	/	68.2	2.16	52.3

	Tissue dielectric parameters for head and body phantoms								
Frequency	з	r	σ S/m						
	Head	Body	Head	Body					
300	45.3	58.2	0.87	0.92					
450	43.5	56.7	0.87	0.94					
900	41.5	55.0	0.97	1.05					
1450	40.5	54.0	1.20	1.30					
1800	40.0	53.3	1.40	1.52					
2450	39.2	52.7	1.80	1.95					
3000	38.5	52.0	2.40	2.73					
5800	35.3	48.2	5.27	6.00					

Shenzhen STS Test Services Co., Ltd.

Page 12 of 43

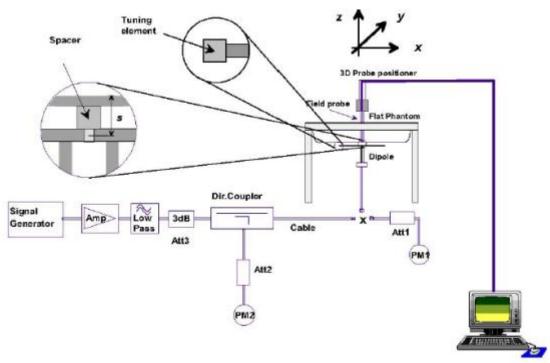
Report No.: STS1911246H02

LIQUID MEASUREMENT RESULTS

Data		pient dition	Body Simulating Liquid		Parameters	Torgot	Measured	Deviation	Limited
Date	Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	Falameters	Target	Measured	[%]	[%]
2019-12-18	22.6	47	2450 MHz	22.3	Permittivity:	52.7	53.55	1.60	±5
2019-12-18	22.0	47	2430 1011 12	22.5	Conductivity:	1.95	2.00	2.37	±5
2019-12-19	22.8	43	5200 MH	22.6	Permittivity:	49.0	48.30	-1.42	±10
2019-12-19	22.0	43	5200 MH	22.0	Conductivity	5.30	5.31	0.13	±10
2019-12-19	22.8	43	5800 MH	22.6	Permittivity:	48.2	48.19	-0.02	±10
2019-12-19	22.0	43		22.0	Conductivity	6.00	6.03	0.43	±10

Shenzhen STS Test Services Co., Ltd.

Page 13 of 43



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg/W)	Target (W/Kg/W)	Tolerance(%)	Date
2450 Body	100	5.230	52.30	52.4	-0.20	2019-12-18
5200 Body	100	15.904	159.04	159	0.02	2019-12-19
5800 Body	100	18.271	182.71	181.2	0.83	2019-12-19

Note:

1. The tolerance limit of System validation ±10%.

2. The dipole input power (forward power) was 100 mW.

3. The results are normalized to 1 W input power

Page 14 of 43

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

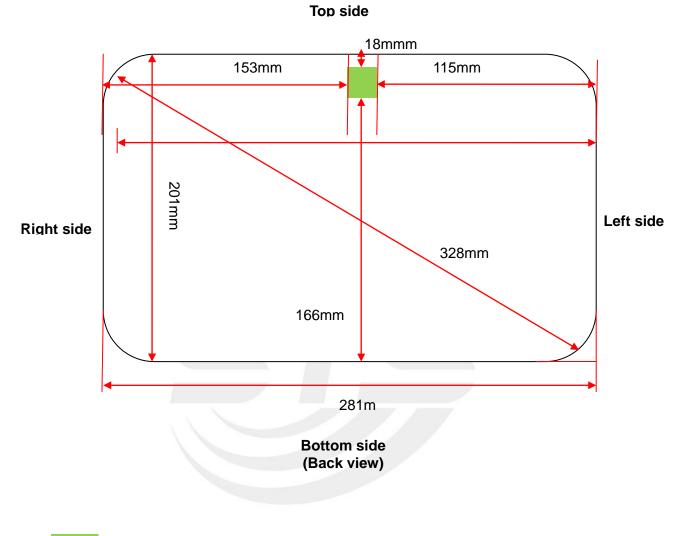
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and Zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.


Page 15 of 43

Report No.: STS1911246H02

7. EUT Antenna Location Sketch

It is a Smart Album, support GSM/WCDMA/LTE mode.

WLAN/BT Antenna

Shenzhen STS Test Services Co., Ltd.

7.1 SAR test exclusion consider table

According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz ~6GHz and≤50mm>table, this device SAR test configurations consider as following:

		Max.AV	Power		Test Pos	ition Config	urations	
Band	Mode	10.0	10/	Back	Left	Right	Тор	Bottom
		dBm	mW	Side	Edge	Edge	Edge	Edge
		Distance to Use	r	<5mm	115mm	153mm	18mm	166m
WLAN 2.4 G		exclusion thresho	old	10	646	1126	38	1256
	802.11b	13.59	22.856	Yes	No	No	No	No
		Distance to Use	r	<5mm	115mm	153mm	18mm	166m
WLAN 5.2 G		exclusion thresho	old	7	616	1096	26	1226
	802.11a	10.82	12.078	Yes	Yes	No	No	No
		Distance to Use	r	<5mm	115mm	153mm	18mm	166m
WLAN 5.8 G		exclusion thresho	old	6	612	1092	25	1222
	802.11a	8.87	7.709	Yes	No	Yes	No	No
		Distance to Use	r	<5mm	115mm	153mm	18mm	166m
Bluetooth	Bluetooth exclusion threshold			10	646	1126	38	1256
	GFSK	6.28	4.246	No	No	No	No	No

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- per KDB 447498 D01, standalone SAR test exclusion threshold is applied; if the distance of the antenna to the user is <5mm, 5mm is user to determine SAR exclusion threshold
- 4. per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distance ≤50mm are determined by: [(max.power of channel, including tune-up tolerance, Mw)/(min. test separation distance, mm)]*[√f(GHZ))≤3.0 for 1-g SAR and≤7.5 for10-g extremity SAR ,f(GHz) is the RF channel transmit frequency in GHz. Power and distance are rounded to the nearest mW and mm before calculation. The result is rounded to one decimal place for comparison For <50mm distance, we just calculate mW of the exclusion threshold value(3.0)to do compare</p>
- 5. per KDB 447498 D01, at 100 MHz to 6GHz and for test separation distances >50mm, the SAR test exclusion threshold is determined according to the following a)[threshold at 50mm in step 1]+(test separation distance -50mm)*(f (MHz)/150)]Mw, at 100 MHz to 1500 MHz
 b) [threshold at 50mm in step1]+(test separation distance -50mm) *10]mW at>

1500MHz and≤6GHz

- Per KDB 447498 D02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/ HSUPA/DC-HSDPA output power is<0.25db higher than RMC 12.2Kbps,or reported SAR with RMC 12.2kbps setting is ≤1.2W/Kg, HSDPA/HSUPA/DC-HSDPA SAR evaluation can be excluded.
- 7. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine futher SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
- 8. Per KDB 616217 D04 Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary.

Page 18 of 43

Report No.: STS1911246H02

8. EUT Test Position

This EUT was tested in Front Face and Rear Face.

8.1 Define Two Imaginary Lines On The Handset

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff		
Meas	Measurement System										
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8		
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8		
3	Hemispherical isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	∞		
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞		
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞		
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	∞		
7	Readout electronics	0.5	Ν	1	1	1	0.50	0.50	∞		
8	Response time	0	R	√3	1	1	0	0	∞		
9	Integration time	1.4	R	√3	1	1	0.81	0.81	∞		
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	∞		
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	∞		
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	∞		
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞		
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞		

Shenzhen STS Test Services Co., Ltd.

Page 20 of 43

Report No.: STS1911246H02

15	Device positioning	2.6	Ν	1	1	1	2.6	2.6	11
16	Device holder	3	Ν	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	∞
Phant	om and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
19	Liquid conductivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	8
22	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Comb	ined standard		RSS	U	$_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U}$	2	10.63%	10.54%	
Expar (P=95	nded uncertainty %)	$U = k U_c$,k=2					21.26%	21.08%	

Report No.: STS1911246H02

9.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff	
Meas	Measurement System									
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8	
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8	
3	Hemispherical isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41	8	
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8	
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8	
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8	
7	Modulation response	0	N	1	1	1	0	0	8	
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	8	
9	Response time	0	R	√3	1	1	0	0	8	
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8	
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8	
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8	
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8	
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	80	
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8	
Dipole	9		•		•		•	•		
16	Deviation of experimental source from	4	Ν	1	1	1	4.00	4.00	8	

Shenzhen STS Test Services Co., Ltd.

Page 22 of 43

Report No.: STS1911246H02

17	Input power and SAR drit measurement	5	R	√3	1	1	2.89	2.89	8
18	Dipole Axis to liquid Distance	2	R	√3	1	1			8
Phant	tom and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
20	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	2.0	Ν	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	Ν	1	1	0.84	2.00	1.68	8
22	Liquid conductivity (temperature uncertainty)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
23	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
25	Liquid Permittivity (temperature uncertainty)	2.5	N	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Comb	nined standard	1	RSS	U	$_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U}$	2 i	10.15%	10.05%	
Expar (P=95	nded uncertainty 5%)	U = $k U_c$,k=2					20.29%	20.10%	

Shenzhen STS Test Services Co., Ltd.

10. Conducted Power Measurement

10.1 Test Result

WLAN

Mode	Mode Channel Number		Average Power (dBm)
	1	2412	13.59
802.11b	6	2437	13.28
	11	2462	13.36
	1	2412	13.23
802.11g	6	2437	13.22
	11	2462	13.18
	1	2412	13.11
802.11n(HT 20)	6	2437	13.11
	11	2462	12.95
	3	2422	13.21
802.11n(HT 40)	6	2437	13.10
	9	2452	13.17

WLAN (5.2Gband)

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
\ \	36	5180	10.68
802.11a	40	5200	10.82
	48	5240	10.74
	36	5180	10.17
802.11 n-HT20	40	5200	10.15
	48	5240	10.65
902 11 m HT40	38	5190	9.87
802.11 n-HT40	46	5230	10.16
	36	5180	10.16
802.11 ac-HT20	40	5200	10.24
	48	5240	10.63
902 11 oo HT40	38	5190	9.93
802.11 ac-HT40	46	5230	10.15
802.11 ac-HT80	42	5210	9.14

=

WLAN (5.8Gband)

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	149	5745	8.79
802.11a	157	5785	8.72
	165	5825	8.87
	149	5745	8.58
802.11 n-HT20	157	5785	8.56
	165	5825	8.73
802.11 n-HT40	151	5755	8.33
002.1111-0140	159	5795	8.43
	149	5745	8.69
802.11 ac-HT20	157	5785	8.57
	165	5825	8.75
802.11 ac-HT40	151	5755	8.33
002.11 ac-m140	159	5795	8.39
802.11 ac-HT80	155	5775	8.12

Bluetooth

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	
	0	2402	0.61	
GFSK(1Mbps)	39	2441	3.54	
	78	2480	6.28	
	0	2402	-2.70	
π/4-DQPSK(2Mbps)	39	2441	0.17	
	78	2480	3.49	
	0	2402	-2.07	
8DPSK(3Mbps)	39	2441	0.36	
	78	2480	3.46	

10.2 Tune-up Power

WLAN (2.4Gband)

Mode	WLAN(AVG)
IEEE 802.11b	13±1dBm
IEEE 802.11g	13±1dBm
IEEE 802.11n(HT 20)	13±1dBm
IEEE 802.11n(HT 40)	13±1dBm

WLAN (5.2Gband)

Mode	5.2G WLAN(AVG)
IEEE 802.11a	10±1dBm
IEEE 802.11n-HT20	10±1dBm
IEEE 802.11n-HT40	10±1dBm
IEEE 802.11ac-HT20	10±1dBm
IEEE 802.11ac-HT40	10±1dBm
IEEE 802.11ac-HT80	9±1dBm

WLAN (5.8Gband)

Mode	WLAN(AVG)
IEEE 802.11a	8±1dBm
IEEE 802.11n HT20	8±1dBm
IEEE 802.11n HT40	8±1dBm
IEEE 802.11ac-HT20	8±1dBm
IEEE 802.11ac-HT40	8±1dBm
IEEE 802.11ac-HT80	8±1dBm

	BT	
Mode	Channel	BT(AVG)
	0	0±1dBm
GFSK	39	3±1dBm
	78	6±1dBm
	0	-2±1dBm
π/4-DQPSK	39	0±1dBm
	78	3±1dBm
	0	-2±1dBm
8DPSK	39	0±1dBm
	78	3±1dBm

Shenzhen STS Test Services Co., Ltd.

Page 26 of 43

Report No.: STS1911246H02

11. EUT And Test Setup Photo

11.1 EUT Photo

Shenzhen STS Test Services Co., Ltd.

Top Edge

Bottom Edge

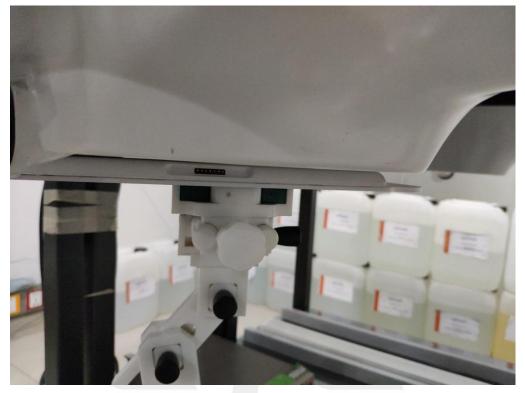
Shenzhen STS Test Services Co., Ltd.

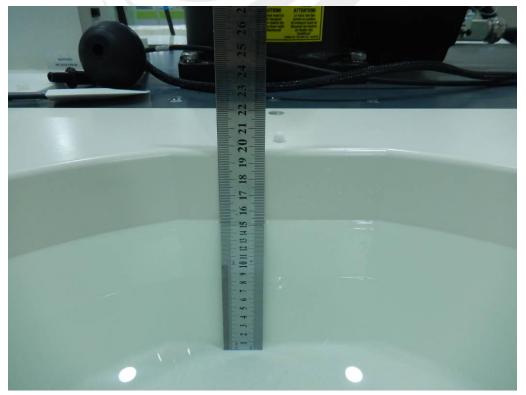
Page 28 of 43

Report No.: STS1911246H02

Left Edge

Right Edge


Page 29 of 43


Report No.: STS1911246H02

11.2 Setup Photo

Body Back side(separation distance is 0mm)

Liquid depth (15 cm)

Shenzhen STS Test Services Co., Ltd.

12. SAR Result Summary

12.1 Body SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
		Back side	1	1.153	0.36	14	13.59	100	1.267	1
2.4G WLAN	802.11 b	Back side	6	1.027	0.40	14	13.28	100	1.212	/
	, v	Back side	11	1.065	2.42	14	13.36	100	1.234	/

Note:

- 1. The test separation of all above table is 0mm.
- 2. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 1.166 W/Kg for Body)

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN 5.2 G	802.11a	Back side	40	0.254	1.13	11	10.82	100	0.265	2
WLAN 5.8 G	802.11a	Back side	165	0.234	0.38	9	8.87	100	0.241	3

Repeated SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas. No.
2.4G WLAN	802.11b	Back side	1	1.147	0.57	14	13.59	1.261	/

12.2 repeated SAR measurement

Band	Mode	Test Position	Ch.	Original Measured SAR 1g(mW/g)	1 st Repeated SAR 1g	Ratio	Original Measured SAR 1g(mW/g)	2nd Repeated SAR 1g	Ratio
2.4G WLAN	802.11b	Back side	1	1.153	1.147	1.01	-	-	-

Note:

- 1. Per KDB 865664 D01,for each frequency band ,repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.
- 2. Per KDB 865664 D01,if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2and the measured SAR <1.45W/Kg, only one repeated measurement is required.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥ 1.45W/Kg
- 4. The ratio is the difference in percentage between original and repeated measured SAR.

Page 32 of 43

Report No.: STS1911246H02

Simultaneous Multi-band Transmission Evaluation:

NOTE:

- 1. Bluetooth and WLAN can't simultaneous transmission at the same time.
- 2. Based upon KDB 447498 D01, BT SAR is excluded as below table.
- 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 4. For minimum test separation distance \leq 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) \cdot [\sqrt{f} (GHz) /x] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR
- 5. The reported SAR summation is calculated based on the same configuration and test position.
- 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\left[\sqrt{f} (GHz) / x\right] W/kg$ for test separation distances ≤ 50 mm;

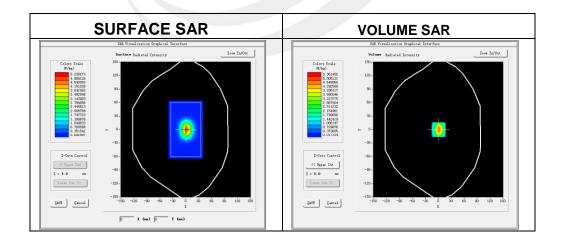
Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

		Maximum Power				Stand alone	
Estimated	ISAR	dBm	mW	Antenna to user(mm)	Frequency(GHz)	SAR(1g) [W/kg]	
BT	Body	7	5.012	5	2.480	0.210	

13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE2	SN 45/15 EPGO281	2019.03.25	2020.03.24
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2019.11.25	2020.11.24
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	2014.09.01	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	2014.09.01	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	2014.09.01	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	2014.09.01	N/A
Network Analyzer	Agilent	8753ES	US38432810	2019.10.11	2020.10.10
Multi Meter	Keithley	Multi Meter 2000	4050073	2019.10.11	2020.10.10
Signal Generator	Agilent	N5182A	MY50140530	2019.10.09	2020.10.08
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2019.10.09	2020.10.08
Wireless Communication Test Set	R&S	CMW500	117239	2019.10.09	2020.10.08
Power Amplifier	DESAY	ZHL-42W	9638	2019.10.09	2020.10.08
Power Meter	R&S	NRP	100510	2019.10.16	2020.10.15
Power Meter	Agilent	E4418B	GB43312526	2019.10.16	2020.10.15
Power Sensor	R&S	NRP-Z11	101919	2019.10.12	2020.10.11
Power Sensor	Agilent	E9301A	MY41497725	2019.10.12	2020.10.11
hygrothermograph	MiEO	HH660	N/A	2019.10.13	2020.10.12
Thermograph	Elitech	RC-4	S/N EF7176501537	2019.10.11	2020.10.10
Network Analyzer	Agilent	8753ES	US38432810	2019.10.11	2020.10.10

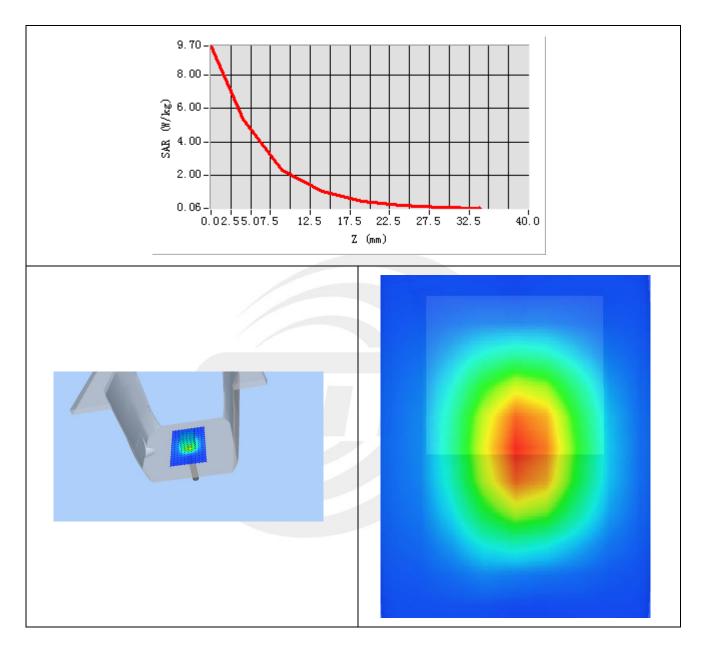

Appendix A. System Validation Plots

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2019-12-18

Experimental conditions.

Device Position	Validation plane			
Band	2450 MHz			
Channels	-			
Signal	CW			
Frequency (MHz)	2450			
Relative permittivity	53.55			
Conductivity (S/m)	2.00			
Power drift (%)	-0.30			
Probe	SN 45/15 EPGO281			
ConvF	2.28			
Crest factor:	1:1			


Maximum location: X=1.00, Y=0.00

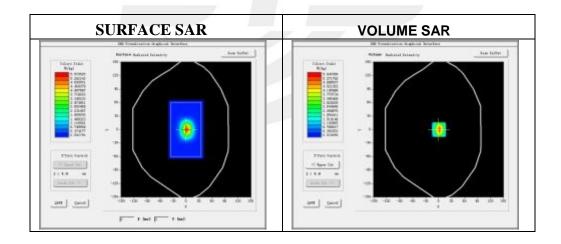
SAR 10g (W/Kg)	2.394057
SAR 1g (W/Kg)	5.243448

Report No.: STS1911246H02

Z Axis Scan

Page 36 of 43

Report No.: STS1911246H02



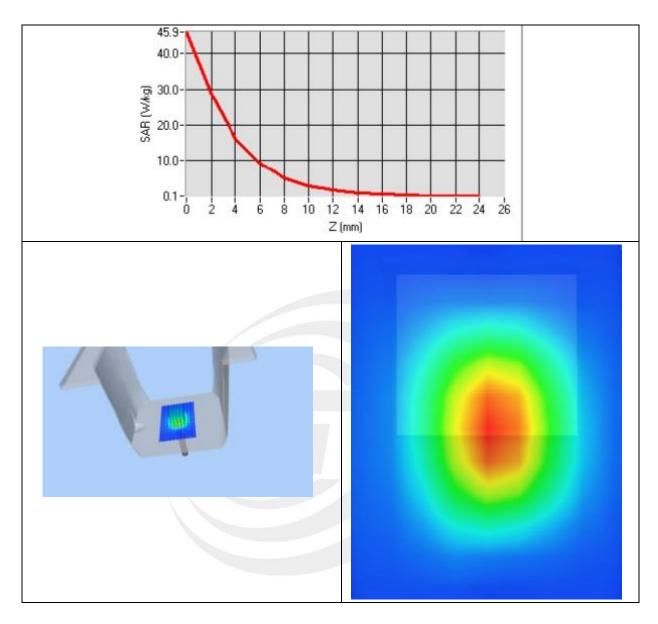
System Performance Check Data(5200MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2019-12-19

Experimental conditions.

Device Position	Validation plane
Band	5200 MHz
Channels	-
Signal	CW
Frequency (MHz)	5200
Relative permittivity	48.30
Conductivity (S/m)	5.31
Power drift (%)	2.52
Probe	SN 45/15 EPGO281
ConvF	2.52
Crest factor:	1:1

Maximum location: X=7.00, Y=2.00

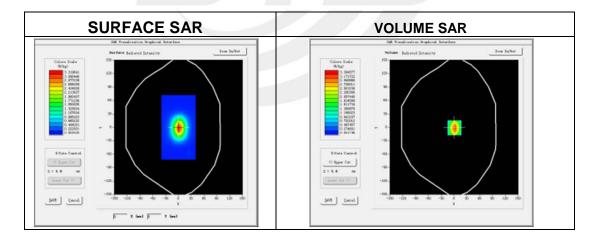

SAR 10g (W/Kg)	5.436285
SAR 1g (W/Kg)	15.803542

Page 37 of 43

Report No.: STS1911246H02

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.



System Performance Check Data(5800MHz Body)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2019-12-19

Experimental conditions.

Device Position	Validation plane
Band	5800 MHz
Channels	-
Signal	CW
Frequency (MHz)	5800
Relative permittivity	48.19
Conductivity (S/m)	6.00
Power drift (%)	-1.00
Probe	SN 45/15 EPGO281
ConvF	2.60
Crest factor:	1:1

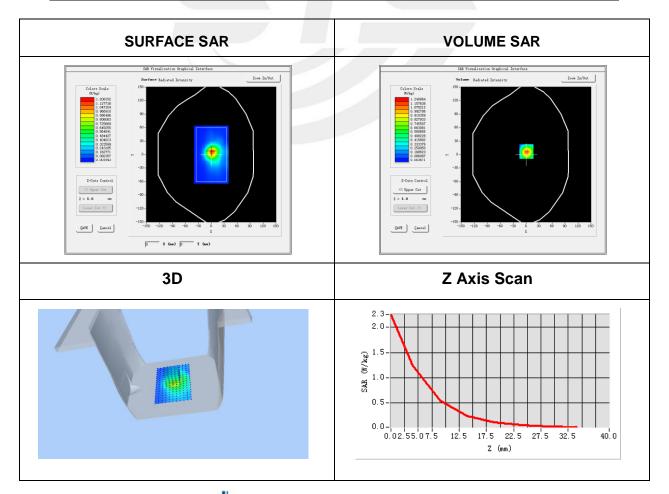


Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.120594
SAR 1g (W/Kg)	18.136838

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.


Page 40 of 43

Appendix B. SAR Test Plots Plot 1: DUT: Smart Album; EUT Model: J10

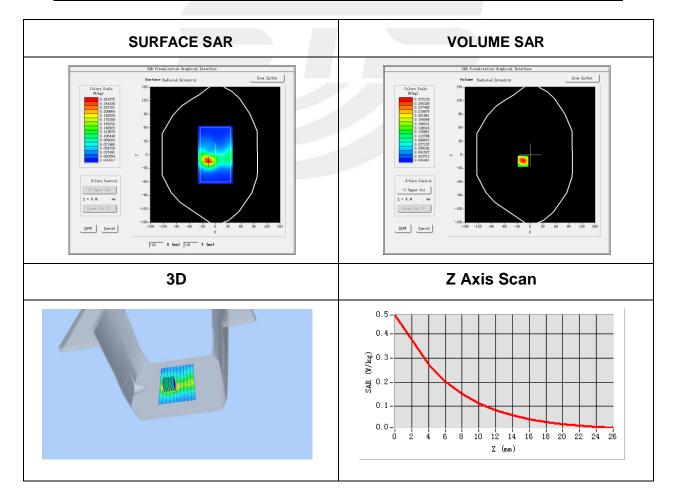
Test Date	2019-12-18
Probe	SN 45/15 EPGO281
ConvF	2.28
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back
Band	IEEE 802.11b ISM
Channels	Low
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2412
Relative permittivity (real part)	52.70
Conductivity (S/m)	1.95
Variation (%)	0.36

Maximum location: X=1.00, Y=7.00 SAR Peak: 2.24 W/kg

<u>.</u>	
SAR 10g (W/Kg)	0.511154
SAR 1g (W/Kg)	1.153088

Shenzhen STS Test Services Co., Ltd.

Page 41 of 43


Report No.: STS1911246H02

Plot 2: DUT: Smart Album; EUT Model: J10

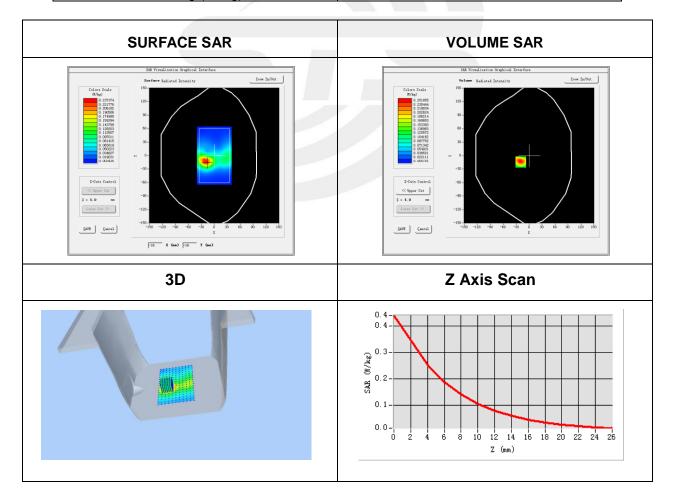
2019-12-19
SN 45/15 EPGO281
2.52
dx=8mm dy=8mm, h= 5.00 mm
7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body back
IEEE 802.11a ISM
IEEE802.a (Crest factor: 1.0)
5200
49.0
5.30
1.13

Maximum location: X=-16.00, Y-14.00 SAR Peak: 0.48 W/kg

er alt rotation to thing	
SAR 10g (W/Kg)	0.120116
SAR 1g (W/Kg)	0.253709

Shenzhen STS Test Services Co., Ltd.

Page 42 of 43


Report No.: STS1911246H02

Plot 3: DUT: Smart Album; EUT Model: J10

Test Date	2019-12-19
Probe	SN 45/15 EPGO281
ConvF	2.60
Area Scan	dx=8mm dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Phantom	Validation plane
Device Position	Body back
Band	IEEE 802.11a ISM
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5825
Relative permittivity (real part)	48.2
Conductivity (S/m)	6.00
Variation (%)	0.38
Maximum location: X=-19.00 Y=-14.00	

Maximum location: X=-19.00, Y=-14.00 SAR Peak: 0.44 W/kg

SAR 10g (W/Kg)	0.112081
SAR 1g (W/Kg)	0.233932

Shenzhen STS Test Services Co., Ltd.

Page 43 of 43

Report No.: STS1911246H02

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.